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The Internet of Things (IoT) has penetrated into various application fields. If the multimedia information obtained by the IoT
device is tampered with, the subsequent information processing will be affected, resulting in an incorrect service and even
security threat. Therefore, it is very necessary to study multimedia forensics technology for IoT security. In the edge-cloud IoT
environment, an image anomaly detection technology for security service is proposed in this paper. First, preprocessing is
performed before image anomaly detection. Then, we extracted sparse features from the image to roughly localize the region of
anomaly detection. Feature extraction based on the polar cosine transform (PCT) is then performed only on the candidate
region of anomaly detection. To further improve the detection accuracy, we use iterative updating. This method makes use of
the feature that the edge node is closer to the multimedia source in physical location and migrates the complex computing task
of image anomaly detection from the cloud computing center to the edge node. Provide a security service for abnormal data
and deploy it to the edge-cloud server to reduce the pressure on the cloud. Overall, preprocessing improves the ability of
feature extraction in smooth or small region of anomaly detections, and the iterative strategy enhances the security service.
Experimental results demonstrate that the proposed method outperforms state-of-the-art methods.

1. Introduction

In recent years, with the continuous integration of emerging
technologies such as artificial intelligence, blockchain [1],
big data [2], and the Internet of Things (IoT) [2–7] and
the increasing number of intelligent devices [8], the image
data to be processed by the IoT has increased exponentially.
IoT technology has penetrated into many fields, and its
development has attracted extensive attention. A large
number of multimedia data are generated in IoT. If these
multimedia data are tampered with, it will threaten the
information security and the Internet [9]. Therefore, the
research of multimedia forensics is of great significance.
Image forensics is an important branch of multimedia foren-
sics. Aiming at the problems of high delay and low process-
ing efficiency of edge cloud, an image anomaly detection
method based on edge computing is proposed. Deploy the

image security service task to the edge device closest to the
image data to be processed to share the computing pressure
of the cloud server.

The methods of image anomaly detection [10] can be
divided into active methods and passive methods. Active
methods are aimed at embedding useful information in an
image and then verifying the authenticity and integrity of
the image by evaluating the embedded information. How-
ever, conventional digital cameras lack digital watermarking
functions for security. Consequently, active methods cannot
be used when embedded information is unavailable. Alter-
natively, passive methods, also known as blind forensics,
do not require preprocessing of digital images. Thus, it is
used to identify the authenticity of images without embed-
ded information, being more applicable than active
methods. To conceal tampering and make the image visually
more realistic, postprocessing can be applied to the cloned
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area with methods such as rotation, loss JPEG compression,
scaling, and other distortions.

Two main types of passive forensic algorithms are used.
One is based on block matching, also known as dense-field
algorithm, and the other is based on key points, also known
as sparse-field algorithm.Dense-field algorithms usually divide
an image into circular or square overlapping blocks to extract a
feature vector from each block. After lexicographic sorting, the
similarity between the successive vectors is evaluated, and the
region of anomaly detection is determined by thresholding.
Generally, dense-field algorithms have high computational
complexity and may lead to false matching of similar smooth
areas in natural images. On the other hand, sparse-field algo-
rithms extract selected points, called key points, to generate
feature descriptors. Key points have distinctive characteristics
and can reflect essential characteristics of an image to identify
target objects. However, sparse-field algorithms cannot extract
enough key points from smooth or small areas in images, lim-
iting their performance. In addition, the sparsity of key points
impedes the accurate localization of duplicated areas.

To handle the abovementioned problems and leverage
both dense-field and sparse-field algorithms, we propose an
algorithm integrating these algorithms. First, the region of
anomaly detection is roughly localized using a sparse-field
algorithm, and then, a dense-field algorithm is applied to
accurately determine the region of anomaly detection.
Furthermore, we propose an adaptive iterative strategy to
improve the localization accuracy. The main contributions
of this study are summarized as follows:

(1) In the edge-cloud IoT, an anomaly detection tech-
nology for security service is proposed to further
construct the trust mechanism of network data. This
method makes use of the feature that the edge node
is closer to the multimedia source in physical loca-
tion and migrates the complex computing task of
image anomaly detection from the cloud computing
center to the edge node.

(2) The advantages of dense-field and sparse-field algo-
rithms are combined in the proposed method. The
proposed algorithm first obtains the approximate
location of anomaly detection by sparse-field algo-
rithm and then obtains the accurate location of
anomaly detection by dense-field algorithm.

(3) An adaptive iterative strategy is introduced to
improve the accuracy of tampering localization.
Even if few matching points are available, the region
of anomaly detection can be accurately determined

The remainder of this paper is organized as follows.
Section 2 presents related work. In Section 3, we detail the
proposed algorithm. Section 4 reports experimental results.
Finally, we draw conclusions in Section 5.

2. Related Work

Edge-cloud calculation in IoT means processing data at the
edge of the network. Edge computing may solve the prob-

lems of response time requirements, battery life constraints,
and bandwidth cost savings and provide data security
services [11]. Ferrari et al. used full-cloud and edge-cloud
architectures for industrial IoT anomaly detection [12].
The results show that edge domain can reduce data trans-
mission and communication delay. Feature extraction and
feature matching are the bases in image anomaly detection
[13]. In a dense-field algorithm, detection involves block
feature extraction and feature matching across blocks [14].
The discrete cosine transform (DCT) was first proposed by
Fridrich et al. [15]. However, the corresponding algorithm
has high computational complexity and low robustness.
Subsequent improvements to feature extraction measures
have been proposed, such as principal component analysis
(PCA) [16], singular value decomposition (SVD) [17], dis-
crete wavelet transform (DWT) [18], blur-invariant moment
features [19], and local binary patterns (LBP) [20]. Bayram
et al. [21] extracted scale-invariant features from each block
using the Fourier-Mellin transform (FMT). However, this
algorithm is only robust for small region rotations. On the
other hand, the Zernike moments (ZM) proposed by Ryu
et al. [22, 23] and the polar cosine transform (PCT) pro-
posed by Li [24] allow to extract robust rotation-invariant
features from small overlapping blocks. For matching,
lexicographic sorting is widely used [25]. To accelerate
matching, k-dimensional trees [19] and locality-sensitive
hashing [24] have been adopted to detect similar patches.
However, these algorithms have high computational
complexity because all image blocks should be matched.
Recently, a fast approximate nearest neighbor search algo-
rithm called Patch Match (PM), which is based on nearest
neighbor search, was introduced [26, 27]. Regarding perfor-
mance, sparse-field algorithms are faster than dense-field
algorithms because the former should process fewer points.
The scale-invariant feature transform (SIFT) was proposed
by Lowe [28] in 1999. Luo et al. [29] extracted rotation
and scale invariant descriptors. Subsequently, an accelerated
version called speeded up robust features (SURF) was pro-
posed [30]. Other fast feature detection and description
algorithms include oriented features from accelerated
segment test (FAST) and rotated binary robust independent
elementary features (BRIEF) [31], multisupport region
order-based gradient histogram [32], and histogram of
oriented gradients.

In recent years, blockchain [33] and deep learning have
been used for information protection [34, 35]. Fusion strat-
egies based on SIFT have achieved suitable detection results
[36–39]. In particular, the histogram of oriented gradients
has been applied to feature extraction and tampering detec-
tion using a support vector machine (SVM) [36]. Nonover-
lapping superpixel segmentation has been used as a
preprocessing step before applying feature extraction [37].
Features have been extracted and matched in two different
color spaces for rough detection [38], and DCT features have
been extracted for accurate localization. Furthermore, key
points have been detected using a uniqueness metric and
described using PCT [39], with iterative improvement
enabling accurate localization. Despite its advantages, SIFT
has various drawbacks. Specifically, it cannot detect
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tampering of smooth or small areas in an image. In addition,
the sparsity of feature points provided by SIFT impedes to
accurately locate the region of anomaly detection. We pro-
pose three strategies to overcome the limitations of this
method. First, the target image is represented in the Lab
color space in smooth areas. Second, rescaling is applied in
small areas. Third, the localization accuracy is improved by
combining dense-field and sparse-field algorithms.

3. Proposed Algorithm

IoT technology [40] has penetrated into many fields [41],
and its development has attracted extensive attention [42].
Edge cloud is a cloud computing platform built on edge
infrastructure based on the core and edge computing capa-
bilities of cloud computing technology to form an elastic
cloud platform with comprehensive capabilities in comput-
ing, network, storage, and security at the edge. The edge-
cloud IoT architecture is shown in Figure 1. We can see that
the edge cloud, central cloud, and IoT terminal in Figure 1
form an end-to-end “cloud three-body collaboration” tech-
nical framework. By placing tasks such as computing and
intelligent data analysis at the edge, cloud pressure can be
reduced. The image data generated by massive terminal
devices are transmitted to the cloud computing layer [43,
44] for centralized processing through the network, which
has the problems of large amount of calculation and large
image processing delay. An image anomaly detection
method for security service, which is based on edge calcula-
tion, is proposed in this paper. Taking advantage of the fact
that the edge nodes are closer to the multimedia source in
physical location, the complex image analysis and processing
computing tasks are migrated from the cloud computing
center to the edge computing layer.

We propose an iterative algorithm based on dense-field
and sparse-field algorithms in edge-cloud IoT. First, SIFT
is applied to roughly locate the region of anomaly detection.
Then, PCT feature extraction is performed only on the
candidate region of anomaly detection, and PM is used for
matching. As SIFT may partially identify a region of anom-
aly detection, an adaptive iterative strategy is introduced to
further improve the localization accuracy. Finally, after
morphological operations, the region of anomaly detection
is accurately localized.

The flowchart of the proposed algorithm is shown in
Figure 2. The algorithm comprises a rough localization stage
(including preprocessing) and an accurate localization stage.
The following subsections detail each process in the
proposed algorithm.

3.1. Image Preprocessing. Firstly, the image is preprocessed.
The image analysis process does not need to transmit the
image to the cloud through the network for processing but
directly analyzes and processes the image in the edge server
close to the data source. SIFT is a feature extraction and
matching algorithm that provides higher accuracy and
robustness to scaling attacks than similar algorithms such
as SURF, BRIEF, oriented FAST, and rotated BRIEF. SIFT
can extract key points on a spatial scale without being

affected by illumination, affine transformations, noise, and
other image factors such as corner points, edge points, bright
spots in dark areas, and dark spots in bright areas. Based on
these key points, feature descriptors of each key point are
generated. Owing to its superior performance, we use SIFT
for feature extraction in the rough localization stage.

A common preprocessing step before applying SIFT is
representing the target RGB (red–green–blue) image in
grayscale. However, detection often fails when using gray-
scale images, especially in smooth areas. To prevent this
problem, channels a and b of the Lab color space, the gray-
scale image, and contrast limited adaptive histogram equali-
zation have been used for preprocessing before feature
extraction [38]. Reducing the contrast threshold and rescal-
ing the image have also been used as preprocessing methods
[45]. Although such preprocessing methods can increase the
number of matching points, they apply various techniques
simultaneously, resulting in a large computational overhead.
Figure 3 gives an example using SIFT for two preprocessing
methods. Figures 3(a)–3(c) gives the tampered image, the
tampered image and the ground truth, separately.
Figures 3(d) and 3(e) show key points extracted from the
grayscale and Lab space (channel a), separately. We can
see that the key points in Lab space are denser than those
in grayscale. In contrast, after representing the RGB image
in Lab color space, tampering could be detected using chan-
nel a, as shown in Figure 3(f). The Lab color space allows to
extract more key points than the grayscale representation for
smooth areas. Nevertheless, the grayscale representation is
more robust than the Lab color space against various
postprocessing attacks.

In the proposed algorithm, three preprocessing methods
are used: (1) RGB-to-grayscale transformation, (2) RGB-to-
Lab transformation, and (3) image resizing. However, if
these methods are used simultaneously, the computational
overhead would notably increase. Therefore, only when
one preprocessing method fails, the next method is used,
effectively reducing the calculation burden. On the other
hand, the proposed algorithm does not require many
matching points for rough localization. Thus, if three or
more matching points are identified, accurate localization
can proceed iteratively. The main preprocessing steps are
described as follows.

Step 1. The RGB image is converted into a grayscale image,
and feature matching is performed.

Step 2. If the security detection fails, the image is represented
in the Lab color space for detection.

Step 3. Otherwise, the image is expanded to repeat detec-
tion. If the security detection fails after applying the three
preprocessing methods, the image is considered as
authentic and safe.

3.2. Rough Localization Stage. Rough localization stage
mainly includes three processes: (1) feature extraction, (2)
generalized two nearest neighbor matching, and (3) mis-
match elimination by using random samples with invariant
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compatibility. We use the VLFeat open-source library [46]
for feature extraction and description. After preprocessing,
128-dimensional SIFT features are extracted. We denote
the key points as xiði = 1,⋯,nÞ and the feature descriptors
as f iði = 1,⋯,nÞ for n feature points. Then, generalized two
nearest neighbor matching is applied [47]. The Euclidean
distance between a feature descriptor and the other descrip-
tors is calculated. For example, we calculate the distance
between f1 and f2, f3,⋯, f n and obtain distance vector D =
fd1, d2,⋯,dn−1g after sorting. If dk/dk+1 < T thresh and dk+1/
dk+2 ≥ T thresh for kð1 ≤ k ≤ n − 2Þ, then feature point x1 and
the key points with distances of fd1, d2,⋯,dkg from x1 are
considered to be matching. In this study, we set the thresh-
old T thresh to 0.05.

As many similar areas can appear in natural images, false
matching should be prevented. To this end, we use agglom-
erative hierarchical clustering [47] to filter out classes with
less than three points. Furthermore, we use robust random
sample consensus to estimate homograph that allows to fil-
ter out the effects of unwanted outliers. When at least two
classes are detected and at least three matched pairs between
classes are available, we consider that the image is tampered.

The sparse-field algorithm can only provide an approx-
imate location of the anomaly detection through the above-
mentioned steps. For smooth or small region of anomaly
detections, few matched points may be extracted, under-
mining the accuracy. As shown in Figure 3(f), after rough
localization, only eight matching points are obtained, being
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difficult to accurately determine the region of anomaly
detection. Therefore, we use a dense-field algorithm and
an iterative strategy for accurate localization in the follow-
ing stage.

3.3. Accurate Localization Stage. To improve the localiza-
tion accuracy, we use an iterative update strategy as
described below.

Step 1. By centering at the matching points, the candidate
tampering area (R) is expanded as follows:

R x, yð Þ = 1 x, yð Þ − xj
�
�

�
� ≤

B
2 ,

0 otherwise,

8

<

:
 ∀ x, yð Þ ∈ I, ð1Þ

where xjðj = 1,⋯,mÞ represents the matching points
obtained during rough localization, I represents the target
image, B = 30 + ½0:1 ffiffiffiffiffiffiffiffiffiffiffiffiffi

M ×N
p � is the expansion radius, and

M ×N is the size of the target image.

Step 2. Using R, block matching is used for accurate localiza-
tion. Considering the powerful distinguishing performance
of PCT, we use it to extract block features [24]. Specifically,
9-dimensional PCT block features are extracted from
expanded matching area R. Let f ðr, θÞ denote the polar coor-

dinates of the image. The PCT with order n and repetition l
can be expressed as

Mn,l =Ωn

ð2π

0

ð1

0
Hn,l r, θð Þ½ �∗ f r, θð Þrdrdθ, ð2Þ

where Hn,lðr, θÞ = cos ðπnr2Þeilθ is the kernel equation of
PCT and

Ωn =

1
π

n = 0,

2
π

n ≠ 0:

8

>><

>>:

ð3Þ

Then, the PCT feature vector can be calculated as

f = Mn,l
�
�

�
� n + l ≤ 3, 0 ≤ n, l < 3j� �

: ð4Þ

After PCT block feature extraction, PM [26] and dense
linear filtering are applied for matching and filtering out
mismatches, respectively. The PM algorithm proposed by
Barnes et al. [26] is an approximate nearest neighbor search
algorithm. The algorithm searches for similar image blocks
globally in a single image through neighborhood search
and random sampling. It mainly includes three steps:

(a) (b)

(c) (d)

(e) (f)

Figure 3: Key point extraction and matching for image represented in (a) the original image, (b) the tampered image, (c) the ground truth,
(d) SIFT key point detection in grayscale, (e) SIFT key point detection in Lab color space (channel a), and (f) matched key points.
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random initialization, propagation, and random search. Fil-
tering is mainly aimed at finding a dense approximate neigh-
bor matching between image blocks through initialization,
propagation, and random search. After this step, we obtain
candidate region of anomaly detection mapðiÞ, where i is
the number of iterations.

Step 3. To remove isolated small erroneous detections,
corrosion is applied to mapðiÞ with radius B, obtaining area
Cor mapðiÞ after corrosion.

Step 4. Cor mapðiÞ is expanded with radius (B + 10), obtain-
ing area Exp mapðiÞ.

Step 5. Map dif mapðiÞ is obtained as ðExp mapðiÞ − Cor ma
pðiÞ > 0Þ. The algorithm returns to Step 2 to obtain map ne
wðiÞ. Except for the first iteration, PCT feature matching is
applied only to new area dif mapðiÞ during any other iteration.

Step 6. The candidate region of anomaly detection is updated
as mapði+1Þ =mapðiÞ ∪map newðiÞ ði ≥ 1Þ.

Step 7. The morphology open operation is applied to delete
objects with area below T in mapði+1Þ. In this study, we used
eight neighborhoods and a minimum clone size T of 1200.

Step 8. The candidate region of anomaly detections obtained
over iterations is denoted as map Fi = fmapð1Þ,⋯,mapðiÞg
ði ≥ 2Þ: Their first derivative is denoted as ∇map Fi = diff
ðmap FiÞ. If ∇map FiðendÞ ≤ Tterm (set to 500 in this

study) or the number of iterations exceeds maximum limit
T iter (set to 5 in this study), the algorithm terminates.
Otherwise, the algorithm returns to Step 3 to start a new
iteration. The pseudocode is shown in Algorithm 1.

4. Experimental Results

We evaluated the performance of the proposed algorithm on
the GRIP dataset [14]. This dataset contains 80 original
images of 768 × 1024 pixels along with the corresponding
copy-move forged images and ground truths. Most of the
copies in this dataset are obtained from smooth areas. For
the experiments, we used a computer equipped with a
2.60GHz Intel(R) Core i7-9850H CPU running a MATLAB
R2019a implementation.

4.1. Evaluation Criteria. We calculated the precision and
recall at the image level and pixel level to evaluate the perfor-
mance of the proposed anomaly detection algorithm:

Input:
I: the tested image;
T iter: the maximum number of iteration;
T term: algorithm termination threshold;
Obtaining the candidate tampering area Rðx, yÞ using formula (1);
while i ≤ T iter do

mapðiÞ ⟵ Rðx, yÞ PCT feature extraction, PM matching and dense linear filtering;
Cor mapðiÞ ⟵mapðiÞ corrosion;
Exp mapðiÞ ⟵Cor mapðiÞ expansion;
Dif mapðiÞ ⟵ Exp mapðiÞ − Cor mapðiÞ > 0;
map newðiÞ ⟵Dif mapðiÞ PCT feature extraction, PM matching and dense linear filtering;
mapði+1Þ =mapðiÞ ∪map newðiÞ;
mapði+1Þ morphology open operation;
if i ≥ 2 then
∇map FðiÞ ⟵ diffðmapð1Þ,⋯,mapðiÞÞ//calculate the first derivative;
if ∇map FðiÞ ≤ T termj i ≥ T iter then

break;
end if

end if
i = i + 1;

end while
Output: the tamper localization mapðiÞ.

Algorithm 1: The proposed adaptive iterative algorithm.

Table 1: F1 score of various anomaly detection methods.

Study Image level (%) Pixel level (%)

Amerini et al. [48] 67 44

Li et al. [49] 86 85

Bravo-Solorio and Nandi [25] 94 85

Christlein et al. [50] 67 52

Tahaoglu et al. [38] 94 97

This study 96 97
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Precision =
Tp

Tp + Fp
, ð5Þ

Recall =
Tp

Tp + FN
, ð6Þ

where TP is the number of tampered images in image
level (or tampered pixels in pixel level) correctly detected,
FP is the number of original images in image level (or
original pixels in pixel level) erroneously detected as tam-
pered, and FN is the number of tampered images in
image level (or tampered pixels in pixel level) incorrectly
detected as authentic.

The precision represents the accuracy of the predicted
results, and the recall represents the accuracy of the total
positive samples. Thus, higher precision and recall indicate
a better algorithm. However, a low recall implies a high pre-
cision and vice versa. Thus, we used another comprehensive

measure, the F1 score, obtained as the harmonic mean of the
precision and recall:

F1 = 2 ⋅ Precision ⋅ Recall
Precision + Recall : ð7Þ

4.2. GRIP Dataset. Given an image, we need to determine the
presence of tampering, in which case it becomes necessary to
accurately localize the region of anomaly detection. We eval-
uated the proposed algorithm at the image level and pixel
level separately. We combined 160 images, including 80 orig-
inal images and 80 tampered images from the GRIP dataset.
At the image level, we obtained precision of 93%, recall of 1,
and F1 score of 96%. At the pixel level, we obtained precision
of 95%, recall of 99%, and F1 score of 97%.

The F1 score obtained from different methods are listed
in Table 1. At the image level, the proposed algorithm pro-
vides the highest F1 score. At the pixel level, the proposed

(a) (b) (c)

Figure 4: Example of false matching elimination: (a) tampered image, (b) detection results from SIFT, and (c) false matching elimination.

(a) (b) (c) (d)

Figure 5: Anomaly detection results of different methods: (a) target image and detection results of (b) PM [27], (c) SIFT [39], and (d) the
proposed algorithm.
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algorithm has the same F1 score as the method in Ref. [38]
and higher F1 score than the other methods. The proposed
algorithm provides better detection because mismatched
points obtained from rough localization are likely eliminated
after accurate localization. Figure 4 shows an example of this
situation. We tested the tampered image in Figure 4(a) at the
image level. The detection results for SIFT matching are
shown in Figure 4(b). The points enclosed by the red circle
indicate SIFT mismatching, which is eliminated after PM
matching, as shown in Figure 4(c).

Figure 5 shows examples of textured, mixed, and smooth
region of anomaly detections. Figure 5(a) shows the forged
images, and Figures 5(b)–5 (d) show the corresponding
results for PM [27], SIFT [39], and the proposed algorithm,
respectively. The red area in the detection result indicates
false detection, while the white area indicates that tampering
could not be detected, and the green area indicates correct
detection. The remaining black areas represent areas that
neither have been tampered with nor have been misdetected.
The PM algorithm suitably detects tampering in smooth
areas (second and third rows), but it provides false detection
for the textured area (first row). SIFT fails to accurately
localize the region of anomaly detection and is completely
unable to detect tampering in the smooth area. In contrast,
the proposed algorithm combining SIFT and PCT provides
the best detection results.

4.3. FAU Dataset. We also used the public image dataset in
Ref. [50] to test the performance of the proposed algorithm
under rotation and scaling attacks in smoothed areas. In
Figure 6, we tested 15 rotation or scaling images of
smoothed area tampering. The first row shows rotation

attacks from 2° to 10°, with step of 2°. The second row shows
scaling attacks from 91% to 109%, with the step as 2%. We
compare the proposed method with the state-of the art
method: the SIFT-based method [39], indicated in red, and
the PM-basedmethod [27], indicated in blue. The results indi-
cated in green are the detection result of the proposedmethod.
We can see that the proposed scheme performed better than
the other two methods in smoothed area tampering.

The computation time of the proposed algorithm and
similar methods is listed in Table 2. By calculating 160
images in the GRIP dataset, the mean computation time of
the proposed algorithm is slightly higher than that of the
methods in Refs. [38, 39], but it remains within an accept-
able range.

5. Conclusions

At present, in the image anomaly detection task of IoT, a
large number of terminal devices transmit images to the
cloud computing center through the network, resulting in
large computing load and high image processing delay. In
the edge-cloud IoT, a security service-oriented image anom-
aly detection technology is proposed in this paper. The RGB
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Figure 6: Detection result under rotation and scaling attacks.

Table 2: Mean computation time of various anomaly detection
methods.

Study Mean computation time (s)

Tahaoglu et al. [38] 418

Zandi et al. [39] 437

This study 653
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image is represented in grayscale and channel a of the Lab
color space, and it is resized for preprocessing. Then, SIFT
feature extraction is applied. The preprocessing methods
are not performed simultaneously, but each method is
applied only if the preceding one cannot detect tampering,
effectively reducing the computational overhead. SIFT
feature matching then provides a rough localization of the
anomaly detection, while PCT block feature extraction and
PM feature matching provide accurate localization of the
anomaly detection. An adaptive iterative update strategy is
introduced to gradually improve the localization accuracy.
The performance of the proposed algorithm was evaluated
at the image and pixel levels. The experimental results show
that migrating the image security service task to the edge
computing device can reduce the pressure of the computing
center, deal with the image data anomaly detection in time,
and improve the image privacy and security. In the future,
deep learning algorithms will be combined to improve the
scope of application of image anomaly detection.

Data Availability

The datasets in the experiments include GRIP and FAU,
which can be accessed in reference [14, 50], separately.
[14]. D. Cozzolino, G. Poggi, and L. Verdoliva, “Copy-
move forgery detection based on PatchMatch,” in Proceed-
ings of IEEE international conference of Image Process, pp.
5312-5316, Izmir, Turkey, 2014. [50]. V. Christlein, C. Riess,
J. Jordan, C. Riess, and E. Angelopoulou, “An evaluation of
popular copy-move forgery detection approaches,” IEEE
Transactions on Information Forensics and Security, vol. 7,
no. 6, pp. 1841-1854, 2012.

Conflicts of Interest

The authors declare that there is no conflict of interest
regarding the publication of this paper.

Acknowledgments

This work was supported by the Doctoral Research Fund of
Shandong Jianzhu University (No. X20022Z) and the Shan-
dong Province Soft Science Research Project (Grant no.
2020RKB01671).

References

[1] Y. Xu, J. Ren, Y. Zhang, C. Zhang, B. Shen, and Y. Zhang,
“Blockchain empowered arbitrable data auditing scheme for
network storage as a service,” IEEE Transactions on Services
Computing, vol. 13, no. 2, pp. 289–300, 2020.

[2] X. Zhou, W. Liang, K. I. K. Wang et al., “Academic influence
aware and multidimensional network analysis for research col-
laboration navigation based on scholarly big data,” IEEE
Transactions on Emerging Topics in Computing, vol. 9, no. 1,
pp. 246–257, 2021.

[3] W. Liang, Y. Hu, X. Zhou, Y. Pan, and K. Wang, “Variational
few-shot learning for microservice-oriented intrusion detec-
tion in distributed industrial IoT,” IEEE Transactions on
Industrial Informatics, 2021.

[4] X. Zhou, X. Yang, J. Ma, and K. Wang, “Energy efficient smart
routing based on link correlation mining for wireless edge
computing in IoT,” IEEE Internet of Things Journal, vol. 99,
2021.

[5] Z. Cai and Z. He, “Trading private range counting over big IoT
data,” in 2019 IEEE 39th International Conference on Distrib-
uted Computing Systems (ICDCS), pp. 144–153, Dallas, TX,
USA, 2019.

[6] X. Zhou, X. Xu, W. Liang, Z. Zeng, and Z. Yan, “Deep-learn-
ing-enhanced multitarget detection for end-edge-cloud sur-
veillance in smart IoT,” IEEE Internet of Things Journal,
vol. 8, no. 16, pp. 12588–12596, 2021.

[7] X. Zheng and Z. Cai, “Privacy-preserved data sharing
towards multiple parties in industrial IoTs,” IEEE Journal
on Selected Areas in Communications, vol. 38, no. 5,
pp. 968–979, 2020.

[8] Z. Cai, Z. Xiong, H. Xu, P. Wang, W. Li, and Y. Pan, “Gener-
ative adversarial networks,” ACM Computing Surveys,
vol. 54, no. 6, pp. 1–38, 2021.

[9] Z. Cai, Z. He, X. Guan, and Y. Li, “Collective data-sanitization
for preventing sensitive information inference attacks in social
networks,” IEEE Transactions on Dependable and Secure Com-
puting, vol. 15, no. 4, pp. 577–590, 2018.

[10] X. Zhou, W. Liang, S. Shimizu, J. Ma, and Q. Jin, “Sia-
mese neural network based few-shot learning for anomaly
detection in industrial cyber-physical systems,” IEEE
Transactions on Industrial Informatics, vol. 17, no. 8,
pp. 5790–5798, 2021.

[11] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing:
vision and challenges,” IEEE Internet of Things Journal,
vol. 3, no. 5, pp. 637–646, 2016.

[12] P. Ferrari, S. Rinaldi, E. Sisinni et al., “Performance evaluation
of full-cloud and edge-cloud architectures for Industrial IoT
anomaly detection based on deep learning,” in 2019 II Work-
shop on Metrology for Industry 4.0 and IoT (MetroIn-
d4.0&IoT), pp. 420–425, Naples, Italy, 2019.

[13] Z. Cai and X. Zheng, “A private and efficient mechanism for
data uploading in smart cyber-physical systems,” IEEE Trans-
actions on Network Science and Engineering, vol. 7, no. 2,
pp. 766–775, 2020.

[14] D. Cozzolino, G. Poggi, and L. Verdoliva, “Copy-move forgery
detection based on PatchMatch,” in 2014 IEEE International
Conference on Image Processing (ICIP), pp. 5312–5316, Izmir,
Turkey, 2014.

[15] A. J. Fridrich, B. D. Soukal, and A. J. Lukáš, “Detection of
copy-move forgery in digital images,” Proceedings of Digital
Forensic Research Workshop, , pp. 289–302, Springer-Verlag
Press, Berlin, 2003.

[16] A. C. Popescu and H. Farid, Exposing Digital Forgeries by
Detecting Duplicated Image Regions, Dartmouth Computer
Science Technical Report TR2004-515, USA, 2004.

[17] X. Kang and S. Wei, “Identifying tampered regions using sin-
gular value decomposition in digital image forensics,” in Inter-
national Conference on Computer Science and Software
Engineering, pp. 926–930, Wuhan, China, 2008.

[18] M. Bashar, K. Noda, N. Ohnishi, and K. Mori, “Exploring
duplicated regions in natural images,” IEEE Transactions on
Image Processing, vol. 99, pp. 1–40, 2010.

[19] B. Mahdian and S. Saic, “Detection of copy-move forgery using
a method based on blur moment invariants,” Forensic Science
International, vol. 171, no. 2-3, pp. 180–189, 2007.

9Wireless Communications and Mobile Computing



[20] Y. Zhu, X. Shen, and H. Chen, “Covert copy-move forgery
detection based on color LBP,” Zidonghua Xuebao/Acta Auto-
matica Sinica, vol. 43, no. 3, pp. 390–397, 2017.

[21] S. Bayram, H. T. Sencar, and N. Memon, “An efficient and
robust method for detecting copy-move forgery,” in IEEE
International Conference on Acoustics, Speech and Signal Pro-
cessing, pp. 1053–1056, Taipei, Taiwan, 2009.

[22] S. J. Ryu, M. J. Lee, and H. K. Lee, “Detection of copy-rotate-
move forgery using Zernike moments,” in International Work-
shop on Information Hiding, pp. 51–65, Springer, 2010.

[23] S. J. Ryu, M. Kirchner, M. J. Lee, and H. K. Lee, “Rotation
invariant localization of duplicated image regions based on
Zernike moments,” IEEE Transactions on Information Foren-
sics and Security, vol. 8, no. 8, pp. 1355–1370, 2013.

[24] Y. Li, “Image copy-move forgery detection based on polar
cosine transform and approximate nearest neighbor search-
ing,” Forensic Science International, vol. 224, no. 1-3, pp. 59–
67, 2013.

[25] S. Bravo-Solorio and A. K. Nandi, “Exposing duplicated
regions affected by reflection, rotation and scaling,” 2011 IEEE
International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2011, pp. 1880–1883, Prague, Czech Repub-
lic, 2011.

[26] C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Goldman,
“PatchMatch,” ACM Transactions on Graphics, vol. 28, no. 3,
pp. 1–11, 2009.

[27] D. Cozzolino, G. Poggi, and L. Verdoliva, “Efficient dense-field
copy-move forgery detection,” IEEE Transactions on Informa-
tion Forensics and Security, vol. 10, no. 11, pp. 2284–2297,
2015.

[28] D. G. Lowe, “Object recognition from local scale-invariant fea-
tures,” in Proceedings of the Seventh IEEE International Con-
ference on Computer Vision, vol. 2, pp. 1150–1157, Kerkyra,
Greece, 1999.

[29] W. Luo, J. Huang, and G. Qiu, “Robust detection of region-
duplication forgery in digital image,” in 18th International
Conference on Pattern Recognition (ICPR'06), pp. 746–749,
Hong Kong, 2006.

[30] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: speeded up
robust features,” in Computer Vision-ECCV, pp. 404–417,
Springer, Graz, Austria, 2006.

[31] Y. Zhu, X. Shen, and H. Chen, “Copy-move forgery detection
based on scaled ORB,” Multimedia Tools and Applications,
vol. 75, no. 6, pp. 3221–3233, 2016.

[32] O. Miksik and K. Mikolajczyk, “Evaluation of local detectors
and descriptors for fast feature matching,” in Proceedings of
the 21st International Conference on Pattern Recognition
(ICPR2012), pp. 2681–2684, Tsukuba, Japan, 2012.

[33] Y. Xu, C. Zhang, G. Wang, Z. Qin, and Q. Zeng, “A
blockchain-enabled deduplicatable data auditing mechanism
for network storage services,” IEEE Transactions on Emerging
Topics in Computing, vol. 9, no. 3, pp. 1421–1432, 2021.

[34] X. Yan, B. Cui, Y. Xu, P. Shi, and Z. Wang, “A method of
information protection for collaborative deep learning under
GAN model attack,” IEEE/ACM Transactions on Computa-
tional Biology and Bioinformatics, vol. 18, no. 3, pp. 871–
881, 2021.

[35] X. Zhou, Y. Li, and W. Liang, “CNN-RNN based intelligent
recommendation for online medical pre-diagnosis support,”
IEEE/ACM Transactions on Computational Biology and Bioin-
formatics, vol. 18, no. 3, pp. 912–921, 2021.

[36] A. Parashar, A. K. Upadhyay, and K. Gupta, “An effectual clas-
sification approach to detect copy-move forgery using support
vector machines,” Multimedia Tools and Applications, vol. 78,
no. 20, pp. 29413–29429, 2019.

[37] C. Pun, X. Yuan, and X. Bi, “Image forgery detection using
adaptive over-segmentation and feature points matching,”
IEEE Transactions on Information Forensics and Security,
vol. 10, no. 8, pp. 1705–1716, 2015.

[38] G. Tahaoglu, G. Ulutas, B. Ustubioglu, and V. V. Nabiyev,
“Improved copy move forgery detection method via L∗a∗b∗
color space and enhanced localization technique,”Multimedia
Tools and Applications, vol. 80, no. 15, pp. 23419–23456, 2021.

[39] M. Zandi, A. Mahmoudi-Aznaveh, and A. Talebpour, “Itera-
tive copy-move forgery detection based on a new interest point
detector,” IEEE Transactions on Information Forensics and
Security, vol. 11, no. 11, pp. 2499–2512, 2016.

[40] Y. Xu, J. Ren, G. Wang, C. Zhang, J. Yang, and Y. Zhang, “A
blockchain-based nonrepudiation network computing service
scheme for industrial IoT,” IEEE Transactions on Industrial
Informatics, vol. 15, no. 6, pp. 3632–3641, 2019.

[41] Y. Xu, Z. Liu, C. Zhang, J. Ren, Y. Zhang, and X. Shen, “Block-
chain-based trustworthy energy dispatching approach for high
renewable energy penetrated power systems,” IEEE Internet of
Things Journal, 2021.

[42] X. Yan, Y. Xu, X. Xing, B. Cui, and T. Guo, “Trustworthy net-
work anomaly detection based on an adaptive learning rate
and momentum in IIoT,” IEEE Transactions on Industrial
Informatics, vol. 16, no. 9, pp. 6182–6192, 2020.

[43] C. Zhang, Y. Xu, Y. Hu, J. Wu, J. Ren, and Y. Zhang, “A
blockchain-based multi-cloud storage data auditing scheme
to locate faults,” IEEE Transactions on Cloud Computing, 2021.

[44] Y. Xu, Q. Zeng, G. Wang, C. Zhang, J. Ren, and Y. Zhang, “An
efficient privacy-enhanced attribute-based access control
mechanism,” Concurrency and Computation Practice and
Experience, vol. 32, no. 5, 2020.

[45] Y. Li and J. Zhou, “Fast and effective image copy-move forgery
detection via hierarchical feature point matching,” IEEE
Transactions on Information Forensics and Security, vol. 14,
no. 5, pp. 1307–1322, 2019.

[46] A. Vedaldi and B. Fulkerson, “Vlfeat: an open and portable
library of computer vision algorithms,” in International Con-
ference on Multimedia, pp. 1469–1472, Firenze, Italy, 2010.

[47] I. Amerini, L. Ballan, R. Caldelli, A. Del Bimbo, and G. Serra,
“A SIFT-based forensic method for copy-move attack detec-
tion and transformation recovery,” IEEE Transactions on
Information Forensics and Security, vol. 6, no. 3, pp. 1099–
1110, 2011.

[48] I. Amerini, L. Ballan, R. Caldelli, A. del Bimbo, L. del Tongo,
and G. Serra, “Copy-move forgery detection and localization
by means of robust clustering with J-linkage,” Signal Process-
ing: Image Communication, vol. 28, no. 6, pp. 659–1669, 2013.

[49] Jian Li, Xiaolong Li, Bin Yang, and Xingming Sun, “Segmenta-
tion-based image copy-move forgery detection scheme,” IEEE
Transactions on Information Forensics and Security, vol. 10,
no. 3, pp. 507–518, 2015.

[50] V. Christlein, C. Riess, J. Jordan, C. Riess, and
E. Angelopoulou, “An evaluation of popular copy-move forg-
ery detection approaches,” IEEE Transactions on Information
Forensics and Security, vol. 7, no. 6, pp. 1841–1854, 2012.

10 Wireless Communications and Mobile Computing


	Image Anomaly Detection Based on Adaptive Iteration and Feature Extraction in Edge-Cloud IoT
	1. Introduction
	2. Related Work
	3. Proposed Algorithm
	3.1. Image Preprocessing
	3.2. Rough Localization Stage
	3.3. Accurate Localization Stage

	4. Experimental Results
	4.1. Evaluation Criteria
	4.2. GRIP Dataset
	4.3. FAU Dataset

	5. Conclusions
	Data Availability
	Conflicts of Interest
	Acknowledgments

