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In recent years, due to the application of high-definition video codec technology, high-precision satellite navigation technology,
mobile base station positioning technology, and broadband technology, the performance of UAVs has been greatly improved.
In the military field, drones have become an important weapon alongside missiles on the battlefield. In the future, military
drones will perform strategic missions such as battlefield reconnaissance and long-range destruction. Outside the military field,
DJI’s Zenmuse series drones are used for filming, MG series drones are used for pesticide spraying, and Beijing Zhonghangzhi
unmanned helicopters are used for geological surveys, precise inspection of power lines, and maritime law enforcement. With
the continuous improvement of technical specifications, UAV communication technology requires further research and
development. This paper has conducted research experiments on the optimization of multi-UAV communication network
based on reinforcement learning. The experimental data show that it is marked as the AoI value corresponding to the
completion of a certain self-task. It can be seen that the final AoI of the communication trajectory of reinforcement learning is
115, and the AoI greedy strategy finally obtains AoI of 140 seconds, achieving about 18% of the total AoI reduce, which
effectively improve the performance of the system. From the above data, the research of reinforcement learning method has
great benefits for the development of UAV communication.

1. Introduction

In the 100 years since the first drone was invented in 1917,
the drone industry has grown rapidly, from a single flight
to a multibillion dollar output. With the continuous devel-
opment of military high-tech, unmanned aerial vehicles
(UAVs) have emerged in modern warfare due to their low
cost, easy maintenance, reduced casualties, and the ability
to perform tasks in a variety of complex and harsh environ-
ments and gradually attracted the attention of the world’s
military powers. In future wars, there will be less and less
direct human participation and more confrontation between
unmanned military equipment. In order to adapt to the sit-
uation of informatized warfare and quickly collect and pro-
cess real-time and accurate intelligence information, UAVs

have been widely used in modern combat command for
reconnaissance, surveillance, and other tasks, especially the
reconnaissance of enemy areas and important targets. In
the networked environment, the mode of warfare has under-
gone tremendous changes. As an important part of the
Internet era, “sharing” also plays an important role in net-
worked warfare. In a networked environment, the “distance”
between troops is approximately zero, and information
resources and services can be easily shared. Under the tradi-
tional platform-centric combat mode, in order to obtain the
information they need, each unit needs to configure corre-
sponding equipment, such as unmanned aerial vehicles and
ground stations. Under the condition of underdeveloped
intelligence sharing, various combat units often have the
problem of duplication of resource allocation and
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duplication of information collection. For the UAV troops,
the repeated deployment of a large number of UAVs will
also lead to problems in airspace security, electromagnetics,
and communication management, which will greatly limit
the effective use of UAV system resources.

With the rapid development of UAV technology, higher
requirements are put forward for the simultaneous use of
multiple types and numbers of UAVs in the same war.
Under the traditional use of UAVs, the managers and users
are the same unit. The result is that the tasks between differ-
ent units cannot be efficiently coordinated and unified, and
the information obtained cannot be shared in time, which
is extremely unfavorable for joint operations and high-level
commanders’ war decisions. In addition, under the complex
informationized battlefield conditions in the future, due to
the different coverages of battlefield communication links,
different mission requirements, and different mission capa-
bilities of various UAVs, a single type of UAV system obvi-
ously cannot meet the needs of the battlefield. By
establishing a generalized monitoring and control network,
the UAVs, ground stations, decision-making systems, and
control systems scattered in the battlefield environment are
connected into an organic whole. Through this network,
personnel at all levels can timely understand the battlefield
situation, share intelligence information, and achieve seam-
less command, control, and communication, which is obvi-
ously beneficial to improving efficiency.

After the optimization of multi-UAV communication
network based on reinforcement learning in this paper, the
data shows that the AoI of the communication trajectory
of reinforcement learning is 118 and 157 when the number
of ground nodes is 6 and 10, respectively; the AoI of the
greedy algorithm is 139 and 199, respectively; that is, the
AoI that can be obtained by the reinforcement learning algo-
rithm is smaller, and with the increase of the number of
ground nodes, its advantages are more obvious. From the
above data, it can be seen that the multi-UAV communica-
tion network optimization research experiment of reinforce-
ment learning is of great significance for promoting the
development of the current multi-UAV communication
network.

2. Related Work

This paper studies some technologies of multi-UAV com-
munication network, which can be fully applied to the
research in this field. The main research goal of Amorim
et al. is to obtain the path loss index and shadow model of
wireless channels between airborne UAVs and cellular net-
works [1]. Fawaz et al. improve the performance of existing
relay-assisted FSO systems by relaxing these two highly
restrictive assumptions by integrating UAVs as buffer-
assisted mobile relays into traditional relay-assisted FSO sys-
tems [2]. Mamaghani and Hong studied the problem of
maximizing the average secrecy rate for UAV wireless com-
munication systems, where UAVs are used to transmit con-
fidential information to ground destinations in the presence
of ground passive eavesdroppers [3]. Wang et al. studied the
average packet error probability and effective throughput of

control links in UAV communication, where a ground cen-
tral station sends control signals to UAVs that require ultra-
reliable low-latency communication [4]. Liu et al. designed a
recurrent neural network based on long short-term memory
for UAV position prediction [5]. These methods provide
some references for our research, but due to the short time
and small sample size of the relevant research, they have
not been recognized by the public.

Based on reinforcement learning, we have reviewed the
following related materials to optimize the research on
multi-UAV communication networks. Gershman and Daw
review the major advances in the psychology and neurosci-
ence of reinforcement learning over the past two decades
through comprehensive experimental studies on simple
learning and decision-making tasks [6]. Li et al. tried to
introduce qualitative rules into reinforcement learning and
represented these rules through a cloud inference model
[7]. Peng et al. showed that reinforcement learning methods
can be adapted to learn robust control policies capable of
imitating a wide range of example motion clips [8]. Sallab
et al. proposed a framework for autonomous driving using
deep reinforcement learning, gave a brief introduction to
deep reinforcement learning, and then described the pro-
posed framework [9]. Ying et al. proposed a new deep rein-
forcement learning method, an advanced reinforcement
learning algorithm that uses a deep Q-network to approxi-
mate the Q-valued action function [10]. He et al. proposed
a new deep reinforcement learning method, and the simula-
tion results under different system parameters showed its
effectiveness [11]. These methods provide sufficient litera-
ture support for our study of multi-UAV communication
network optimization with reinforcement learning.

3. Overview of Reinforcement Learning and
UAV Communication

The characteristics of UAV battery power supply make
power consumption a factor that has to be considered in
the UAV support network. Therefore, this paper takes the
development of UAVs to a higher level by studying rein-
forcement learning to optimize the UAV communication
network.

3.1. Overview of Reinforcement Learning. Reinforcement
learning is an important machine learning method that has
been at the forefront of intelligent control and artificial intel-
ligence research in recent years [12]. Among various learn-
ing methods, reinforcement learning has the ability to
adapt to complex systems and self-training. It approaches
optimal control policies through trial-and-error learning
that interacts with the environment, a learning mechanism
that has been successfully applied to nonlinear control, arti-
ficial intelligence for solving complex problems, robot con-
trol, optimization, and planning.

Reinforcement learning (RL) first appeared in the 1950s
as learning by trial and error in a dynamic environment. The
agent method does not calculate the task performance of the
agent but guides the agent through rewards and
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punishments, which is now becoming an important branch
of machine learning and artificial intelligence [13].

There are two strategies to solve the problem of rein-
forcement learning: first, searching the action space to find
actions that work better in the environment, this approach
has been used for example in genetic algorithms and genetic
programming; second, using statistical methods and
dynamic programming techniques to assess the utility of
actions in the state of the world. RL is based on autonomous
learning by exploring an unknown environment, whereby an
agent acquires knowledge about the environment to opti-
mize the course of action.

Reinforcement learning is a machine learning method
that learns by interacting with the environment and taking
feedback from the environment as input. The basic idea is
to learn by trial and error, matching environmental states
and actions, and the agent (learner or decider) interacts with
the environment over time and assumes that the cumulative
reward is maximized. In reinforcement learning, cues are
provided by the environment with the purpose of providing
some sort of evaluation of how good or bad the chosen
action is, rather than telling the agent how to choose the
right action. Since the external environment provides very
little information for the agent, it must rely on the experi-
ence of interacting with the environment to learn indepen-
dently. Therefore, the agent uses the evaluation signals
from the external environment to optimize its decision and
find the best behavior policy.

Reinforcement learning is a method that focuses more
on learning through interaction and decision-making than
other machine learning methods. In reinforcement learning,
the agent must figure out, through trial and error, which
activity brings the greatest immediate reward. The action
not only affects the immediate reward but is also important
for all subsequent rewards. With the deepening of research,
reinforcement learning can be divided into the following
branches: logic-based reinforcement learning, hierarchical
learning, multiagent learning, POMDP learning, etc. [14].
The agent environment structure diagram is shown in
Figure 1.

Reinforcement learning problems can be viewed as a
framework for learning directly from interactions and goal
achievement. Learners and decision-makers are called
agents, and all other elements except agents are called envi-
ronments. These interactions are continuous, the agent
chooses actions, the environment reacts to these actions
and generates new situations for the agent, and the environ-
ment returns reward values. Through the above process, the
agent learns how to optimize its behavioral policy in the
environment in order to maximize the cumulative reward
over time.

In addition to the two components of the environment
and the learning agent, a reinforcement learning system also
needs four other main subelements: the strategy, the reward
function (or cost function), the value function, and the
optional environment model. The strategy is to define the
learning mode or the action behavior mode displayed by
the learning agent in a given time. The reward function,
defining the goal of a reinforcement learning problem, is

its main task. The value function refers to the accumulation
of the expected rewards of the learning agent from the cur-
rent state to the final state. The environment model
(optional), before the learning agent actually has not experi-
enced the future action, takes the possible future situation
into account through the model and then makes planning
decisions for future action selection [15]. The schematic dia-
gram of the relationship between the four core parts of rein-
forcement learning is shown in Figure 2:

Early reinforcement learning systems were a trial-and-
error learning method that was almost the opposite of plan-
ning decision-making methods. However, adding the plan-
ning method of the model and state space to the
reinforcement learning makes the reinforcement learning
closely related to the dynamic programming method, so that
the reinforcement learning method gradually becomes clear.
It can be seen that the main goal of reinforcement learning is
to obtain the best strategy through continuous improvement
of the strategy to achieve the final goal. The development
route of reinforcement learning is shown in Figure 3.

Early reinforcement learning algorithms learned
through trial-and-error learning to achieve their goals.
With the development of reinforcement learning, dynamic
programming and optimal control algorithms and time
difference (TD) learning algorithms appear in turn. These
three main lines eventually constitute the main framework
of modern reinforcement learning algorithms. From a
modeling perspective, reinforcement learning falls into
two categories: model-based learning algorithms and
model-free methods. The former extracts empirical knowl-
edge from the environment to establish a learning model
and then determines the optimal strategy according to
the model; the latter selects strategies through direct inter-
action with the environment. Commonly used model-free
learning algorithms are as follows: AHC, temporal differ-
ence (TD), and Q-learning. The model-free method has
the characteristics of iterative calculation, and its calcula-
tion amount is small, and because it cannot make full
use of the prior knowledge, it is not as good as the model
method in terms of convergence speed. The following
mainly introduces several typical RL methods [16].

Dynamic programming methods use a value function to
search for good policies and are suitable for solving large
problems. If the environment is a finite Markov set, and
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Figure 1: Agent environment structure diagram.
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for each policy, information about the dynamic environment
is fully known, then the value function is given by

V∗ sð Þ = max
b

rs bð Þ + γ〠
b∈B

Pss′ b½ �Vπ∗
s′
� �( )

: ð1Þ

The dynamic programming algorithm requires an
immediate reward value r and a state transition function P.
In other words, this problem can only be solved if the envi-
ronment model is known.

Monte Carlo is a model-free algorithm that iteratively
learns by computing state, action, and value functions. The
algorithm differs from traditional Q-learning in that it is
based on a multistage reward averaging mechanism. There-
fore, the algorithm converges too slowly and is less used in
modern artificial intelligence. Its iterative formula is as fol-
lows:

V stð Þ =V st+1ð Þ + α Rt − V stð Þ½ �: ð2Þ

Unlike dynamic programming, this algorithm does
not require modeling of the environment or limited
information about the environment, but it also has a
slower convergence rate because it features learning aver-
age rewards.

The TD learning algorithm is one of the most important
algorithms in the reinforcement learning method. It is a
combination of the above two methods. The iterative for-
mula of the TD (0) algorithm is

V st+1ð Þ =V stð Þ + α rt+1 + γV st+1ð Þ − V stð Þð Þ: ð3Þ

The TD algorithm was proposed in 1998, and it was
proved that the TD algorithm must converge when the
learning rate satisfies certain conditions. However, the con-
vergence rate of the TD algorithm is slow because the agent
only changes the value function estimates of neighboring
states in each iteration [17]. The effective method is that
when the agent obtains the instantaneous reward value, it
can take any step backwards, which is the so-called multistep
TD learning algorithm. The convergence rate of the TD (μ)
learning algorithm is significantly improved by the following
iterative formula:

V stð Þ =V stð Þ + α rt+1 + γV st+1ð Þ − V stð Þð Þe sð Þ: ð4Þ

Among them, e ðsÞ is defined as the qualification trace of
state s, which can be calculated in the following ways:

e sð Þ =
γμe sð Þ + 1, if s = st ,
γμe sð Þ, otherwise:

(
ð5Þ

The Q-learning algorithm is a model-independent
reinforcement learning algorithm proposed in 1989. Its
essence is an off-policy TD learning algorithm. Different
from the TD algorithm, the state is used in the Q-learn-
ing update iteration, and the reward value Q ðs, aÞ of the
action pair is used as the estimation function, instead of
the reward value V ðsÞ of the state in the TD as the esti-
mation function. The iterative form of the Q-learning
algorithm is as follows:

Q st , atð Þ =Q st , atð Þ + αt rt+1 + γ
max
a

Q st+1, at+1ð Þ −Q st , atð Þ
 !

:

ð6Þ

Among them, at is the learning rate of the agent at
time t, and γ is the discount factor. Under the nondeter-
ministic Mahalanobis decision process, the learning rate
of Q-learning also satisfies the following two conditions:

〠
∞

l=1
αl =∞, ð7Þ

〠
∞

l=1
α2l <∞: ð8Þ

When l⟶∞, Qk (s, a) will receive Q∗ ðs, aÞ with
probability 1.

The Sarsa learning algorithm is proposed as an improved
network form of the Q-learning algorithm, which still uses Q
-value iteration. The iterative calculation formula for the
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Figure 2: Schematic diagram of the relationship between the four
core parts of reinforcement learning.
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Figure 3: The development route of reinforcement learning.
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value function of the Markov decision process in the Sarsa
learning algorithm is

Q st , atð Þ =Q st , atð Þ + α rt+1 + γQ st+1, at+1ð Þ −Q st , atð Þð Þ:
ð9Þ

The main difference between Sarsa algorithm and Q
algorithm is that the Q algorithm uses the maximum opera-
tor of the next action value function to adjust the action
value function estimate of the current step, while the Sarsa
algorithm only uses the actual trajectory data in the Mahala-
nobis decision process to adjust the action value function
estimation [18].

The Markov decision chain is regarded as a basic multi-
step prediction model, which is the mathematical basis for
reinforcement learning research. For the Markov decision
chain, setting the state space as S, then

Py
ij = P My = j M0 = ij� �

,∀i, j ∈ S, y ∈ Y : ð10Þ

It is called the y-step transition probability of the Mar-
kov decision chain starting from state i and transferring to
j after y-steps. Letting P be a matrix composed of all ele-
ments, there are

P yð Þ = Py
ij

� �
: ð11Þ

The above formula is the y-step transition probability
matrix of the Markov decision chain, and the one-step tran-
sition probability matrix is P.

Reinforcement learning methods first mathematically
model a class of stochastic problems with discrete states
and discrete time. In practice, the Markov decision model
is the most commonly used [19].

The discrete-time finite Markov decision process can be
expressed as

∀i, j ∈ S, a ∈ A, y ≥ 0, ð12Þ

P My+1 = j My = i, Ay = a,My−1, Ay−1,⋯,M0, A0
��� �

, ð13Þ
P My+1 = j My = i, Ay = a

��� �
= P i, a, jð Þ: ð14Þ

J is the objective function of decision optimization. The
state transition probability P satisfies

〠
j∈S
P i, s, jð Þ = 1: ð15Þ

There are two main types of decision optimization objec-
tive function J of the Markov decision process. That is, the
discounted total return target and the average expected
return target, respectively, were shown in the following two
equations:

Jd = E 〠
∞

t=0
rt

 !
, 0 < γ < 1, ð16Þ

Ja =
lim sup
Y⟶∞

1
Y
E 〠

Y−1

t=0
rt

 !
: ð17Þ

These two decision optimization objective functions
have been widely studied and applied in the field of dynamic
programming, and a lot of research has also been done in
reinforcement learning theory and algorithms, mainly for
the total return discount objective function.

3.2. Overview of UAV Communication. The unmanned
aerial vehicle (UAV) is a powered, radio-controlled, or
autonomously programmed aircraft operated by an
unmanned pilot. The first drones were developed by the
British in the 1970s and were primarily used as target drones
in the initial stages; after entering the 1960s, the research on
drones focused on reconnaissance; since then, the develop-
ment of drones has entered the era of demand traction; since
the 1980s, the miniaturization of UAVs has become another
main direction for the development of UAVs. Many small
UAVs have been used in civilian applications due to their
advantages of light weight, good concealment, and low price
[20, 21].

Currently, the development and use of UAVs is on the
rise worldwide, mainly due to modern military and civilian
needs and technological developments. The use of military
UAVs has expanded from traditional aerial surveillance, bat-
tlefield monitoring, and battlefield assessment to combat,
ground attack, missile interception, and even air combat.
UAVs not only support manned combat aircraft but also
replace manned aircraft in many situations. Currently,
UAV research focuses on high-altitude and unmanned com-
bat aircraft.

In terms of military use, UAVs such as the Global Hawk
and Predator in the United States and Heron and Hunter in
Israel are all UAVs with relatively successful research and
development and excellent parameter performance. UAVs
for military purposes can be divided into the following: tar-
get drones, mainly to identify the flight status and attack
process of various aircraft; unmanned reconnaissance air-
craft, used to monitor the battlefield and provide various
intelligence information for combat troops; decoy drones
are mainly used to induce the enemy to turn on the radar
to obtain radio wave information and attract enemy fire-
power; signal jamming drones are used for electromagnetic
interference and electronic detection of the enemy; and
unmanned combat drones are a combination of fighter jets
and drones. They can usually carry small precision weapons
and can attack and intercept missiles to achieve combat pur-
poses. UAVs are mainly used for civilian use in forest fire
fighting, communication relay, pesticide spraying, aerial
photography of competitions, and meteorological detection.

Compared with manned aircraft, UAV has the following
characteristics and advantages: simple structure, no tradi-
tional cockpit, and UAV is much smaller than manned air-
craft; this safety feature is great, and there will be no
accidents; the performance is good, and the pilot factor does
not need to be considered when developing the UAV; con-
cealment, compared to manned aircraft, the size and mirror
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surface of drones are much smaller, coupled with unique
and complex designs and concealment materials, making
them much more stealthy and survivable; the cost is low,
the cost of UAV is only one-tenth or even a few percent of
manned aircraft; and it is convenient and flexible to take
off and land and has a short fuselage [22, 23].

In order to maximize the role of a single UAV, expand
the application field of UAVs and make UAVs safer and
more reliable when performing various tasks such as aerial
surveillance, reconnaissance, and combat, and a multi-
UAV system is proposed. Several research activities related
to UAVs have been carried out in many fields. In the field
of joint control of multiple UAVs, the main aspects being
studied are the command and control of multiple UAVs, tra-
jectory planning, and multimission [24].

Due to the characteristics of strong network dynamics
and individual control autonomy, the multi-UAV system
requires the multi-UAV network to have automatic net-
working and adapt to the rapid changes of network topol-
ogy. Mobile ad hoc network (MANET) becomes the
network technology for multi-UAV systems. The “UAV
Roadmap” and “UAV System Integration Roadmap” issued
by the US military put forward the important role of UAVs
in the future global information network and pointed out
that UAV self-organizing network will be the main content
of multi-UAV network research in the future. Based on the
above research and analysis, it can be concluded that the
usefulness of the information transmitted between multiple
UAVs is highly dependent on the communication perfor-
mance; so, communication plays a key role in UAV
dynamics.

Due to its fast flight speed, cooperative autonomy, lim-
ited energy, and irregular topology changes, the multi-
UAV system also puts forward higher requirements for the
network technology it adopts. The characteristics of the
multi-UAV network can be summarized as follows: without
a central node, in order to increase the robustness of the
UAV system, the overall structure of the multi-UAV net-
work should be equivalent to a peer-to-peer network; self-
organizing, multi-UAV systems should have the characteris-
tics of rapid deployment and rapid combat; when some
drones in the network fail and cannot continue to perform
tasks, the network topology needs to be rebuilt to maintain
normal network communication; so, the network needs to
be self-healing; dynamically changing network topology,
the external environment of the UAV is complex during
the execution of the mission, and its movement track is gen-
erally executed according to the preset route; good QOS and
high security, due to the characteristics of wireless commu-
nication and the influence of the unknown environment in
which the drone performs the task, the data transmission
between the drones needs to have high security.

Mobile autonomous network (MANET) is not a new
technology, it has been used for more than 40 years, and
the idea and concept of MANET was first proposed in the
United States in 1968.

The protocol of MANET network consists of physical
layer, link layer, network layer, and application layer. The
operating environment of the MANET network is very dif-

ferent from that of the wired network; so, the technology
chosen for the network is also very different, especially in
the lower three layers of the network: the physical layer,
the link layer, and the network layer. The corresponding
relationship between the MANET protocol stack model
and the OSI model is shown in Figure 4.

The physical layer is responsible for modulation, coding,
transmission, and reception of wireless data. The communi-
cation layer is divided into a medium access layer (MAC)
and a logical link control layer (LLC), which are responsible
for regulating access to shared wireless channels and control
of logical links. The network layer is a key feature of the met-
ropolitan area network technology, which distinguishes it
from other networks by its basic features. The network layer
provides transport protocols, mobile communication algo-
rithms, and dynamic single-path and multipath routing
algorithms for the metropolitan area network. Network layer
routing protocols usually meet the following requirements:
distributed operation, loop-free routing, demand-driven
routing, high security, and support for one-way
communication.

UAV MANET has three typical applications: battlefield
coverage, battlefield reinforcement, and extended applica-
tions. Battlefield coverage refers to deploying multiple UAVs
to form a metropolitan area network in order to expand the
reconnaissance capabilities of UAVs to achieve coverage of
the entire battlefield; battlefield reinforcements are mainly
used for long-range target reconnaissance. The distance
from the base station to the target exceeds the communica-
tion range of a single UAV; so, multiple UAVs must be
deployed to transmit target reconnaissance signals; the
extended application diagram of the UAV MANET network
is shown in Figure 5.

The UAV network is connected to the global informa-
tion network through relay satellites or ground UAV control
stations and can be used as a channel to receive and transmit
information required for cyber warfare by transmitting
reconnaissance signals and forwarding control instructions
to the ground combat network.

4. Multi-UAV Communication

4.1. Multi-UAV for Reinforcement Learning. This section
simulates the multi-UAV communication trajectory and
analyzes the results to verify its effectiveness. The Tensor-
Flow framework is used to build a reinforcement learning
network, in which both the actor and critic networks are
two-layer fully connected networks, and the rectified linear
unit (ReLU) and the sigmoid function are used as activation
functions.

Since there is no work to solve the joint problem of con-
tinuous communication and linking of multiple UAVs, the
communication trajectory obtained by the strategy proposed
in this section is compared with the communication trajec-
tory obtained by the basic greedy strategy to verify its feasi-
bility and effectiveness. The purpose of the compared greedy
algorithm is to minimize the AoI, and each time the ground
node with the smallest AoI is selected for service, the
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communication trajectory is to fly to the selected node until
the information transmission is completed.

In the simulation reinforcement learning communica-
tion strategy, when the task starts at k = 0, all nodes update
the data once, then the ground nodes are updated twice
when k = 20, the ground nodes are updated for the third
time when k = 40, and the remaining nodes will not be
updated again during the flight cycle. Since the flight time
is required to reach the transmission range of the ground
node, the communication trajectory obtained by this strat-
egy has a trade-off between the flight time and the AoI.
Jointly planning the trajectory of the drones working
together and the drone link sequence make the AoI
minimize.

The performance of the planned communication trajec-
tory is analyzed. First, the simulation analysis of the time-
dependent change process of the target performance AoI
value during the task execution process is carried out. The
comparison of the evolution process of AoI over time under
different strategies is shown in Figure 6.

As can be seen from Figure 6, which is marked as the
corresponding AoI value when a certain self-task is com-
pleted, it can be seen that the AoI finally reached by the
communication trajectory of reinforcement learning is 115.
The total AoI obtained by the AoI greedy strategy is 140 sec-
onds, which reduces the total AoI by about 18% and effec-
tively improves the performance of the system. This is
because, compared with the greedy strategy, the communi-
cation trajectory through reinforcement learning can more
reasonably plan the communication trajectory according to
the information generation law of the century.

In order to further verify the performance of the pro-
posed communication trajectory planning strategy, based
on Monte Carlo simulation, the results obtained by 50 sim-
ulations were averaged, and the final Aol was further com-
pared under different numbers of ground nodes. Assuming
that the total amount of tasks remains unchanged, the total
task amount is equally divided into different numbers of
ground nodes to compare the final Aol value of the commu-
nication trajectory under the proposed reinforcement learn-
ing algorithm and the communication trajectory obtained by
the Aol greedy algorithm. The final AoI comparison of dif-
ferent ground nodes is shown in Figure 7.

As can be seen from Figure 7, when the number of
ground nodes is 6 and 10 for the communication trajectory
of reinforcement learning, the AoI is 118 and 157, respec-
tively; the greedy algorithm is 139 and 199; that is, the AoI
that can be obtained by the reinforcement learning algo-
rithm is smaller, and as the number of ground nodes
increases, its advantages are more obvious. Therefore, in a
more complicated situation with the increase of ground
nodes, the strategy of simply selecting the nodes to be served
according to the greedy strategy to determine the communi-
cation trajectory is not suitable. It is necessary to consider
the collaborative work between UAVs as much as the rein-
forcement learning strategy and obtain better communica-
tion trajectories and link strategies through multiple offline
learning.

4.2. Multi-UAV Route Planning. In this section, the commu-
nication route planning method based on the reinforcement
learning algorithm is simulated and optimized. Two groups
of simulation results are given before and after optimization.
The parameters of the two groups of simulation experiments
are different in the number of flight steps of the UAV, and
other basic parameters are the same.

In simulation experiment 1, the initial speed direction of
each UAV is the vertical boundary line pointing into the
mission area. Assuming that the flying distance of the
UAV after a fixed time interval is one step, when the number
of flight steps in this experiment is 30 steps, the coverage rate
of the six UAVs within 30 steps of flight changes as shown in
Figure 8.

It can be seen from Figure 8 that with the increase of
flight steps, the coverage of the mission area increases rap-
idly, the coverage of the task area is 0.76, 0.85, 0.97, 0.98,
0.98, 0.99, and 1, respectively, and the complete monitoring
coverage of the task area is completed around the 15th step.
It can be seen from the above simulation results that the
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Figure 4: Correspondence between MANET protocol stack model
and OSI model.
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Figure 5: Schematic diagram of extended application of UAV
MANET network.
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route of multiple UAVs planned based on the reinforcement
learning algorithm makes the percentage of surveillance cov-
erage area of the UAV swarm sustainably maintained above
98% after convergence. It is proved that the flight of multiple
UAVs along the route planned by this method can realize
the maximum continuous monitoring of the designated tar-
get area by the UAV swarm.

In simulation experiment 2, the starting coordinates and
initial speed directions of each UAV are the same as those in
experiment 1, and the number of flight steps in this experi-
ment is 300 steps. The coverage changes of 6 UAVs within
300 steps of flight are shown in Table 1.

It can be seen from Table 1 that the coverage rate of the
six drones reached 0.970, 0.969, 0.970, 0.971, 0.972, and
0.973 at the lowest and 0.995, 0.996, 0.997, 0.998, 0.999,
and 1 at the highest; when the drones fly longer and the
number of flight steps is longer, the surveillance coverage
of the target area by the drone group will fluctuate greatly.
The onboard radar has an average coverage of the mission
area of 98.1%; so, this will be improved on below.

Based on the above two simulation results, optimization
analysis is carried out to demonstrate the effectiveness of the
improved reinforcement learning method. The following
two simulation experiments are introduced: the first
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simulation experiment is mainly to compare with the
method before optimization to test the effectiveness of the
improved method; the second experiment is mainly to test
whether the reinforcement learning method is still effective
under different simulation parameters.

In simulation experiment one, because the main purpose
is to compare with the experimental results before the
improvement, the same basic parameters as the experiment
before the improvement are used. The coverage changes of
the six UAVs optimized by the reinforcement learning
method within 300 steps of flight are shown in Table 2.

It can be seen from Table 2 that the optimized 6 UAVs
fly within 300 steps, and the average coverage rate of all
UAV airborne radars to the mission area during the entire
flight process is 98.9%, which is higher than that before opti-
mization. The coverage changes of the 6 UAVs in the rein-
forcement learning multistep method within 300 steps are
shown in Table 3.

From Table 3, it can be concluded that the 6-plus UAV
of the reinforcement learning multistep method has an aver-
age coverage rate of 99.5% of the mission area during the
entire flight process within 300 steps.

Combining all the experimental data in this section, we
can know that the two improved methods used later will
improve the surveillance coverage of the target area by the
UAV swarm, and the multistep method of reinforcement
learning has the best effect.

5. Conclusions

UAVs play an important role in intelligence and surveillance
missions, electronic countermeasures, firepower, airborne
early warning, target designation and communications, and
important auxiliary information systems due to their flexi-
bility and versatility, as well as the advantage of not having
to worry about loss. At the same time, due to the informa-
tion and intelligence requirements for high-speed communi-
cation, personal communication, and military covert/
counter-secret communication, the demand for UAVs has
greatly increased in recent years, and the demand for UAVs
even exceeds the actual capabilities of existing systems. In
the field of resource utilization and optimization, the field
of optimizing UAV training has attracted extensive attention
from international researchers. Therefore, it is very

Table 1: Coverage change of 6 UAVs within 300 steps of flight.

Steps 50 100 150 200 250 300

1 0.977 0.970 0.990 0.973 0.968 0.995

2 0.978 0.971 0.991 0.974 0.969 0.996

3 0.979 0.972 0.992 0.975 0.970 0.997

4 0.980 0.973 0.993 0.976 0.971 0.998

5 0.981 0.974 0.994 0.978 0.972 0.999

6 0.982 0.975 0.995 0.979 0.973 1

Table 2: The optimized coverage of 6 UAVs within 300 steps of flight.

Steps 50 100 150 200 250 300

1 0.974 0.984 0.985 0.995 0.993 0.988

2 0.975 0.985 0.986 0.996 0.994 0.989

3 0.976 0.986 0.987 0.997 0.995 0.990

4 0.977 0.987 0.988 0.998 0.996 0.991

5 0.978 0.988 0.989 0.999 0.997 0.992

6 0.979 0.989 0.990 1 0.998 0.993

Table 3: Coverage of 6 UAVs within 300 steps of the flight with the reinforcement learning multistep method.

Steps 50 100 150 200 250 300

1 0.995 0.990 0.993 0.994 0.992 0.991

2 0.996 0.991 0.994 0.995 0.993 0.992

3 0.997 0.992 0.995 0.996 0.994 0.993

4 0.998 0.993 0.996 0.997 0.995 0.994

5 0.999 0.994 0.997 0.998 0.996 0.995

6 1 0.995 0.998 0.999 0.997 0.996
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important to study the use of reinforcement learning to opti-
mize the UAV communication network, achieve higher
throughput under the premise of ensuring communication
quality, and avoid channel congestion and mutual interfer-
ence in the UAV communication system. This paper puts
forward practical suggestions for the development of multi-
UAV communication through the research on the multi-
UAV communication network of reinforcement learning,
which has important theoretical and practical significance.
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