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When wireless sensors are randomly deployed in natural environments such as ecological monitoring, military monitoring, and
disaster monitoring, the initial position of sensors is generally formed through deployment methods such as air-drop, and then,
the second deployment is carried out through the existing optimization methods, but these methods will still lead to serious
coverage holes. In order to solve this problem, this paper proposes an algorithm to improve the coverage rate for wireless
sensor networks based on an improved metaheuristic algorithm. The sensor deployment coverage model was firstly established,
and the sensor network coverage problem was transformed into a high-dimensional multimodal function optimization
problem. Secondly, the global searching ability and searching range of the algorithm are enhanced by the reverse expansion of
the initial populations. Finally, the firefly principle is introduced to reduce the local binding force of sparrows and avoid the
local optimization problem of the population in the search process. The experimental results showed that compared with ALO,
GWO, BES, RK, and SSA algorithms, the EFSSA algorithm is better than other algorithms in benchmark function tests,
especially in the test of high-dimensional multimodal function. In the tests of different monitoring ranges and number of
nodes, the coverage of EFSSA algorithm is higher than other algorithms. The result can tell that EFSSA algorithm can
effectively enhance the coverage of sensor deployment.

1. Introduction

In the field of sensor monitoring and communication engi-
neering, the development of wireless sensor network
(WSN) technology has become the main driving force of
the Internet of Things (IoT) technology [1]. With the devel-
opment of communication and software technology, sensor
networks have become a hot spot in essential application
fields such as monitoring the ecological environment [2],
agricultural production [3], military battlefield [4], and
disasters and accidents [5, 6]. Generally, the hardware equip-
ment used for monitoring is composed of multiple sensors
with clear functions, low energy, small shape, and portabil-
ity. The hardware completes the deployment of wireless sen-
sor networks through sensing and communication
functions.

In recent years, many new technologies and methods
have been adopted to improve the quality of service (QoS)
in wireless sensor networks [7]. The coverage effect of the
sensor monitoring area is an essential indicator of network
quality of service [8], which can measure the perception abil-
ity of the sensor to be monitored area under different
deployment structures. Usually, the number of sensors is
limited and randomly placed in the target monitoring range,
and the deployment of sensor nodes is uneven, resulting in
the problem of coverage holes, which ultimately affects the
network’s quality of service. The optimal deployment of sen-
sor nodes is the premise to ensure the data acquisition,
transmission, processing, and reliable application of sensor
networks. It is an enduring conundrum in sensor networks
[9]. For sensor deployment, the main goal is to use limited
sensor resources to cover the target area as evenly and widely
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as possible [10]. The coverage effect of the area to be moni-
tored can be divided into point coverage, area coverage, and
fence coverage [11]. WSN coverage in this paper is based on
the method of point coverage. Most studies assume that the

points to be monitored are evenly distributed in two-
dimensional (2D) or three-dimensional (3D), and these
areas are covered by a circular or spherical monitoring range
centered on the sensor.

Sensing range rs

Optimize deployment
boundaries

Sensor nodes

Sensor communication

(a)

rs-𝛥r

rs
rs+𝛥r

(b)

Figure 1: Deployment model. (a) Optimal deployment structure. (b) Probabilistic deployment structure.

/∗Initial the Sparrow Search Population∗/
The Number of Population: n
Maximum Iterations: Imax
Initial Finder Number: Fnum
Initial Detection and Early Warning Ratio: DEmax
Initial Warning Value : 0.8
Firefly Parameter: α = 0:2, β0 = 1, γ = 1

/∗Iterative search∗/
while (t < Imax)

According to Equation (12) and (13), the elite reverse strategy is implemented for the initial population (2n individuals);
Rank the individuals in the population according to fitness values;
Select the optimal n individuals as the first population;
fori = 1 : Fnum
Based on the results of the last iteration of the finder, update the position according to Equation (8);
end for
fori = Fnum + 1 : n
The position of the joiner is disturbed according to the Equation (10);

end for
fori = 1 : DEmax
Based on the results of the last iteration of the detection and early warning, update the position according to equation (11) and

(17);
end for
t = t + 1 ;

end while
return the best solution.

Algorithm 1: EFSSA.
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The research on sensor deployment is mainly divided into
two types: deterministic deployment and random deployment
[12, 13]. First of all, the deployment method is primarily used
under the conditions of a good geographical environment,
such as plains, wheat fields, grasslands, and lakes. In [14], sen-
sors are deployed using a regular lattice model that can be full
of space, but the actual monitoring environment cannot be an
ideal 2D or 3D space. The environment often has flat terrain
and is easy to plan and deploy. Random deployment is mainly
used when the sensor nodes are difficult to fix quickly or
reach the designated position. The first deployment is
formed in a complex or harsh natural environment by air-
craft throwing [15]. Obviously, this kind of method will
cause a large number of sensor coverage redundancy and
coverage holes. It will seriously waste sensor network
resources and damage the network’s quality of service. In
fixed deployment mode, when the sensor does not have
mobility, mobile sink can be used to improve the energy
consumption and delay of the network [16]. On the other
hand, when the sensor is mobile, researchers use the
method of moving sensors in a small range to adjust the
deployment structure and realize the second deployment
of sensors [17]. There are also studies on monitoring target
points or target regions by moving sensor nodes with
strong mobility [18, 19]. There are also studies that address
the deployment reliability of sensors; reference [20] divides
sensor coverage methods into centralized and distributed.
Wireless sensors are costly to deploy and must be used to
maximize coverage for resource-constrained problems [21,
22]. After random deployment of sensor nodes in different
scenarios, it is difficult to immediately meet the require-

ments of network coverage, and it is a hot issue to use
the limited mobility of sensors for secondary deployment.
However, most methods cannot achieve the expected
results, resulting in a waste of resources and energy.

In this paper, we propose a coverage enhancement
method for wireless sensor networks based on improved
metaheuristic algorithm, which can effectively improve the
coverage performance of wireless sensor networks. The main
contributions are as follows:

(1) The location model of the area to be monitored and
the sensor location model has been established, and
the sensor coverage problem was transformed into
the solution model of intelligent optimization
algorithm

(2) An initial solution construction method is proposed.
The quality of the initial solution of the population
iteration is improved by an inverse elite solution to
further make the location distribution of the random
sensors as uniform as possible

(3) According to the fluorescence effect in the firefly intel-
ligent optimization algorithm, the population individ-
ual optimization method in order to improve the local
binding force during the population iteration and pre-
vent from falling into local optimization is improved

(4) In experimental simulations, on the one hand, a
comparison with other metaheuristic algorithms for
sensor coverage is made to demonstrate the advan-
tage of the algorithm on high-dimensional

/∗Initialization∗/
Initialization EFSSA parameters are consistent with Algorithm 1
Set the number of sensor nodes d
Initialize the sensor node position si as population individuals
Set the sensor deployment scopeðm2Þ:
900,2500,4900,8100

/∗Iterative search∗/
while (t < Imax)

The elite reverse strategy is implemented for the initial sensor position array;
Rank the individuals in the population according to fitness values;
Select the optimal n individuals as the first population;
fori = 1 : Fnum
Update the position of finder;

end for
fori = Fnum + 1 : n
Update the position of joiner;

end for
fori = 1 : DEmax
Update the detection and early warning with firefly strategy;

end for
Obtain the current sensor node deployment results by calculating node coverage in Equation (6);
If the new overlay mode is better than the last overlay result, update it;
t = t + 1 ;

end while
return Optimal WSNs deployment results.

Algorithm 2: WSNs deployment based on EFSSA.
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multimodal reference functions. On the other hand,
it verifies the advantages of deploying coverage in
wireless sensor networks

The structure of this paper to enhance the WSN cover-
age is as follows: Section 2 introduces the current situation
of coverage optimization at home and abroad. Section 3
introduces the coverage model in detail. Section 4 discusses
the improved sparrow search algorithm. Section 5 presents

the performance of the algorithm in the benchmark function
and the effect in the application of sensor coverage and ana-
lyzes and discusses it. Section 6 gives conclusions and future
prospects.

2. Related Work

The approximate solution of the metaheuristic optimization
algorithm based on intelligent optimization has strong appli-
cability in practical application compared with an accurate
solution, especially in the research of sensor deployment
optimization. Intelligent optimization algorithms have
become the primary means of research in this direction.

In the deterministic deployment study, when there are
few sensor nodes, a grid-based distributed sensor node
deployment strategy was used in reference [23] to determine
the location of deployed sensor nodes. Xu et al. [24] divided
the monitoring area into multiple triangular grids to com-
plete the coverage of the target by adjusting the distance
relationship between the nodes and applied it to the under-
water sensor network. In reference [25], on the basis of cov-
erage, the connectivity between sensors is considered at the
same time, which is able to keep the network connection
even if some sensors fail. On the basis of guaranteeing sensor
coverage and connectivity, some researchers in the literature
[26, 27] further guarantee the connectivity and coverage of
deterministic deployment networks by introducing relay
nodes. Compared to random deployment, deterministic
deployment was aimed at achieving target area coverage
mainly with the minimum number of nodes and is closely
related to the deployment space structure.

[28] proposed a metaheuristic algorithm based on ant-
lion optimization (ALO) for sensor coverage and sensor
sensing perception performance. This method transforms
coverage into a function maximization problem, which can
effectively and quickly achieve reliable deployment of wire-
less sensors, and proves that the deployment strategy of this
algorithm outperforms sensor coverage by genetic algorithm
(GA_WSN) and particle swarm optimization (PSO_WSN)
algorithm for sensor deployment applications. Reference
[29] proposed a sensor random deployment method based
on grey wolf optimizer (GWO) to address the problem of
low sensor coverage. Liao et al. [30] used the firefly swarm
algorithm (FA) [31] to establish two detailed coverage
models, central deployment and overlay deployment, for
the sensor deployment coverage problem, and compared
the coverage efficiency and mobility problems of these two
models. These studies are based on the initial random
deployment, so before considering the secondary deploy-
ment of sensors, the random nodes initially generated are
close to the real scene, which is conducive to the implemen-
tation of the application. [32] not only generates scientific
random deployment nodes of sensor nodes but also pro-
poses the method of generating data packets, which has
strong applicability in WSN performance imitation.

In terms of algorithm performance, although the intelli-
gent optimization algorithm has strong optimization ability,
few design parameters, and fast running speed, it still has
some shortcomings. Compared with other traditional
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Figure 2: Flowchart for EFSSA wireless sensor network
deployment.
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algorithms, SSA proposed by Xue and Shen [33] has certain
advantages in parameter design and solution accuracy. How-
ever, there are still problems of poor population diversity
and individual populations easy to fall into local optimiza-
tion. Sensor network coverage itself is a multidimensional
problem. In this paper, the objective function of coverage
is established in the high-dimensional mathematical model.
Therefore, it is essential to solve poor population diversity
and make it easy to fall into local optimization. This paper
uses elite reverse strategy and firefly algorithm to solve this
problem, and an improved sparrow search algorithm based
on firefly (EFSSA) is proposed. [34] studied the optimization
ability of population diversity of elite reverse strategy in par-
ticle swarm optimization algorithm. Sengathir et al. [35]

combined the firefly algorithm with the artificial bee colony
algorithm to extend the lifetime of the clustering problem of
wireless sensor networks. Some researchers have also used
BSA algorithm [36] combined with SSA algorithm to extend
the lifetime of wireless sensor networks [37]. For the robot
path planning problem, Ref. [38] proposed three different
improved methods in SSA. Based on sparrow search, this
paper combines elite reverse strategy and firefly so that the
intelligent optimization algorithm can have a better perfor-
mance effect on the problem of sensor coverage.

In recent years, some new evolutionary algorithms have
been proposed and have good performance in common test
functions. For example, the bald eagle search (BES) algo-
rithm [39] simulates the hunting strategy and intelligent

Table 1: Reference function.

Name Functions d Domain fmin

Sphere F1 xð Þ = 〠
n

i=1
x2i 30 [-100,100] 0

Schwefel-1 F2 xð Þ = 〠
n

i=1
xij j +

Yn
i=1

xij j 30 [-10,10] 0

Schwefel-2 F3 xð Þ = 〠
n

i=1
〠
n

j=1
xij j

 !2

30 [-100,100] 0

Tablet F4 xð Þ =max xij j,−1 ≤ i ≤ nf g 30 [-100,100] 0

Rosenbrock F5 xð Þ = 〠
n

i=1
100 ∗ xi+1 − x2i

� �2 + xi − 1ð Þ2
h i

30 [-30,30] 0

Step F6 xð Þ = 〠
n

i=1
xi + 0:5j jð Þ2 30 [-100,100] 0

Quadric F7 xð Þ = 〠
n

i=1
ix4 + random 0, 1½ Þ 30 [-1.28,1.28] 0

Schwefel F8 xð Þ = 〠
n

i=1
− xi sin

ffiffiffiffiffiffiffi
xij j

p� �
30 [-500,500] 0

Rastrigrin F9 xð Þ = 〠
n

i=1
x2i − 10 cos 2πxið Þ + 10
� �

30 [-5.12,5.12] 0

Ackley
F10 xð Þ = −20 exp −0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n ∑

n

i=1
x2i

r	 


−exp 1
n ∑

n

i=1
cos 2πxið Þ

	 

+ 20 + e

30 [-32,32] 0

Griewank F11 xð Þ = 〠
n

i=1

x2i
4000

−
Yn
i=1

cos
xiffiffi
i

p
	 


+ 1 30 [-600,600] 0

Penalized F12 xð Þ = 4x21 − 2:1x21 +
1
3
x61 + x1x2 − 4x22 + 4x42 2 [-5,5] 0

Foxholes F13 xð Þ = 1
500

+ 〠
25

j=1
j + 〠

2

i=1
xi − aij
� �6

 !−1 !−1

2 [-65,65] 0

Kowalik F14 xð Þ = 〠
11

j=1
ai −

x1 b2 + bix2
� �

b2i + bix3 + x4

" #2
4 [-5,5] 0

Hartman F15 xð Þ = −〠
4

j=1
ci exp −〠

3

j=1
aij xj − pij
� �2" #

3 [0,1] 0
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information interaction behavior of condor when looking
for prey. Ahmadianfar et al. [40] proposed Runge Kutta
(RK) optimizer algorithm, which proposed the global opti-
mization search mechanism in the feature space and
enhanced solution quality (ESQ) to avoid the local optimiza-
tion mechanism.

3. Problem Definition

Suppose that the sensor nodes of the wireless sensor net-
works are distributed in the two-dimensional space of L ×
Lðm2Þ, N isomorphic sensors are deployed, and the sensing
radius of the sensor is defined as rs: This study draws on
the previous literature [41], an image that divides the space

into N ′ =m × n pixels, and the coordinates of each point
are pj = ðxj, yjÞ, j = 1, 2⋯ ,N: In addition, assuming that
the location set of sensor nodes is expressed as S = fs1, s2,
⋯,sNg, the location information of each node can be
expressed as si = ðxi, yiÞ. To better calculate the coverage of
the sensor, therefore, the distance d between node si and
spatial point pj in the sensor network is

d si, pj
� �

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi − xj
� �2 + yi − yj

� �2
:

r
ð1Þ

Assuming that the sensing model is a Boolean model, the
sensor node si can sense point pj; according to literature

Table 2: Benchmark function test results.

Test function Statistical value ALO GWO BES RK SSA EFSSA

F1
Mean 8.050E-05 1.286E-33 1.187E-37 7.230E-201 8.262E-51 6.636E-90

Std 2.736E-05 1.835E-33 3.498E-37 0.000E+00 2.493E-50 2.003E-89

F2
Mean 3.113E+01 5.521E-20 2.608E-27 1.364E-109 9.793E-47 2.308E-48

Std 3.903E+01 4.386E-20 3.441E-27 4.081E-109 3.703E-46 7.015E-48

F3
Mean 2.062E+03 1.210E-08 3.702E-05 4.726E-165 7.054E-33 2.650E-80

Std 7.633E+02 1.384E-08 1.126E-04 0.000E+00 1.496E-32 1.436E-79

F4
Mean 1.542E+01 1.044E-09 2.864E-01 1.707E-34 7.898E-17 1.073E-35

Std 4.745E+00 2.270E-03 2.460E-01 5.185E-34 1.875E-16 5.879E-35

F5
Mean 9.807E+01 2.658E+01 1.780E+01 2.290E+01 5.913E-04 1.132E-06

Std 1.228E+02 5.720E-01 4.735E+00 1.034E+00 1.100E-03 2.742E-06

F6
Mean 1.511E-04 4.501E-01 7.296E-29 1.191E-09 2.089E-06 1.483E-11

Std 1.694E-08 2.843E-01 1.955E-28 4.113E-10 4.154E-06 7.506E-12

F7
Mean 1.514E-01 1.620E-03 1.900E-03 1.278E-04 3.634E-04 1.490E-03

Std 4.370E-02 8.694E-04 1.350E-03 6.935E-05 3.110E-04 7.961E-04

F8
Mean -5.519E+03 -6.609E+03 -4.994E+03 -8.222E+03 -1.048E+04 -8.915E+03

Std 7.357E+02 5.895E+02 4.588E+02 7.791E+02 2.096E+03 1.286E+03

F9
Mean 8.453E+01 7.981E-01 1.344E+01 0.000E+00 0.000E+00 0.000E+00

Std 1.469E+01 1.644E+00 2.464E+01 0.000E+00 0.000E+00 0.000E+00

F10
Mean 2.179E+00 4.233E-14 4.440E-15 8.880E-16 8.880E-16 8.882E-16

Std 6.775E-01 1.678E-15 0.000E+00 0.000E+00 0.000E+00 0.000E+00

F11
Mean 2.162E-02 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

Std 1.270E-02 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

F12
Mean 1.151E+01 2.836E-02 8.881E-26 4.664E-10 3.319E-07 2.184E-13

Std 3.072E+00 1.233E-02 2.696E-25 1.462E-10 6.935E-07 1.330E-13

F13
Mean 4.504E+00 3.196E-01 3.467E-02 4.310E-03 2.741E-06 4.144E-12

Std 1.133E+01 1.558E-01 3.895E-02 7.170E-03 3.240E-06 1.397E-12

F14
Mean 1.989E+00 2.562E+00 9.980E-01 1.591E+00 4.220E+00 9.980E-01

Std 7.847E-01 2.921E+00 1.312E-02 9.286E-01 4.552E+00 1.312E-02

F15
Mean 2.740E-03 2.310E-03 2.340E-03 6.112E-04 3.270E-04 3.073E-04

Std 5.980E-03 6.120E-03 6.110E-03 4.378E-04 4.029E-05 4.498E-07
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[42], the perception probability can be defined as

B si, pj
� �

=
1, if d si, pj

� �
≤ rs,

0, others d si, pj
� �

> rs:

8><
>:

ð2Þ

In the ideal state, the optimal structure for isomorphic
sensor node deployment is the coverage model [43] with
the sensor node as the center, the sensing distance as the
radius of the circumscribed circle of the positive hexagon,
and the tiled area to be monitored (e.g., in Figure 1(a)).The
sensor equipment will be disturbed by noise and the physical
environment in the actual scene, following a specific regular
probability distribution [40]. At this time, the relationship

between probability and distance is (see Figure 1(b))

P si, pj
� �

=

1, if d si, pj
� �

≤ rs−Δr,

exp −αλβ
� �

, if d si, pj
� �

− rs
���

���≤Δr,
0, others:

8>>>><
>>>>:

ð3Þ

In the equation, α and β are related to the physical char-
acteristics of the sensor itself, Δrϵð0, rsÞ represents the reli-
able sensing range parameter with sensor coverage change,
and λ is an input parameter. Usually, the calculation method
of λ is

λ = d si, pj
� �

+Δr − rs: ð4Þ
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Figure 3: High-dimensional multimodal test functions. (a) Schwefel-F8. (b) Rastrigrin-F9. (c) Ackley-F10. (d) Griewank-F11.
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The same point pj in the area may be sensed by multiple
sensors simultaneously because as long as each spatial point
is sensed by one sensor, it is considered to cover the area
successfully. Then, the perceived probability of a node pj in

the perceived area N ′ can be further expressed as

BN ′ S, pj
� �

= 1 −
YN
i=1

1 − B si, pj
� �� �

: ð5Þ

Then, the calculation equation for the total coverage Rcov

of the monitoring area is

Rcov =
∑N ′

j=1BN ′ S, pj
� �

N ′ : ð6Þ

At the same time, in order to better reflect the redun-
dancy, utilization, and distribution uniformity of sensor net-
work coverage, the ratio Ce between the monitoring range of
real sensor coverage and the total area that all sensors can
cover is taken as an evaluation index, and the equation is
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Figure 4: High-dimensional multi-modal test function curve. (a) Schwefel-F8. (b) RastrigrinNon-F9. (c) Ackley-F10. (d) Griewank-F11.
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expressed as

Ce =
Rcov × L × L
N × π × r2sð Þ : ð7Þ

4. Proposed Method

4.1. Overview of Sparrow Search Algorithm. In 2020, a meta-
heuristic method SSA based on large-scale bird foraging and
early warning was proposed [33]. In this algorithm, the
whole sparrow group can be abstracted into two groups:
entrants and finders, and a reconnaissance and early warn-
ing mechanism is added to the search. The finder usually
has a high energy reserve. When areas with more food are
found, they are able to provide flight directions for the
joiners. Joiners always have access to good food sources from
the information of the finder. At the same time, in SSA algo-
rithm, the population has the strategy to realize the threat
and to adopt antipredatory behavior.

4.1.1. Update Method of the Finder. Firstly, the definition of
the population is given. Assuming that each population size
is n in SSA, the population matrix X = ½X1, X2,⋯,Xi,⋯,Xn�T
is formed for the d-dimensional coverage problem, where
Xi = ½Xi,1, Xi,2,⋯,Xi,j,⋯,Xn,d�. All finder is responsible for
finding food for the whole population and providing the
migration direction of the foraging area for the joiners.
Therefore, in SSA, the finder has a large search area. Accord-
ing to the rules, in the iterative process of the algorithm, the
location update of the finder is described as follows [33]:

Xt+1
i,j =

Xt
i,j∙exp −

i
α∙Tmax

	 

, if R2 < ST,

Xt
i,j +Q∙L, if R2 ≥ ST,

8><
>:

ð8Þ

where Tmax represents the final number of iterations and
Xt
i,j denotes the position of the i-th individual at iteration t

-th. Both α and Q are random in the range ð0, 1�. L is a unit
matrix of size 1 × d. ST indicates a dangerous cut-off value.
When R2 < ST , it means that the population is safe; that is,
there is no predator around, and the finder can search more
widely to find a more suitable foraging place; when R2 ≥ ST,
the group found the predator and sounded the alarm. The
group immediately stopped foraging, made antipredation
behavior, and quickly approached the safety zone.

It should be noted that when the condition R2 < ST is
satisfied in Equation (1), the critical component of the finder
updating the following location around the current location
is independently expressed as y (see Figure 1):

y = exp −
i

α∙Tmax

	 

: ð9Þ

In Equation (9), as the search algorithm is computed,
the iteration around y of the current node changes in
the range of ð0, 1Þ. However, the range of population var-
iation becomes smaller in the later iterations. Because the
individuals in the population remains unchanged, when
iterations increases, the finders are more densely distrib-
uted in the smaller y interval than in the larger interval,
so the local search ability is stronger. However, the reduc-
tion of the search range will also lead to the algorithm not
being able to obtain the optimal global solution in com-
plex problems.

4.1.2. Update Method of Joiners. In the sparrow population,
after removing the finder, the rest is the joiner, and the
joiner will follow the finder. Joiners will also monitor the
finders. Once they find a better foraging location, they will
abandon their current foraging area and fly to an area with
more food based on the information. The equation for
updating the position of joiners is expressed as [33]

Xt+1
i,j =

Q∙exp
Xt
worst − Xt

i,j

α∙Tmax

 !
, if i >

n
2
,

Xt+1
best + Xt

i,j − Xt+1
best

���
���∙A+∙L, if i ≤

n
2
:

8>>><
>>>:

ð10Þ

In Equation (10), Xt
worst represents the global worst indi-

vidual position in the iteration results of the previous gener-
ation. Similarly, Xt+1

best represents the global best position in
the current iteration result, that is, the elite solution. A+

has the same structural dimension as Q above. A is a d × d
matrix composed of 1 or -1. A+ has the characteristics of

A+ = ATðAATÞ−1. Conditions i > n/2 and i ≤ n/2 in Equation
(10) indicate that the sparrow is hungry for foraging and has
been in the best foraging position.

4.1.3. Update Methods of Reconnaissance and Early
Warning. In the simulation experiment, sparrows with con-
scious danger signals did not exceed 20% of the total number
and their selection was randomized. The update formula for

Table 3: Simulation parameters.

Parameters Value

Monitoring area size

30m × 30m
50m × 50m
70m × 70m
90m × 90m

Iterations 500

Perceived radius (rs) 7m

Probability perception (Δr) 0.5m

Single-step moving distance 1m

The population size 50

Repetitions 30

Finders ratio 0:2

Reconnaissance ratio 0:15

Early warning value 0:8
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these individuals is as follows [33]:

Xt+1
i,j =

Xt
best + β∙ Xt

i,j − Xt
best

���
���, if f i > f b,

Xt+1
best + K∙

Xt
i,j − Xt+1

best

���
���

f i − f wð Þ + ε
, if f i = f b:

8>>><
>>>:

ð11Þ

Similar to Equation (9), Xt+1
best originates from the whole

population. The function of β is to control the step size,
obeying the 0~1 distribution. K ∈ ð0, 1�. f represents the fit-
ness; f i, f b, and f w represents the current value, the global
best, and the worst value, respectively. The denominator part
is by adding ε make sure it is not 0. When f i = f b, it means
that the early warning sparrow is in the middle; it should
move immediately to the edge of the population to avoid
being attacked. When f i > f b, another strategy of moving
in smaller steps should be adopted.

4.2. Improvement Strategy. In the previous studies, the SSA
algorithm has been proved to have good convergence and
robustness [33], but there are still some deficiencies. For
the convergence speed and local optimum problem of SSA
algorithm, this paper will improve the SSA algorithm
through elite reverse learning and firefly algorithm and pro-
pose a sparrow search algorithm (EFSSA) with elite reverse
and firefly crossover. These two strategies are introduced in
detail below.

4.2.1. Elite Reverse Strategy. The initial solution of the tradi-
tional sparrow search algorithm is initialized in a random
way, and the population diversity is poor. Therefore, in this
paper, the elite inverse method is added to the position ini-
tialization process. The elite individuals are constructed to
reverse the sparrow individuals so that the algorithm has a
better initial solution. In 2005, Professor Tizhoosh first pro-
posed the concept of reverse learning (OBL) [44]. This paper
points out that the initial values of most intelligent algo-
rithms are mainly based on guessing and then finding or
close to the optimal solution after many iterations. Ran-

domly generating the initial solution will greatly impact the
solution results. Suppose the random value at the beginning
of each iteration is far from the optimal solution or even the
opposite. In that case, it will greatly impact the algorithm
and consume a lot of update time [45].

Therefore, this paper introduces the reverse solution,
which can expand the search area of the algorithm. How-
ever, the original solution is higher than the reverse solution
for those sparrows with high fitness values. If the reverse
solution space is searched, it will be a waste of time, and
the original domain search should be strengthened. The
value of reverse region search is higher for sparrows whose
reverse solution is higher than the original solution. The def-
inition of the inverse solution is given below:

(1) Definition of elite solution: suppose XiðtÞ = ½Xi,1,
Xi,2,⋯,Xi,j,⋯,Xn,d� as solutions for the t-th iteration,
and the solution of its reverse learning is XiðtÞ∗. We
calculate the fitness functions f ðXiðtÞÞ and f ðXiðtÞ∗Þ
of the current solution and elite reverse learning
solution, respectively. When f ðXiðtÞÞ ≥ f ðXiðtÞ∗Þ,
XiðtÞ is an ordinary individual in the current itera-
tion. On the contrary, XiðtÞ is the elite individual
in the current iteration, which is recorded as EiðtÞ.
The elite solution composed of p elite individuals
[34]:

E1 tð Þ, E2 tð Þ,⋯,Ep tð Þ� 

ϵ X1 tð Þ, X2 tð Þ,⋯,Xn tð Þf g ð12Þ

(2) Definition of inverse solution: assuming that Xi,j is
an ordinary individual in XiðtÞ and its individual
inverse solution is represented by Xi,jðtÞ∗, then

Xi,j tð Þ∗ = k aj tð Þ + bj tð Þ
� �

− Xi tð Þ ð13Þ

Table 4: Coverage of different nodes and monitoring areas.

Area Nodes Initial ALO GWO BES RK SSA EFSSA

30m × 30m
7 0.52222 0.90667 0.91556 0.88667 0.91222 0.85333 0.92444

9 0.67889 0.96778 0.99667 0.96556 0.99889 0.91000 1.00000

11 0.75111 0.99778 1.00000 0.99333 1.00000 0.93444 1.00000

50m × 50m
20 0.58480 0.86080 0.94280 0.84160 0.93640 0.83280 0.96120

25 0.68280 0.96778 0.98000 0.88600 0.96800 0.84240 0.99600

30 0.72720 0.97680 0.99640 0.94640 0.99000 0.92800 1.00000

70m × 70m
40 0.64041 0.87490 0.90673 0.79163 0.87551 0.87490 0.95224

50 0.71429 0.90330 0.80600 0.81050 0.90070 0.80890 0.96920

60 0.76714 0.95959 0.97755 0.91347 0.98750 0.97000 0.99980

90m × 90m
64 0.65321 0.84543 0.75370 0.76407 0.86753 0.77210 0.92136

80 0.71568 0.88100 0.79490 0.80500 0.78990 0.80040 0.94460

96 0.78309 0.96346 0.86185 0.88642 0.94543 0.87099 0.99284
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Figure 5: Continued.
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where k ∈ (0,1] control step size; the range of the elite group
is in interval ½ajðtÞ, bjðtÞ�, where ajðtÞ =min fE1ðtÞ, E2ðtÞ,
⋯,EpðtÞg and bjðtÞ =max fE1ðtÞ, E2ðtÞ,⋯,EpðtÞg
4.2.2. Firefly Disturbance Strategy. SSA algorithm is easy to
fall into local optimization in the later stage of iteration,
which is usually caused by sparrow individuals falling into
local optimization in a specific dimension in the calculation
process. The firefly algorithm is introduced into the algo-
rithm. All sparrows and the optimal sparrow are disturbed
by the algorithm to update the position to improve its search
performance. The sparrow after disturbance is compared
with the sparrow before disturbance. If it is better, the spar-
row position is updated. The main parameters disturbed by
the firefly intelligent optimization algorithm include the
fluorescence brightness, attraction, and update position of
the firefly. The equations are as follows:

Firstly, the expression equation of fluorescence bright-
ness principle based on firefly strategy [35] is

I = I0∙e
−γri, j , ð14Þ

where I0 represents the maximum brightness generated
by the firefly population, depending on the function to be
optimized. γ is the light intensity absorption coefficient of
fireflies. The farther away from the distance, the smaller
the coefficient value, and vice versa. ri,j represents the dis-
tance between adjacent fireflies. The distance is Cartesian,
i.e.,

ri,j = xi − xj
�� �� =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
d

k=1
xik − xjk
� �2

vuut : ð15Þ

Therefore, in the firefly strategy, the attraction equation
of firefly [35] is

β = β0∙e
−γr2i, j : ð16Þ

It can be concluded that the attraction refers to the prin-
ciple of the fluorescence brightness equation; β0 indicates
the maximum attraction of fireflies.

Suppose the position of firefly i is xi. When firefly i is
attracted by firefly j, it updates its position immediately.
The new position calculation equation is

Xt+1
i = Xt

i + β0∙e
−γr2i, j∙ xi − xj

� �
+ α∙ R − 0:5ð Þ, ð17Þ

where α represents the step size coefficient in the range
[0,1] and R ∈ ½0, 1� which is uniformly distributed.

4.2.3. Sensor Deployment Based on Metaheuristic Algorithm.
This section gives the flow of EFSSA algorithm (see Algo-
rithm 1 for the specific implementation process).

In Algorithm 1, n individuals are randomly formed in
the initial quigroup, and n new individuals are generated
in this paper by using elite reverse strategy. Then, the 2n
individuals are sorted according to the objective function
or fitness function, and the first n are selected. The fitness
function index Rcov of EFSSA applied to WSN in this
paper has been given in Equation (6). Next, the location
of the finder is updated according to the threshold of the
warning value; according to the order of the i-th follower,
the joiners are divided into hungry searching individuals
and extensive searching individuals. Finally, for the recon-
naissance and early warning, whether it is at the popula-
tion boundary is judged. When the altered individual is
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Figure 5: Covering effect based on Boolean model. (a) ALO deployment. (b) GWO deployment. (c) BES deployment. (d) RK deployment.
(e) SSA deployment. (f) EFSSA deployment.
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Figure 6: Coverage curve with the number of iterations in balanced deployment mode. (a) 9 nodes are in 30m × 30m. (b) 25 nodes are
in 50m × 50m. (c) 50 nodes are in 70m × 70m. (d) 80 nodes are in 90m × 90m.

Table 5: Average rate of increase in coverage of Boolean coverage model.

Nodes ALO (%) GWO (%) BES (%) RK (%) SSA (%) EFSSA (%)

Sparse (-20%) 46.714 48.377 38.571 51.081 40.157 57.782

Balance (9/25/50/80) 33.463 28.561 24.484 31.343 20.625 40.211

Dense (+20%) 28.821 26.910 23.665 29.683 22.422 31.941
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at the population boundary, firefly strategy is adopted to
move position. Finally, judge whether the maximum num-
ber of iterations has been reached Imax. If not, continue
the iterative calculation; otherwise, output the optimal
deployment result.

The optimization performance of SSA algorithm has
been proved in literature [33]. This paper will further
explore the computational time complexity. Compared with
the original SSA algorithm, the time complexity of EFSSA is
acceptable. The time complexity of the algorithm is denoted
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Figure 7: Increased coverage in the Boolean model.

Table 6: Real coverage rate Ce of different nodes and monitoring areas.

Area Nodes Initial ALO GWO BES RK SSA EFSSA

30m × 30m
7 0.43617 0.75726 0.76469 0.74056 0.76190 0.71271 0.77211

9 0.44102 0.62868 0.64745 0.62724 0.64889 0.59115 0.64961

11 0.39922 0.53032 0.53150 0.52796 0.53150 0.49666 0.53150

50m × 50m
20 0.47487 0.69898 0.76557 0.68339 0.76037 0.67625 0.78051

25 0.44356 0.62868 0.63662 0.57556 0.62882 0.54723 0.64701

30 0.39366 0.52878 0.53939 0.51233 0.53593 0.50237 0.54134

70m × 70m
40 0.50962 0.69622 0.72155 0.62996 0.69671 0.69622 0.75777

50 0.45473 0.57506 0.51312 0.51598 0.57340 0.51496 0.61701

60 0.40698 0.50908 0.51861 0.48461 0.52389 0.51460 0.53041

90m × 90m
64 0.53705 0.69508 0.61967 0.62819 0.71325 0.63479 0.75751

80 0.47073 0.57946 0.52283 0.52947 0.51954 0.52645 0.62129

96 0.42922 0.52808 0.47239 0.48586 0.51820 0.47740 0.54419
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as Oð∙Þ, the dimension of individuals in the population is
assumed to be m, and the number of populations is n. In
the process of population iteration, individuals need to con-
duct fitness sorting, and the time complexity in the sorting
process is Oðn2Þ. Then, the time complexity of finders
update is Oðm ∗ FnumÞ, the time complexity of joiners is O
ðm ∗ ðn − FnumÞÞ, and the time complexity of detection and
early warning is Oðm ∗ n ∗DEmaxÞ. It can be concluded that
the sum of time complexity of finder and follower is OðmnÞ.
The proportion of reconnaissance and early warning is
10%~20% [33]. The total time complexity is Oðn ∗n + mn
+mn ∗DEmaxÞ. The calculation results ignore the constant
part, and the time complexity after simplification is Oðn2 +
mnÞ.

EFSSA adopts elite reverse strategy, so it increases the
size of sorting. When sorting, the time complexity of EFSSA

is Oðð2nÞ2Þ. The time complexity of finders and joiners is
the same as that of SSA. In the part of reconnaissance and
early warning, the algorithm uses firefly strategy for some
individuals in order to jump out of local optimal. This strat-
egy also uses the distance between two individuals in Equa-
tion (11). Hardly increasing the calculation time, the ratio of
this part will not exceed DEmax. Therefore, the time com-
plexity is Oð4n ∗ n +mn +mn ∗DEmaxÞ, and the simplified
complexity is still Oðn2 +mnÞ.

Then, the coverage optimization framework is estab-
lished according to the sensor deployment model (Algo-
rithm 2). Input parameters related to the sparrow search
algorithm and coverage are initialized, and the number of
sensor nodes and deployment area is set. Then, the coordi-
nates of the sensor nodes are used as the individuals of the
population. Under the calculation of the number of
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Figure 8: Coverage index Ce. (a) Sparse deployment. (b) Balance deployment. (c) Dense deployment.
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iterations Imax, the optimal solution with coverage as the
objective function is finally solved through the elite reverse
strategy and firefly optimization strategy. The algorithm flow
is shown in Figure 2.

5. Experimental Analysis

5.1. Benchmark Function Test. In this section, in order to test
the optimization performance of EFSSA algorithm, first
compare the algorithm with four related evolutionary opti-
mization algorithms on the benchmark function (shown in
Table 1), including ALO [28] algorithm, GWO algorithm
[29], BES algorithm [39], RK algorithm [40], and SSA algo-
rithm [33]. The experiment was carried out in the test envi-
ronment of Intel (R) core i7-8750h CPU, 2.20GHz, 16GB
memory, and windows10 64 bit and was written with
MATLAB 2020b software. Table 1 gives the names, equa-
tions, dimensions, independent variable ranges, and optimal
global values of 15 classical benchmark functions on
cec2008, cec2017, and cec2020.

F1~F7 are unimodal high-dimensional test functions,
F8~F11 (see Figure 2) are multimodal test functions, and
F12~F15 are fixed low-dimensional test functions. In order
to avoid errors in the computation of all the given algo-
rithms due to different parameters, the size of the population
was set to 50 and all the experiments were repeated 30 times
having 500 iterations independently. Through the bench-
mark function experiment, the optimal value and standard
deviation of each algorithm on the same benchmark func-
tion are obtained, so as to evaluate their optimization and
stability.

As shown in Table 2, the average value of the optimal opti-
mization of the current function is marked in bold in each row
of data. The optimization ability of EFSSA algorithm is better
than that of other functions in most test functions. Among the
15 test functions, EFSSA algorithm outperforms others in 9 of
them. The high-dimensional unimodal test EFSSA has the best
optimization effect in F4 and F5 functions. The mean values of
F1~F3 and F7 are second only to those of RK algorithm. This
is because RK algorithm calls Runge Kutta method for the

function to calculate the logic of slope change, so it is better
in single-peak function.

Because the F6 function is a concave canyon function with a
strong locality, the variation range in the valley is small, and the
optimal value is in the only local region, so the effect of the BES
algorithm is better. Among the high-dimensional multimodal
test functions, EFSSA algorithm has obvious optimization and
stability superior to other algorithms. This is because the multi-
modal function is easy to make the traditional algorithm fall
into local solutions and needs a dispersed and uniform popula-
tion distribution. Here, the applicability of EFSSA algorithm
can be obviously reflected. Finally, for low-dimensional func-
tions F12~F15, EFSSA algorithm can basically maintain the
superiority of the algorithm, although the performance of F12
is worse than that of BES, it is still superior to other algorithms.

Because functions F8~F11 and sensor network coverage
are similar high-dimensional multimodal function prob-
lems, we further analyze the testing effect of EFSSA algo-
rithm in this kind of problem. Figures 3 and 4 show the
objective function curves and the function graph of bench-
mark functions Schwefel, Rastrigrin, Ackley, and Griewank
with the number of iterations.

As shown from the Figure 4, the EFSSA algorithm has bet-
ter convergence with the increase of iteration times compared
with ALO, GWO, BES, RK, and SSA algorithms. Its optimiza-
tion performance is also the best. In general, EFSSA performs
better than other algorithms in testing functions, especially in
high-dimensional multimodal function problems. In the next
section, this paper will further verify the effect of EFSSA algo-
rithm in the sensor coverage deployment experiment.

5.2. Simulation Experiment of Sensor Network Coverage. In
this section, in order to test the optimization performance
of EFSSA algorithm, firstly, the critical parameters of EFSSA
algorithm and five related evolutionary optimization algo-
rithms are given. In the experiment, the wireless network
perception model uses Boolean model and probability
model. Then, the simultaneous interpreting of the two
deployment effects of sensors with different monitoring
areas and different sensor numbers is compared.

Table 7: Coverage of different nodes and monitoring areas.

Area Nodes Initial ALO GWO BES RK SSA EFSSA

30m × 30m
7 0.54471 0.94119 0.95447 0.93452 0.9427 0.86135 0.95785

9 0.71403 0.98971 0.99860 0.99970 0.99707 0.92022 1.00000

11 0.77412 0.99986 1.00000 0.99995 0.99995 0.97898 1.00000

50m × 50m
20 0.61927 0.89713 0.95495 0.85740 0.94564 0.86233 0.98819

25 0.69384 0.98028 0.98480 0.91030 0.99061 0.87222 0.99845

30 0.78252 0.99571 0.93871 0.95022 0.99581 0.93016 1.00000

70m × 70m
40 0.67723 0.90482 0.92735 0.83029 0.91366 0.80171 0.97860

50 0.72356 0.94383 0.96897 0.88245 0.95941 0.88160 0.99971

60 0.79525 0.97713 0.98469 0.94323 0.98750 0.94301 0.99992

90m × 90m
64 0.68236 0.89391 0.79155 0.78534 0.88172 0.81118 0.95985

80 0.74505 0.94384 0.94525 0.86679 0.94197 0.87512 0.98739

96 0.80732 0.98012 0.89001 0.92053 0.96962 0.89005 0.99814
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5.2.1. Parameter Setting. In this section, the ability of
EFSSA algorithm to solve the coverage problem of wireless
sensor networks will be evaluated through a series of sim-
ulation experiments. The software and physical platforms
tested by the above benchmark algorithm are still used,
and the MATLAB experimental environment is used to
simulate sensor the coverage effect of sensor deployment.
The critical parameters used in the experiment of ALO
[28] algorithm, GWO algorithm [29], BES algorithm
[39], RK algorithm [40], and SSA algorithm [33] are set
by default. For example, the parameters in SSA and FA
algorithm come from literature [33, 35]. The parameters
of monitoring area parameters and the EFSSA algorithm
are shown in Table 3.

The monitoring area for sensor deployment is divided
into 900m2, 2500m2, 4900m2, and 8100m2 two-
dimensional monitoring space with three gradient sizes. In
all experiments, except for the same monitoring area, the
number of iterations of all algorithms is 100, the size of the
population is 50, and the number of independent runs of
algorithms is 30. Due to the high computational cost of solv-
ing practical problems and finding the optimal solution
when the number of iterations is small, the number of itera-
tions in literature [33] is set to 50. In order to make the
experiment more convincing, this paper increases the num-
ber of iterations. In this paper, the finder proportion param-
eters, detection and early warning parameters, and early
warning values of the SSA algorithm and EFSSA algorithm
are set to 0.2, 0.15, and 0.8, respectively. In order to study
the sensor deployment under different node densities, the
experiments of sparse and dense deployment are designed,
respectively, on the basis of regular hexagon-balanced node

deployment (an approximate integer). The number of sparse
and dense nodes is set to 80% and 120% of balanced deploy-
ment, respectively.

5.2.2. Boolean Coverage Experiment. For Boolean coverage
model in Equation (2), through the test results of the ALO,
GWO, BES, RK, SSA, and EFSSA algorithms, this paper ver-
ifies the coverage efficiency of these six different algorithms
in a sensor network monitoring environment.

Firstly, the monitoring area is completely covered with-
out considering the boundary effect, and the optimal deploy-
ment strategy of a regular hexagon is used to calculate the
sensor nodes that need to be evenly deployed within differ-
ent monitoring area. When all sensor nodes are randomly
deployed in a two-dimensional plane, the initial input posi-
tions are the same for all algorithms. It can be seen from
Table 4 that when 9 nodes are deployed within 30m × 30m
monitoring area, the coverage rate (Rcov) of EFSSA is
92.444%. Deploying 25 nodes in the 50m × 50m area, the
coverage results of algorithms ALO, GWO, BES, RK, and
SSA are 96.788%, 98%, 96.8%, and 84.24%, respectively. In
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Figure 9: Covering effect based on probability model. (a) ALO deployment. (b) GWO deployment. (c) BES deployment. (d) RK
deployment. (e) SSA deployment. (f) EFSSA deployment.

Table 8: Average rate of increase in coverage of probability
coverage model.

Nodes
ALO
(%)

GWO
(%)

BES
(%)

RK
(%)

SSA
(%)

EFSSA
(%)

Sparse 45.566 45.591 36.927 47.474 33.660 55.146

Balance 34.254 35.644 27.376 35.360 23.471 38.661

Dense 25.577 20.754 20.602 25.334 18.784 27.373
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contrast, the coverage of EFSSA algorithm is 99.6%. In 70
m × 70m area, the number of nodes under the optimal
deployment mode is 50. With the second deployment of
these sensors, the coverage of EFSSA algorithm reaches
96.92%, which is increased by 6.8%, 16.37%, 16.86%,
16.83%, and 16.54%, respectively, compared with the origi-
nal coverage, and the coverage of ALO, GWO, BES, RK,
and SSA algorithms is 90.33%, 81.05%, 80.58%, 80.6%, and
80.89%, respectively. In 90m × 90m deployment 80 sensor
nodes, the coverage of ALO, GWO, BES, RK, SSA, and
EFSSA is 88.1%, 79.49%, 80.5%, 78.99%, 80.04%, and
94.46%. In the simulation experiments of wireless sensor
deployment optimization under the Boolean model, EFSSA
significantly outperforms other algorithms in terms of cov-
erage after secondary deployment of nodes.

In Figure 5, the effect of regional balanced deployment is
shown. The uniformity of EFSSA with high coverage is obvi-
ously better than that of SSA and BES with low coverage. In
Figure 5(f), the EFSSA sensor deployments are nearly uni-
versal, but some overlying voids can still be seen. After the
optimization of these algorithms for second deployment,
which is due to the fact that the experiments in this paper
divide the space into two-dimensional pixel points and the
noninteger coordinates are not included in the detection
area.

In Figure 6, the variation of coverage of different algo-
rithms with the number of iterations in the balanced deploy-
ment mode is statistically analyzed. As the monitoring area
becomes larger, the convergence speed of each algorithm is
affected, because the increase of dimension leads to the diffi-
culty of solving. However, EFSSA algorithm can maintain
the superiority of the algorithm and can always be quickly
to complete convergence in the case of different monitoring
area sizes. Other algorithms, such as GWO algorithm,
increase the monitoring range from 900m2 to 8100m2, the
number of iterations approaching the optimal solution
increases from 50 to 90 times, and the final coverage is still
less than EFSSA algorithm. All SSA algorithms without
improved strategy fall into local optimal solution after less
than 10 iterations.

This paper analyzes the coverage effect with the number
of iterations under these three different monitoring scales
(sparse, balanced, and dense). Assuming that the number
of sensor nodes is changed, set the sensors to ±20% of the
balanced deployment number. When seven nodes are
deployed in 30m × 30m region, the coverage of EFSSA can
still reach 92.444%, while the deployment effect of SSA algo-
rithm is the worst. When the number of nodes increases to
11, GWO, RK, and EFSSA algorithms almost achieve com-
plete coverage, and only EFSSA can achieve complete
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coverage among 60 nodes deployed in 50m × 50m. The opti-
mization performance of RK and GWO algorithms pro-
posed by researchers is second only to EFSSA, but their
optimization speed is not as fast as EFSSA in sensor deploy-
ment problems.

Table 5 shows the percentage of average coverage
improvements for these algorithms at different deployment
densities. With the increase of node deployment density,
the coverage improvement effect of the six algorithms
decreases. The reason is the increase in the number of sensor
nodes makes the coverage of the initial immediate deploy-
ment of sensors larger, so the improvement effect of reopti-
mization decreases. From another perspective, with the
number of sensor nodes increases, the complexity of optimi-
zation increases, but the optimization effect decreases.
EFSSA algorithm can still maintain a coverage improvement
effect of more than 30% in dense mode, which fully demon-
strates the applicability of this algorithm. In Figure 7, the
data of specific coverage improvement is described, from
which we can see the improvement effect of different nodes
under different algorithms; EFSSA is superior to other
methods.

In terms of node utilization, Table 6 shows the results of
performance metrics Ce. In the case of random deployment
within the region, 30m × 30m of balanced deployment is
close to sparse deployment except for 30 regions. As the
number of nodes increases, other regions gradually decrease,
indicating that the effective coverage ratio decreases gradu-
ally. These optimization algorithms optimize the coverage
of the target monitoring area while reducing the real cover-
age index of the sensor to varying degrees. To further reflect
the relationship between sensor coverage cost and coverage,
Figure 8 shows different density levels, and the abscissa in
the figure represents the length of square deployment area
(unit: meter). In the sparse deployment experiment
(Figure 8(a)), the real deployment coverage Ce of EFSSA
algorithm is higher than other algorithms, resulting in rela-
tively small redundant coverage. In the process of increasing

the deployment area, the coverage rate of GWO algorithm is
inferior to EFSSA. In the case of 90m × 90m area, Ce of
GWO is smaller than other algorithms. In the balanced
deployment experiment (Figures 8(b) and 8(c)), the effective
coverage Ce of EFSSA algorithm is still superior to other
algorithms. RK algorithm and GWO algorithm are generally
close to EFSSA, but they have poor performance in large-
scale deployment experiments.

5.2.3. Probability Coverage Experiment. According to Equa-
tion (3), this section further analyzes the sensor coverage
effects of different optimization methods under the probabi-
listic coverage model (see Table 7).

In the probabilistic perception model structure, the cov-
erage of the sensor edge is strongly influenced by α and β.
Here, we take the value of both 0.5. Compared with
Table 7, the probability of sensor coverage generally
increased because of the coverage edge change from rs in
the original Boolean model to rs + Δr in the probabilistic
model, and in this paper, Δr is 0.5m. In Table 7, the final
probabilistic coverage solved by the EFSSA algorithm out-
performs all other several algorithms.

In Figure 9, the final distribution result graphs of the six
algorithms, ALO, GWO, BES, RK, SSA and EFSSA, are
shown when 25 nodes are deployed in a 50m × 50m area,
respectively. It is clear from the figure that the coverage
effect of EFSSA algorithm is the most uniform. In the prob-
abilistic coverage model, the probabilistic coverage edges are
indicated by light colors.

Similar to the Boolean model experiment, the coverage
improvement effect of different algorithms under different
density deployment under probability model is also given
in Table 8. Although the probabilistic perception model is
not completely aware of some perception regions, the per-
ception range is increased by 0.5m. Therefore, the initial
random coverage was increased, and the improvement rate
of EFSSA algorithm in dense areas was decreased compared
with that of Boolean model. In Figure 10, the percentage

Table 9: Real coverage rate Ce of different nodes and monitoring areas.

Area Nodes Initial ALO GWO BES RK SSA EFSSA

30m × 30m
7 0.45495 0.78610 0.79719 0.78053 0.78736 0.71941 0.80001

9 0.46384 0.64293 0.64870 0.64942 0.64771 0.59779 0.64961

11 0.41145 0.53143 0.53150 0.53147 0.53147 0.52033 0.53150

50m × 50m
20 0.50286 0.72848 0.77543 0.69622 0.76787 0.70022 0.80243

25 0.45073 0.63680 0.63974 0.59134 0.64351 0.56660 0.64861

30 0.42361 0.53902 0.50816 0.51440 0.53908 0.50354 0.54134

70m × 70m
40 0.53892 0.72003 0.73796 0.66072 0.72707 0.63798 0.77875

50 0.46063 0.60086 0.61687 0.56179 0.61078 0.56124 0.63644

60 0.42189 0.51838 0.52239 0.50040 0.52389 0.50028 0.53047

90m × 90m
64 0.56101 0.73494 0.65078 0.64568 0.72492 0.66692 0.78916

80 0.49004 0.62079 0.62172 0.57012 0.61956 0.57559 0.64944

96 0.44250 0.53721 0.48782 0.50455 0.53146 0.48785 0.54709
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improvement of these six algorithms compared to the initial
coverage is shown. It can be obtained in the figure that the
percentage improvement of the optimization algorithm is
relatively high in the region with sparse number of nodes.
And EFSSA algorithm has the highest coverage improve-
ment compared to the other five algorithms.

In the probability model experiment, the evaluation
index results Ce of real coverage are shown in Table 9. Com-
bined with the results of EFSSA algorithm in Table 7 in
deploying 9 nodes and 11 nodes, it can be found that when
the sensor achieves full coverage deployment, the increase
in the number of nodes will make the value of Ce drop rap-
idly. With three sensor deployments of different densities
(see Figure 11), the Ce of the probabilistic model is generally
superior to the Boolean model. The variation trend of the
real coverage is almost the same, among which the variation
of Ce of SSA algorithm changes greatly. Overall, the Ce of
EFSSA is high and stable.

6. Conclusions

An improved metaheuristic algorithm EFSSA has been pro-
posed and successfully applied to solve the node coverage
problem of two-dimensional wireless sensor networks.
Based on the original sparrow search algorithm, the elite
reverse strategy and firefly strategy were combined to
improve the generalization ability of the initial population
and the global search ability of the population. The original
sparrow search algorithm is prone to the stagnation of local
optimization in the problem of high-dimensional andmultilo-
cal extremum of sensor deployment. The fluorescence effect of
the firefly strategy can change the defect that the sparrow algo-
rithm falls into local optimization. Simulation and experimen-
tal results show that the EFSSA algorithm can effectively
accelerate the convergence speed of solving the optimal cover-
age and avoid local optima in high-dimensional problems. In
Boolean model and probabilistic model experiments, the
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Figure 11: Coverage index Ce. (a) Sparse deployment. (b) Balance deployment. (c) Dense deployment.
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EFSSA algorithm ismore effective and feasible in applying sec-
ond sensor deployment than other algorithms.

However, the method proposed in this paper has some lim-
itations. In the experiment of sensor deployment index, the
value ofCe will also drop sharply when the increase of the num-
ber of nodes almost achieves full coverage (Rcov = 1). Coverage
rate Rcov and cost of sensor nodes are contradictory issues, and
this paper does not balance this issue. It can be regarded as a
multiobjective problem in the future research. In this problem,
these two indicators and other possible indicators (such as net-
work connectivity, throughput, and network delay) can be con-
sidered to establish a multiobjective model of WSN coverage,
solve Pareto frontier, and give an effective scheme. There are
still many challenges in the future work of sensor network
deployment. For example, more constraints can be introduced,
such as terrain constraints, heterogeneous sensor constraints,
and deployment dimension constraints. Moreover, the optimi-
zation issues of applying EFSSA to IoT-based UAV data collec-
tion and edge computing-based sensor data collection also
deserve further study.
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