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This paper studies the user selection problem for a cooperative nonorthogonal multiple access (NOMA) system consisting of a
base station, a far user, and N near users. The selected near user receives its own message and assists the far user by relaying
the far user’s message. Firstly, we propose a user selection strategy to maximize the selected near user’s data rate while
satisfying the quality-of-service (QoS) requirement of the far user. Considering that the channel state information (CSI) of
users in actual communication is usually imperfect, we then analyze the outage probability of the NOMA system based on the
user selection strategy under imperfect CSI and obtain a closed-form expression. The theoretical analysis shows that the
diversity order of the NOMA system under imperfect CSI is 0, which means the multiuser diversity order disappears. In order
to improve the impact of imperfect CSI on system performance, we use the deep learning method to identify and classify
channels of imperfect CSI and improve the accuracy of CSI. The simulation results show that the theoretical analysis of outage
performance is consistent with the numerical results. Compared with the strategy without the deep learning method, the
proposed deep learning-based user selection scheme significantly improves the system performance. Furthermore, we verify
that our scheme recovers the diversity gain.

1. Introduction

With the development of communication technology, spec-
trum resources are increasingly scarce. To make efficient
use of the limited spectrum, nonorthogonal multiple access
(NOMA) technology was proposed [1]. Existing research
[2–5] shows that NOMA allows multiple users to communi-
cate simultaneously using a single channel resource, thus
achieving more significant spectral efficiency than tradi-
tional orthogonal multiple access (OMA). However, there
is mutual interference between users in the NOMA system.
The most common way to solve this problem is to eliminate
interference with successive interference cancellation (SIC)
[6, 7], which gradually reduces the interference of the maxi-
mum power user in the received signal. Consequently, some
NOMA users will know other users’messages; thus, they can

serve as relays to help other users. In this sense, the idea of
cooperative NOMA is proposed. A classical strategy was
designed for cooperative NOMA in [8], where users success-
fully decoding other users’ messages helped other users in
turn. Note that existing research related to cooperative
NOMA networks [9–12] mainly considered improving sys-
tem performance under perfect channel state information
(CSI). However, it is actually difficult to obtain perfect CSI.
In NOMA networks, imperfect CSI not only causes addi-
tional interference to the expected signal but also leads to
the wrong decoding sequence [13–15]. Therefore, it is par-
ticularly necessary to minimize the channel estimation error
as much as possible.

With the development of artificial intelligence, deep
learning (DL) technology [16] has been widely used
[17–19]. In order to obtain perfect CSI, some works used
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DL technology for channel estimation and achieved good
performance. In [20], a channel estimation network based
on DL was proposed in the high-speed mobile scenarios,
reducing computational complexity and improving perfor-
mance. In [21], a channel learning scheme based on the deep
autoencoder was developed, which learned CSI at the energy
transmitter based on the energy feedback harvested by the
energy receiver. In [22], based on the fact that the propaga-
tion environment is almost identical, a DL-based CSI esti-
mation for high mobility networks was proposed, which
allowed the deep neural network to learn the nonlinear CSI
relations. In [23], a five-layer deep neural network (DNN)
was designed to estimate channels in orthogonal
frequency-division multiplexing (OFDM) systems. In [24],
the authors regarded CSI as 2D images and used DL-based
image processing techniques to estimate the channel. In
[25], a channel estimator using the sliding bidirectional
gated recurrent unit network was designed at the receiver,
which can be combined with other channel estimation tech-
niques. In [26], a DNN was constructed for channel estima-
tion and direction of arrival estimation, improving
performance without increasing complexity. In [27], a deep
image prior based DNN was proposed to improve estima-
tion performance without training. In [28], in order to
reduce the overhead in multi-input multi-output (MIMO)
systems, a convolutional neural network- (CNN-) based esti-
mator was proposed. In [29], a learned denoising-based
approximate message passing (LDAMP) network was
exploited for beamspace channel estimation.

Motivated by the successful research of DL in channel
estimation, we introduce DL technology into cooperative
NOMA networks to solve the imperfect CSI estimation
and user selection problems. It is worth mentioning that
the above DL schemes for channel estimation are not appli-
cable in our NOMA system even if they have good perfor-
mance on their problems. First, each transmission block is
equally divided into two phases in this paper, and CSI of
each hop is irrelevant. To improve learning performance, it
is an effective approach to learn the CSI of each hop, respec-
tively. Second, a key step in NOMA systems is SIC, which
needs a special network design. Details of network design
are shown in Section 4. The main contributions of this paper
are summarized as follows.

(i) In our work, the optimal power allocation and user
selection in the proposed downlink cooperative
NOMA system are studied. Based on the proposed
user selection strategy, the system outage probabil-
ity and diversity order under imperfect CSI are ana-
lyzed. The theoretical analysis shows that the
diversity order of the NOMA system under imper-
fect CSI is 0, which means the multiuser diversity
order disappears

(ii) A channel estimation network based on CNN and
long short-term memory (LSTM) is designed for
our NOMA scenario, which includes offline training
and online prediction. Firstly, in order to minimize
the complexity of training and improve learning
performance, the input data is pretrained to extract

feature vectors by a three-layer one-dimensional
CNN. Secondly, the learning network with two
LSTM layers in parallel is built, which learns CSI
and reduces the estimation error to make the appro-
priate user selection

(iii) The estimated performance of the proposed scheme
is verified. Firstly, the LSTM network shows high
learning accuracy, which largely satisfies the reli-
ability of the mapping between user selection and
input data. Secondly, the proposed scheme success-
fully improves the data rate of near users with
imperfect CSI. Compared with the other strategy
without the DL method, our proposed scheme has
obvious advantages. Meanwhile, the performance
of the proposed scheme is similar to the strategy
with perfect CSI. Thirdly, the proposed scheme
improves the outage performance and recovers the
diversity gain while the diversity gain under imper-
fect CSI is zero without the DL method

The remainder of this paper is organized as follows. In
Section 2, a downlink NOMA system with multiple near
users and a far user is constructed, and the far user and
one of near users are matched. In Section 3, the optimal
power allocation and user selection are analyzed, and the
system outage probability and diversity order under imper-
fect CSI are derived. In Section 4, we propose a scheme
based on the CNN and LSTM for the NOMA scenario,
which pretrains data and trains the network to reduce the
channel estimation error. In Section 5, the performance of
the proposed scheme is simulated and analyzed, which is
followed by conclusions in Section 6.

2. System Model

We consider a NOMA downlink scenario consisting of a
base station (BS), a far user Uf , and N near users U1, U2,
…, Un, …, UN , as shown in Figure 1. The location of U f

is fixed, and near users are randomly distributed between
the BS and Uf . Assume the channels between BS/U f and
near users follow Rayleigh distribution. The near users have
direct links with BS, whereas there is no direct link between
BS and U f . Hence, Uf can only rely on the near users’ help
to communicate with BS. Specifically, nears users employ the
decode-and-forward protocol to forward the far user’s
information.

Each transmission block is equally divided into two
phases. In the first phase, supposing the near user Un is
selected to help U f , BS sends a superimposed signal contain-
ing the information for Un and U f . The signal received by
Un can be expressed as

yn = hn
ffiffiffiffiffiffiffiffi
αnP

p
xn +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − αnð ÞP

p
xf

� �
+ ωn, ð1Þ

where xn and xf denote the messages for Un and Uf , respec-
tively, hn ∼ CNð0,ΩbnÞ is the channel coefficient from BS to
Un, Ωbn = d−λbn , λ denotes the path loss exponent, dbn denotes
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the distance between BS and Un, αn represents the power
allocation factor for Un, P represents the transmit power,
and ωn represents additive white Gaussian noise (AWGN)
at Un with mean 0 and variance σ2.

After receiving yn, Un first tries to decode xf and then
decodes xn with estimated hn. Assuming the minimummean
square error (MMSE) channel estimator [30] is used, then
we have

hn = ĥn + en, 1 ≤ n ≤N , ð2Þ

where ĥn is the complex channel coefficient estimated and en
denotes channel estimation error following a complex
Gaussian distribution, denoted by en ∼ CNð0, δ2nÞ. Hence,
the received signal-to-interference-plus-noise ratio (SINR)
at Un to detect xf and xn can be, respectively, given by

γfn =
1 − αnð Þρ ĥn

��� ���2
αnρ ĥn

��� ���2 + 1 + ρδ2n

, ð3Þ

γnn =
αnρ ĥn

��� ���2
ρδ2n + 1

, ð4Þ

where ρ = P/σ2 is the transmit signal-noise ratio (SNR).
If Un successfully decodes xf , it forwards xf in the sec-

ond phase. The signal received by Uf can be expressed as

yf =
ffiffiffi
P

p
gnxf + ωf , ð5Þ

where gn ∼ CNð0,Ωnf Þ is the perfect complex channel coef-

ficient from Un to Uf , Ωnf = d−λnf , dnf denotes the distance
between Un and Uf , and ωf is the AWGN at Uf with mean
0 and variance σ2. Similar to hn, let the estimate for the

channel gn be ĝn. By assuming MMSE estimation error, it
holds that

gn = ĝn + rn, 1 ≤ n ≤N , ð6Þ

and the SINR at Uf to decode xf is given by

γnf =
ρ ĝnj j2
ρε2n + 1 , ð7Þ

where ε2n is the variance of rn.
According to (3) and (7), the achievable rate of Uf

(denoted by Rn
f ) can be expressed as

Rn
f =

1
2 log2 1 + min γfn, γnf

n o� �
: ð8Þ

If Rn
f exceeds the targeted data rate of U f (denoted by Rf

), the quality-of-service (QoS) requirement of Uf is satisfied.
Thus, according to (4), the achievable rate of Un (denoted by
Rn
n) can be expressed as

Rn
n =

1
2 log2 1 + γnnð Þ, Rn

f ≥ Rf ,

0, Rn
f < Rf :

8<
: ð9Þ

Note that Rn
n is achievable only when Rn

f ≥ Rf , which
means the signal xf is decoded at Un successfully. If Rn

f <
Rf , the corresponding near user will not be selected and we
regard its data rate as 0.

The aim of this paper is to maximize the achievable rate
of near users while ensuring the QoS requirement of Uf , i.e.,
maximizing Rn

n, by jointly optimizing near-user selection
and power allocation coefficient αn. In the next two sections,
we will study this problem without and with the DL method.

�e near user

�e far user

Communication link

N users

U
f

U
n

h
n

g
nBS

Figure 1: NOMA downlink scenario.
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3. Power Allocation, User Selection, and Outage
Performance Analysis

In this section, we study the optimal power allocation coeffi-
cient and user selection and then investigate the system out-
age performance without the DL method.

3.1. Optimal Power Allocation Coefficient and User Selection.
Firstly, we optimize the power allocation coefficient. Based
on (3), (8), and (9), the supremum of αn can be given by

αn ≤
ρ ĥn
��� ���2 − 1 + ρδ2n

� �
ε1

ρ ĥn
��� ���2 1 + ε1ð Þ

, ð10Þ

where ε1 = 22Rf − 1. In order to ensure that Un decodes xf
successfully, αn should be larger than zero, in which case
we can find that

ĥn
��� ���2 > 1 + ρδ2n

� �
ε1

ρ
: ð11Þ

Under the condition of (11), since the aim of this paper
is to maximize the performance of near users on the basis of
meeting the QoS requirement of Uf , the optimal power allo-
cation coefficient α∗n should be taken as the upper bound,
which is given by

α∗n =
ρ ĥn
��� ���2 − 1 + ρδ2n

� �
ε1

ρ ĥn
��� ���2 1 + ε1ð Þ

: ð12Þ

According to (7), (8), (9), and (11), the set of effective
near users which can ensure the QoS requirement of Uf

can be expressed as

En = n : ĥn
��� ���2 > 1 + ρδ2n

� �
ε1

ρ
, ĝnj j2 ≥ 1 + ρε2n

� �
ε1

ρ

( )
: ð13Þ

To maximize the achievable rate of near users, the
selected near users should be contained in set En. Thus, the
best user selection is expressed as follows:

n∗ = arg max
n∈En

ĥn
��� ���2� 	

: ð14Þ

It can be observed from (12)–(14) that channel estima-
tion has a significant impact on power allocation and user
selection.

3.2. System Outage Probability and Diversity Order. The out-
age probability of this paper is defined as the probability that
Uf fails to decode xf or Un fails to decode xn. Let Rn be the
targeted rate of Un. If Un successfully decodes xn, i.e., R

n
n ≥

Rn, we can find that

ĥn
��� ���2 ≥ 1 + ρδ2n

� �
ε2

αnρ
, ð15Þ

where ε2 = 22Rn − 1. According to (12), formula (15) can be
further expressed as follows:

ĥn
��� ���2 ≥ 1 + ρδ2n

� �
ε1 + ε2 + ε1ε2ð Þ
ρ

: ð16Þ

Taking the constraints of (13) and (16) into consider-
ation, the system outage probability Psystem is given by

Psystem =
YN
n=1

Pn =
YN
n=1

1 − Pr ĥn
��� ���2 > 1 + ρδ2n

� �
ε1

ρ
, ĝnj j2 ≥ 1 + ρε2n

� �
ε1

ρ
, ĥn
��� ���2

((

≥
1 + ρδ2n
� �

ε1 + ε2 + ε1ε2ð Þ
ρ

)
g =

YN
n=1

1 − Pr ĝnj j2 ≥ 1 + ρε2n
� �

ε1
ρ

, ĥn
��� ���2��

≥
1 + ρδ2n
� �

ε1 + ε2 + ε1ε2ð Þ
ρ

)
g

=
YN
n=1

1 − e− 1+ρε2nð Þε1/ρ d−λnf −ε
2
nð Þ+ 1+ρδ2nð Þ ε1+ε2+ε1ε2ð Þ/ρ d−λbn−δ

2
nð Þ½ �n o

,

ð17Þ

where Pn denotes the outage probability for Un. Note that
only when all near users fail, the system is completely unable
to communicate. Therefore, Psystem is the cumulative outage
probability of all N near users. According to the definition of
diversity order [31], when ρ⟶∞, we can find that

lim
ρ⟶∞

Pn = lim
ρ⟶∞

1 − e− kn2+ρkn3/ρkn1+kn5+ρkn6/ρkn4ð Þ
n o

= 1 − e−kn3/kn1−kn6/kn4 ,

ð18Þ

where kn1 = d−λnf − ε2n, kn2 = ε1, kn3 = ε1ε
2
n, kn4 = d−λbn − δ2n, kn5

= ε1 + ε2 + ε1ε2, and kn6 = ðε1 + ε2 + ε1ε2Þδ2n. According to
(17) and (18), we can find that

lim
ρ⟶∞

Psystem = lim
ρ⟶∞

YN
n=1

Pn =
YN
n=1

1 − e−kn3/kn1−kn6/kn4
n o

, ð19Þ

which is a constant. Thus, the diversity gain of the coopera-
tive NOMA system without the DL method can be expressed
as

Dorder = − lim
ρ⟶∞

lg Psystem
lg ρ = 0: ð20Þ

According to the abovementioned analysis, we can tell
that the accuracy of each hop CSI has a major effect on each
user’s detection performance and also the user selection
result. Next, we will introduce our proposed DL-based chan-
nel estimation method for the considered cooperative
NOMA network.
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4. CNN and LSTM-Based User Selection
Scheme for the Downlink
Cooperative NOMA

Due to the poor system outage performance under imperfect
CSI, this section considers using the DL method to obtain
more accurate CSI to improve system performance. In this
section, a scheme adopting the LSTM network to solve the
proposed optimization problem is considered. The proposed
problem needs a large amount of data for learning when
using DL, which leads to the vanishing gradient problem.
The memory cells in the LSTM network can save previously
extracted information for later use, solving the vanishing
gradient problem [32]. Thus, LSTM is employed in this
paper to learn the CSI of each hop. In addition, considering
the large amount of data for training and the SIC method is
complex, CNN is added in front of the LSTM network to
extract channel features and improve the learning
performance.

4.1. Design Concept of Neural Network. Our aim is to mini-
mize channel estimation error and get accurate CSI to select
the optimal user and achieve the best performance. In order
to learn the CSI of each hop, a neural network with multiple
LSTM layers in parallel is designed, and each LSTM layer
corresponds to one-hop CSI. In this paper, the network uses
two LSTM layers as each transmission block has two-hop
CSI. In order to fit the SIC process, multiple hidden layers
are added to the network, and the number of hidden layers
corresponds to the times of decoding in each transmission.
Thus, two hidden layers are added after the LSTM layers
in this paper. Meanwhile, a CNN, which pretrains data to
make the data easier for learning, is added in front of the
LSTM network. It is worth mentioning that according to
our design, if the NOMA system becomes more complex,
the neural network can be adjusted to adapt to the new
NOMA scenario.

The network design is summarized as follows. The first
three layers of the network are one-dimensional CNN, pre-
training data to extract feature vectors and simplifying learn-
ing parameters. The extracted feature vectors are passed to
the fourth layer. Then, the fifth layer learns the feature vec-
tors of the imperfect CSI. Note that feature vectors may van-
ish; thus, the fifth layer is the LSTM layer. After that, two
hidden layers are added. Finally, the eighth layer is used to
handle the network output. Details are shown in the follow-
ing subsection.

4.2. Proposed Channel Estimation Framework. The channel
estimation framework proposed is shown in Figure 2, which
includes offline training and online prediction. The learning
network is trained via using a mass of data which is pre-
trained well for offline training. In the online prediction part,
the feedback of the downlink NOMA system is the input of
the learning network and the estimated channel coefficient is
the output. The following parts introduce the data pretrain-
ing and the proposed learning network in detail,
respectively.

4.2.1. Data Pretraining. In order to improve the generaliza-
tion ability and accelerate the convergence speed of the pro-
posed network, the original input data needs to be
pretrained. Note that data is converted into a sequence of
transmitted symbols in the communication system. Since
the data is in the plural form, the real part and the imaginary
part need to be separated first and then reconstitute a real
number sequence for pretraining. Thus, let the transmitted
signal vector In = fsn1 , sn2 ,⋯∞,snqg be a sequence with all data
of Un, where q is the number of transmitted symbols in the
sequence at Un. If the number is not q in the process of pre-
training, the data is invalid. Note that the transmitted signal
vector is one-dimensional. Therefore, the CNN used for pre-
training data is one-dimensional here. In the task of extract-
ing feature vectors of sequences, one-dimensional CNN
shows excellent performance. It can extract the input data
sequence into a shorter sequence composed of high-level
features, so as to shorten the training time of the neural net-
work and reduce the load of each neuron. After feature
extraction, a different sequence On will be output.

The CNN constructed in this paper is the superposition
of convolution layers and a pooling layer. The specific struc-
ture is as follows. The first layer is a one-dimensional convo-
lution layer, which calculates the convolution sum of the
input data through the sliding window and obtains the out-
put of the convolution layer after weighting processing. After
In passes through the convolution layer, the original infor-
mation sequence is convoluted and transformed, and all
convolution outputs form a characteristic matrix, and the
matrix data is output to the next layer of the network. The
second layer is a one-dimensional maximum pooling layer,
which searches the maximum output value of the previous
convolution layer through the pooling window, and extracts
the characteristic vectors from the characteristic matrix to
reduce the number of characteristic parameters. The third
layer again stacks a one-dimensional convolution layer, per-
forms the same operation as the first layer, and completes
the extraction of feature vectors. The pretrained data On
can be input into the LSTM network for channel estimation,
because the data still represents CSI. The activation function
used by the CNN in this paper is the hyperbolic tangent
(tanh) activation function, and its formula is expressed as
follows:

f tanh Zð Þ = 1 − e−2Z

1 + e−2Z
: ð21Þ

The pretraining method is shown in Algorithm 1. The
pretraining improves the performance of the network,
avoids the situation that the network cannot converge, and
speeds up the convergence speed.

4.2.2. Proposed Learning Network. The structure of offline
training is shown in Figure 3. In order to improve the learn-
ing capacities of the network, we have built the LSTM net-
work behind the 3-layer CNN. For each layer of the
network, the output is the weighted sum of neurons the layer
is equipped with. Since data has been pretrained and the
dimension of input data has been reduced, the number of
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features used for training will not be very large. When the
pretrained data enters the LSTM network, these features will
perform some kinds of action and propagate some kinds of
symbols to the node of the next layer. The dimension of
the fourth layer, which is a dense layer with 32 neurons con-
veying features, is set to the length l of the sequence used for
training. Afterwards, the fifth layer consists of multiple par-
allel LSTM layers. In this paper, two LSTM layers are used to
learn the two-hop CSI without correlation. The sixth and
seventh layers have 64 and 32 neurons, respectively, which

are dense layers, corresponding to two decoding in the
NOMA system. If the number of hidden layers here is less
than the decoding times, the learning performance will
decrease, which we will verify in Section 5. When the num-
ber of decoding times in the NOMA system increases, the
hidden layers should be added to maintain the learning
capacities. Additionally, the output layer processed by the
softmax function provides the estimated output signal vec-
tors. The fourth, sixth, and seventh layers are processed by
the Rectified Linear Unit (ReLU) function. The above two

Online prediction

Current
prediction resultLearning

network

Current
feedback

Cooperative
NOMA system

Offline training

Input data
Data pre-training

Figure 2: The channel estimation framework.

Input: Data In.
Output: Data On.
1: forIn is a sequence with all data of Undo
2: Separate the real part and the imaginary part of the plural data.
3: Set In = fsn1 , sn2 ,⋯, snqg, where q is the number of transmitted symbols in the sequence in theory.
4: The actual number of transmitted symbols is r.
5: ifr = qthen
6: In is trained by the proposed one-dimensional CNN.
7: Extract feature vectors.
8: else
9: Discard the data;
10: Update On.
11: Output data On.

Algorithm 1: Data pretraining.

Data pre-training

Input signal

Extract
feature vectors

I
n

O
n

Dropout
function

Transmit
features

Tune hyperparameters

Learing network

ReLU

ReLU

ReLU

So�m
ax

LSTM

LSTM

...

...

Estimated output
signal vectors

RMSprop

C
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lu

tio
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Figure 3: The structure of offline training.
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functions are expressed as follows:

f softmax Zið Þ = eZi

∑T
t=1e

Zt

,

f ReLU Zð Þ =max 0, Zf g,
ð22Þ

where Zi is the output value of the ith node and T is the
number of output nodes, namely, the number of categories
of classification.

Note that the proposed scheme attempts to minimize the
channel estimation error, approximating imperfect CSI to
perfect CSI. Whether the judgment of CSI is accurate or
not has a great impact on user selection. Based on the suc-
cessful identification of accurate CSI, the most appropriate
near user can be selected.

The principle of the proposed LSTM network is shown
in Algorithm 2. The goal of our model is to minimize the
channel estimation error, which is equivalent to minimizing
the difference between the input data and the output of the
network. Therefore, the loss function we use is the

Input: Data On.
Output: The estimated output signal vectors.
1: while There is a training sequence of length ldo
2: Transmits features to the fourth layer.
3: Use the dropout function on the network.
4: Two parallel LSTM layers learn uncorrelated CSI respectively.
5: Two dense layers correspond to the two decoding in SIC process.
6: while The loss function does not converge do
7: Use the RMSprop optimizer.
8: if Network converges then
9: Feed data for the current slot into LSTM network.
10: if CSI is successfully identified then
11: Select the best near user.
12: else
13: Retrain data.
14: else
15: Return to step 1.
16: while Find the optimal selection do
17: Output the estimated output signal vectors.

Algorithm 2: Proposed learning network.

0 200 400 600 800 1000
Epochs

0.92
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0.88

0.86
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Figure 4: Identification accuracy of the proposed learning network.
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categorical cross-entropy, and its formula is given by

f loss = −
1

Dout
〠
Dout

i=1
Yi log Ŷ i + 1 − Yið Þ log 1 − Ŷ i

� �
, ð23Þ

where Dout is the dimension of output vectors, Yi is the

expected output, and Ŷ i is the actual output. It is used to
measure the distance between the probability distribution
of the network output and the distribution of the label we
specify. By minimizing the distance between the two distri-
butions, a well-trained network can make the output as close
to the desired result as possible. Meanwhile, in order to
reduce the computational complexity and improve the

200 400 600 800 10000

Epochs

Lo
ss

0.6

0.5

0.4

0.3

0.2

Validation loss
Training loss

Network convergence curve

Figure 5: Loss value of the proposed learning network.
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Figure 6: Comparison of different numbers of dense layers behind LSTM layers.
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learning performance of the network, we choose the
RMSprop as the optimizer, which tunes hyperparameters
to minimize the value of loss function. Based on the LSTM
network, we use the recurrent dropout to improve the gener-
alization ability of the neural network. We set the input unit
of a certain layer of the network to 0 randomly, in order to
break the accidental correlation in the training data of this
layer.

5. Simulation Results and Discussion

In this section, we check the performance of the proposed
deep neural network with LSTM framework when it is used
in the NOMA system. Specifically, Python 3.7 and Keras are
used for programming neural networks, and MATLAB is
used for simulation of NOMA data. Keras is a DL frame-
work that makes it easy to define and learn almost any type
of DL model. Simulation parameters are set as follows. Every
100000 simulations are averaged to eliminate the random-
ness caused by channel fading. The distance between BS
and Uf (denoted by dbf ) is set as 10m or 30m, and the near
users are randomly distributed between Uf and BS.

Our simulation is divided into the following three parts.
Firstly, we verify the performance of the proposed neural
network. Specifically, the learning accuracy of the neural
network is analyzed, and the convergence is reflected by
the loss value. Secondly, the average data rate of the pro-

posed scheme is simulated. We take the proposed DL-
based user selection as our learning strategy under imperfect
CSI and apply it to the simulation of near-user data rate in
this paper. We also compare this strategy with the other
two user selection strategies without DL, which are con-
trasted strategy with imperfect CSI [30] and contrasted strat-
egy with perfect CSI. The user selection with imperfect CSI
utilizes the imperfect instantaneous CSI and selects the user
with ĥn, and the user selection with perfect CSI selects the
user with hn. Thirdly, the system outage probability of the
proposed scheme is simulated and compared with the other
two strategies without DL to verify that the proposed scheme
has good outage performance and diversity gain. The
numerical results of outage performance are consistent with
the theoretical analysis. Details are shown in the following
subsections.

5.1. Performance of the Proposed Learning Network. In this
subsection, we analyze the performance of our deep neural
network. As shown in Figure 4, the constructed LSTM net-
work can finally achieve 91% accuracy to identify CSI. Such
precision can largely satisfy the reliability of the user selec-
tion. The loss value of the proposed network is shown in
Figure 5, in which the network gradually converges after
400 epochs. The above simulation results show that the
trained neural network can accurately judge the CSI of the
input data, which means the appropriate near users can be
selected.
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In order to verify the impact of the number of dense
layers behind LSTM layers on the performance of neural
networks, the learning accuracy of different networks is sim-
ulated in Figure 6. When the number of added dense layers
is 2, the learning accuracy of the neural network is higher. If
the number is less, performance will drop dramatically. In
addition, continuing to add dense layers will not achieve
greater gains and will increase learning costs. Therefore, we
can conclude that when the number of added dense layers
is the same as decoding times, the neural network has the
best effect.

5.2. Average Data Rate of the Proposed User Selection
Scheme. Based on the high accuracy of the learning network,
we analyze the average data rate of the proposed user selec-
tion scheme when the transmit SNR changes in this subsec-
tion. Figure 7 simulates the average data rate of selected near
users when dbf is 10m and 30m, respectively, and Figure 8
compares the average data rate of selected near users at
low speed of 1m/s and at high speed of 20m/s, respectively.

As shown in Figure 7, when dbf is 10m, our proposed
strategy has a great advantage over the strategy without the
DL method under imperfect CSI. The performance improve-
ment in the average data rate is so significant that it is not far

behind even the strategy with perfect CSI. When the trans-
mit SNR increases, the average data rate of near users also
increases, and the proposed strategy maintains its superior-
ity. We change the random initial distribution of near users,
and the performance advantage remains the same. In order
to verify the performance of each strategy under a poor
channel state, we add dbf and randomly deploy near users.
The average data rate under this circumstance is simulated.
It is obvious from Figure 7 that the average data rate of
selected users has dropped dramatically. Due to the great
distances between users, the channel quality is poor; thus,
high power is required to communicate successfully and
average data rate is low. Although the channels are very
bad, the proposed strategy can still play a good role and is
even closer to the perfect CSI strategy than the one with
the good channel state. This benefits from the advantages
of DL. The more obvious the features are, the better the fit-
ting effect will be, and it is easier to find a better choice in a
poor communication environment.

The moving speeds of near users are 1m/s and 20m/s in
Figure 8, respectively. As shown in Figure 8, the proposed
scheme still has advantages, and the curve trend remains
constant when the speed changes, which proves that the pro-
posed learning strategy can adapt to user mobility well. By
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Figure 10: Effect of different estimation errors on system outage performance and diversity gain.
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comparing the performance at low speed and high speed, it
can be seen that the average data rate at low speed is higher
than that at high speed, which is in line with common sense.
According to the simulation results above, we can draw a
conclusion that the proposed DL-based user selection can
maintain good performance advantages on an average data
rate regardless of the speed of near users.

5.3. Outage Performance and Diversity Gain of the Proposed
User Selection Scheme. In this subsection, we simulate the
system outage performance and discuss the diversity gain.
The analytical result in (19) is validated in Figure 9 that
when ρ⟶∞, the system outage probability of the strategy
without DL under imperfect CSI is a constant, which means
the diversity gain is zero. The outage performance of our
proposed DL-based user selection scheme is shown in
Figure 9. Obviously, the proposed scheme effectively reduces
the system outage probability. Although the full diversity is
not obtained, the proposed scheme successfully recovers
the diversity gain, which is no longer 0 under imperfect
CSI. In addition, the system outage probability under perfect
CSI is studied in [33], which has full diversity. The theoret-
ical analysis results of the two contrasted strategies are con-
sistent with the Monte Carlo simulations in Figure 9.

As shown in Figure 10, with the decrease of channel esti-
mation error, the system outage probability decreases and
gradually approaches the system outage probability under
perfect CSI. Note that higher transmit SNR is needed to
make the outage probability of the user selection under
imperfect CSI tend to a constant value when the estimation
error decreases. However, due to the fact that the channel
estimation error exists, the user selection without the DL
method under imperfect CSI always has no diversity gain,
even if the error is small. For our proposed user selection
scheme, a smaller estimation error can help the network
obtain higher diversity gain. Thus, our proposed scheme
has great advantages over the user selection without the
DL method.

6. Conclusion

In this paper, a DL-based user selection scheme for cooper-
ative NOMA is proposed, and its performance is well inves-
tigated. Different from most studies, this paper considers the
NOMA system with imperfect CSI and analyzes the outage
performance and designs a special neural network to accu-
rately identify CSI. In particular, the proposed scheme
improves outage performance and recovers diversity gain,
showing the superiority of the scheme. We believe that the
DL method has more room for development in the domain
of NOMA research.
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