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The use of machine learning for seismic interpretation is a growing area of interest for researchers. Manual interpretation
demands time and specialized effort. The use of machine learning model will expedite the process. The Convolutional Neural
Networks (CNNs) are a class of deep learning algorithms used for images. In this paper, seismic facies segmentation using
encoder-decoder architecture of CNNs is proposed. The proposed method filled the gap using a multimodel approach for
seismic interpretation. The novelty of the model is that it is not limited to the current dataset and semantic segmentation
models. The encoder-decoder architecture input and output size is the same, and it allows the labelling of each pixel of the
image. Four models are trained on the open-sourced F3 block Netherlands dataset. Images of 128 × 128 were extracted from
the data. Data augmentation is used in two of the models to increase the data size for better model learning. Results of
individual models and their ensemble are compared. Ensemble is performed by taking the average of the probabilities of the
classes obtained from the trained models. Ensemble gave the superior results. Seven classes are segmented with a global pixel
accuracy (GPA) of 98.52%, mean class accuracy (MCA) of 96.88%, and mean intersection over union (MIoU) of 93.92%.

1. Introduction

Discovery of the new reserves of oil and gas is strategic for
countries. Seismic reflection surveying is used to obtain sub-
surface information to locate drilling locations in the oil and
gas industry [1]. The structural and stratigraphic geometric
features and potential hydrocarbon reservoirs can be config-
ured from the seismic reflections. Accurate interpretation of
seismic amplitude and zones is significant for the discovery
of oil and gas [2]. Accurate interpretation leads to a lesser
number of drills and significantly impacts the characteriza-
tion of the reservoir. Seismic amplitude is manually inter-
preted by field experts and geophysicist to differentiate
between bodies of rocks (strata) with different physical prop-
erties [3]. The geophysicist needs to manually analyse the
images generated from seismic survey to mark the bound-
aries between different strata known as horizon. The process
needs to be done for thousands of seismic images. Tradi-
tional method of manual interpretation for seismic delinea-
tion takes time, and there are false positives [4]. Accurate

interpretation saves economic resources, as resources are
spent for the drilling of the reservoirs.

For data and image classification, methods in computer
vision and pattern recognition look for unique features. Suc-
cess of these methods depends on the feature extraction
techniques [5]. Convolutional Neural Networks (CNNs)
provided an alternative for automatically learning the
domain specific features [6]. The CNNs consists of a large
number of convolutional layers, which can learn the most
useful features automatically and eliminate the need for
manual feature extraction techniques. The initial layers of
the CNN detect basic features like edges, colours, and
shapes. The deeper layers then combine the basic features
to extract more complex features that represent the whole
image. The hierarchical structure in the convolutional nodes
of CNNs identifies the complex objects.

A deep CNN contains millions of parameters and requires
a large amount of data for training the network. The CNNs are
used for various image applications such as image classifica-
tion, object detection, localization, and object segmentation.
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Semantic segmentation networks are the improvisation of
CNNs in the form of encoder-decoder architecture [7]. The
encoder is used for object detection and classification, and
the decoder is used for object localization. Semantic segmenta-
tion is the process of taking an image and labelling each pixel
in that image with a certain class.

Seismic facies interpretation is an important step for
hydrocarbon exploration and exploitation [8]. A major issue
of the application of deep learning to seismic data is lack of
availability of labeled datasets. Limited datasets undermine
the potential of deep learning. Annotating the seismic data
is a time-consuming task and requires subject-level exper-
tise. Very few labeled seismic datasets are available online.
It is not feasible to use a trained model from one location
and implement it directly to another location because the
structures and dynamics are different for each location.
Researchers annotated their own seismic facies datasets
[9–12], annotated the Netherlands F3 block (North Sea)
dataset for training deep neural networks, and open sourced
it for further research. The authors used the 3D seismic
reflection data in conjunction with the well log data to man-
ually annotate the 3D seismic dataset.

The North Sea contains hydrocarbon deposits, and this
area is well-studied. The continental shelf of the North Sea
is situated in the waters of the Netherlands. A rectangular
area of dimension 16 km × 24 km known as the F3 block is
located in the North Sea. A 3D seismic survey was con-
ducted in 1987 to search for hydrocarbons and understand
the lithostratigraphy of the area. The data was open sourced
by dGB Earth Sciences. The F3 dataset is used extensively in
research and studies [12].

Fully Convolutional Network (FCN), SegNet, U-Net,
ENET, and DeepLab are few of the semantic segmentation
networks with their distinct architectures. DeepLab’s variant
DeepLabv3Plus and Seg-Net are fine-tuned in the proposed
method using pretrained encoders: vgg-16 and ResNet-18.
The results show a mean class accuracy of 96.88% and mean
intersection over union of 93.92%.

1.1. Artificial Intelligence. Machine intelligence is another
name for artificial intelligence. When humans are born, they
have natural sensors in their bodies. They start to observe
the world, their parents first; listen to voices; feel the hotness
or coldness of a body, etc. With the help of such observa-
tions, they develop their responses and actions. This can be
termed as training phase. With the passage of time, the brain
develops, memory becomes stronger, and now, the actions
and responses are well connected to the previous experi-
ences. This example is given as an analogy to understand
the human intelligence.

Similarly, a computer can be equipped with sensors and
storage. The computer can then be trained by feeding thou-
sands of images and voices. With the help of these images,
the computer can learn the features differentiating them.
After the training phase when an unseen (not from the
images used to train the computer) image is shown to the
computer, it can tell either it is from the class of images or
not with very promising results using the modern techniques
in AI especially deep CNN.

1.2. Machine Learning. Machine learning (ML) brings the
promise of deriving meaning from all the data which is pres-
ently available in terms of audio, images, and datasets. Goo-
gle Search is one of the examples of machine learning; each
time Google Search is used, several ML models working in
the background are activated to understand and correct the
text and adjust the results according to user interests based
on previous searches and other data being collected from
other applications a user is using. There are several ML-
based learning algorithms available to train the models
which include Random Forest, Decision Tree, Naïve Bayes,
SVM, and kNN to name a few.

2. Related Work

The application of computational techniques on seismic data
followed the trend of development of the machine learning
community. Initially, different mathematical features and
techniques are calculated to assist geologists in making pre-
dictions. The popularity of machine learning techniques
enabled researchers to feed the calculated features in differ-
ent machine learning models to extract results. In the third
stage, due to GPUs, it was possible to make extremely com-
plex models which gave rise to Convolutional Neural Net-
works. With the CNNs, there is no requirement of feature
engineering and images are directly fed to the network.

Initially, different computational techniques were used
to classify an image by their geological attributes that pre-
sented an application of textural analysis to 3D seismic vol-
umes [13]. In this paper, the authors combine the image
textural analysis with a neural network classification to
quantitatively map seismic facies in three-dimensional data.
In 2011, for exploration geology and geophysics, seismic tex-
ture analysis was a developing concept and a large number
of different algorithms were published in the literature. In
[14], review of the seismic texture concepts and methodolo-
gies, focusing on latest developments in seismic amplitude
texture analysis, with particular reference to the gray-level
cooccurrence matrix (GLCM) and the texture model regres-
sion (TMR) methods is presented. There are discontinuities
in seismic images with varying illumination and contrast. In
[15], a solution using the congruency of phase in Fourier
components is proposed. The proposed algorithm shows
far more better and efficient results in terms of accuracy as
compared to the texture-based methods for salt dome
boundary detection. Data-driven algorithm is proposed in
[16]. The proposed protocol overcame the limitations of
existing texture attribute-based salt dome detection tech-
niques which depend on the relevance of attributes to the
geological nature of salt domes and the number of attributes
used for classification. The authors used a gray-level cooc-
currence matrix (GLCM) with attributes extracted from
Gabor filter to delineate salt domes in seismic data. In [17],
seismic attributes are combined with their spatial locations
for unsupervised seismic analysis using fuzzy c-means algo-
rithm. This method reduced the effect of seismic noise pre-
sented in discontinuous regions. A comprehensive
evaluation of accuracy and performance of three texture
descriptors, Gabor filters, GLCM, and Local Binary Patterns
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(LBP), is presented in [18] for seismic image retrieval to
assist human interpreter in selecting region of interest
(ROI).

Before the deep learning techniques became popular,
features used to be hand engineered and fed into machine
learning algorithms such as Random Forest Regressor, Sup-
port Vector Machines, and Boosting algorithms. In [19], an
extremely randomized tree to automatically identify salt
boundaries is presented. The proposed protocol extracted
the features of signal amplitude, curve length, and second
amplitude for each of the voxels and made predictions using
extremely randomized trees. After the prediction, a postpro-
cessing step is added to further increase the accuracy. Refer-
ence [20] used a machine learning approach for classifying
facies. The 3D seismic reflection data of the North Sea is
used in the paper. Fifteen different attributes are extracted
for each pixel, such as reflector dip, continuity, and fre-
quency range. The attributes are trained on twenty ML
models such as Support Vector Machines (SVM), K-near-
est neighbours, regression trees, and neural networks. The
best result of accuracy 98.3% is obtained using SVM. Refer-
ence [21] uses a 3D seismic survey data from New Zealand
and calculated four features (peak spectral frequency,
GLCM, homogeneity, and curvedness). These 4 features
are input to Artificial Neural Networks (ANN) and Support
Vector Machines (SVM), and ANN gives better accuracy on
the test set as compared to SVM. Reference [22] uses 6-7 fea-
tures (4-5 measured properties and two geologically derived
features) and trained the model using K-nearest neighbours
(KNN), Naive Bayes, fuzzy logic, and ANNs. ANN is the
most effective model and gives the best result.

Unsupervised learning techniques like self-organizing
maps and principal component analysis (PCA) are also
used to classify lithostratigraphic zones. Reference [23]
uses unsupervised learning techniques like K-means clus-
tering, PCA, projection pursuit, vector quantization, and
Kohonen self-organizing maps. Reference [24] uses com-
petitive neural networks on seismic data to distinguish
the distinct seismic behaviour of facies. Heterogeneity of
classes was indicated in the results; however, the classes
in the results were not labeled. In [25], Kohonen self-
organizing maps are used to estimate the number of seis-
mic facies and make maps. Wavelet transform was also
used to detect seismic trace singularities. Others tried deep
convolutional autoencoders (DCAE) for facies classifica-
tion. Reference [26] uses DCAE as it can learn nonlinear,
discriminant, and invariant features from unlabeled seis-
mic data. The results show that DCAE outperforms con-
ventional methods like K-means or SOMs, Moreover, the
results of DCAE are of much higher resolution and high-
light important information. Reference [27] uses sparse
autoencoder architecture that can detect major geological
features from unlabeled seismic data. The model is tested
on real and synthetic seismic data in order to extract rel-
evant structures from the data.

The development of computational power led to a
greater emphasis on the use of supervised CNN algorithms
for seismic applications. The CNN supervised approach
can be divided into seismic classification and seismic seg-

mentation methodologies. Seismic classification uses the
convolutional, max pooling, and fully connected layers to
predict the class of the centre pixel of the image. In [28], a
novel CNN consisting of six convolutional layers followed
by a fully connected layer is presented. The network uses this
architecture for salt detection. Cubes of 65 × 65 × 65 are
extracted from the 3D seismic data, and the centre of the
cube represented the class (salt or not salt) of that pixel. Ref-
erence [29] uses CNNs (vgg-16, ResNet-50, and Waldeland)
to classify seismic images of the F3 dataset. The centre pixel
for each image is classified, and this step is repeated such
that all pixels are classified. The results for vgg-16 and Wal-
deland architectures show significant improvement towards
accuracy however found to be ineffective for ResNet-50.
An investigation over the use of fully supervised CNNs
and semisupervised Generative Adversarial Networks
(GANs) is presented in [8]. The models are tested on realis-
tic synthetic images. Results shows that CNNs perform bet-
ter in scenarios where abundant data is available; however,
GANs work better on new sites with limited availability of
data. Reference [30] uses a custom-built CNN architecture
to detect faults from a 3D seismic cube. The input to the net-
work consisted of three orthogonal slices of 24 × 24, and the
voxel at the intersection is classified as fault or not fault. The
network is trained using synthetic images and tested on both
synthetic and real data. The results show that CNN obtains a
classification accuracy of 74% on the real dataset.

In [31], an encoder-decoder structure is introduced for
CNNs. The encoder learns the distinctive features from the
image, and the decoder maps back the features semantically.
In [2], a novel segmentation network (Danet-FCN) is pro-
posed. Danet is combined with FCN for pixel classification.
For validation, F3 and the Penobscot datasets are used.
The mean IoU of more than 98% is obtained on both of
the datasets. A modification of Danet-FCN is presented in
[4] in order to propose a new architecture Danet-FCN2
and Danet-FCN3 by removing the fused connections. The
Danet-FCN3 improves the IoU to 99% on the Penobscot
dataset. Reference [32] uses U-Net architecture with dilated
convolution and soft attention mechanisms. The soft atten-
tion mechanism allows the model to suppress noise and
learn the main features. The authors trained the models
from scratch. CNN results show improvement with the use
of dilated convolutions and soft attention mechanisms. Ref-
erence [33] presents work on the TGS salt classification
dataset at Kaggle. Semisupervised technique is used for salt
classification using an ensemble of CNNs. An iterative pro-
cess is used by which predictions at each stage are treated
as pseudolabels and the network is retrained using the train-
ing data and confident pseudolabels. The ensemble of U-Net
architecture with the encoder of ResNet34 and ResNeXt50 is
used. The results show an IoU of 0.896. In [34], a modified
U-Net architecture is proposed to detect salt from seismic
images. The model is trained and tested on synthetic dataset,
and the results show a mean IoU of 90.53%. A comparison
of 3D-based patch model and encoder decoder architecture
on the F3 dataset is presented in [9]. The dataset is divided
into 9 facies and manually interpreted the data for training.
The work draws conclusion that the encoder-decoder model
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gives better results at near real-time speeds, at the expense of
long training time. Reference [13] presents a fully annotated
3D geological model of the Netherlands F3 block. This
model is based on the study of the 3D seismic data in addi-
tion to 26 well logs and is grounded on the careful study of
the geology of the region. The study proposed two baseline
models for facies classification based on deconvolution net-
work architecture and made their codes publicly available.
The first model is patch based; in this, patches are extracted
from the crosslines, and in lines and the model is trained on
it. The second approach is section based; in this, complete in
lines and crosslines are fed to the model. Results shows that
the section-based model (MCA of 0.817) gives better results
than the section-based model (MCA of 0.705).

2.1. Dataset. A major challenge in seismic facies classifica-
tion is the availability of annotated dataset. The data needs
to be manually labeled by the domain experts. The process
of labelling requires availability of a geophysicist and is sub-
jective to human bias. Researchers working in the field of
application of deep learning labeled their own datasets due
to these limitations. The authors in [13] labeled the F3 Neth-
erlands dataset and open sourced it for further research. In
this paper, the same labeled F3 seismic dataset is used for
model verification and results.

The Netherlands F3 block dataset is in 3D NumPy
array format. First, the dataset is converted into image/
label form (see Figure 1). There were a total of 22368
images, each of which is of the size 128 × 128. The dataset
is split into train, validation, and test sets with a ratio of
60%, 20%, and 20%, respectively (see Table 1). The split
is performed randomly. The image is divided into 7 facies
which are as follows:

(i) Upper North Sea Group (upperNS)

(ii) Middle North Sea Group (middleNS)

(iii) Lower North Sea Group (lowerNS)

(iv) Rijnland/Chalk Group (rijanlandChalk)

(v) Scruff Group (scruff)

(vi) Zechstein Group (zechstein)

(vii) Background

3. Methodology

In this paper, two deep learning models for semantic seg-
mentation are used DeepLabv3Plus and SegNet. The models
will be discussed with a brief overview of semantic segmen-
tation and data augmentation.

Main elements of the framework are

(a) Dataset preprocessing

(b) Selection of semantic segmentation networks

(c) Selection of pretrained CNNs to be used as encoders

(d) Ensemble technique

Dataset is converted from NumPy arrays to images and
labels. This conversion makes the dataset readily usable on
any platform. Images and corresponding labels are resized
to support the available hardware resources. The resizing
of images to a suitable size is an iterative process to avoid
GPU memory issues while training. Through iterations, the
size of 128 × 128 is chosen. Dataset is split into three parts,
namely, training, validation, and testing.

3.1. Semantic Segmentation. Semantic segmentation is the
process of categorizing each pixel of the image to a class.
Semantic segmentation is applicable to a variety of computer
vision tasks like autonomous driving and medical image
diagnosis. Semantic segmentation is one of the most chal-
lenging aspects of computer vision. The classification prob-
lem objective is to predict the presence of an object in the
image [35]. The difference in segmentation problems is to
predict the class of each of the pixel within the image. The
image needs to be segmented into different objects like car,
pedestrian, roads, and road signals for autonomous driving
applications.

In [31], use of CNNs for semantic segmentation is pro-
posed. The authors use skip connections to join the semantic
information from a deep layer to the localization informa-
tion from a shallow layer, to produce the pixel-wise segmen-
tation of the image. The decoder part was implemented as
bilinear interpolation. The method improved the PASCAL
VOC results by 20%; however, one of the major drawbacks
of this technique is that it tends to ignore small objects.

(a) (b)

Background

Zechstein

Scruff

Rijanland chalk

LowerNS

MiddleNS

UpperNS

(c) (d)

(a) (b)

Figure 1: (a, c) Show the seismic images. (b, d) Are the labels for
(a) and (c), respectively.

Table 1: Train, validation, and test splits.

Total patches 22368

Size 128 × 128 × 3
Train images 13421

Validation images 4473

Test images 4473
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In [36], a deep deconvolutional network for decoding,
which consisted of deconvolution, unpooling, and activation
layers is presented. The presented model performs better on
the PASCAL VOC 2012 segmentation with an accuracy of
72.5% (see Figure 2). For the encoder-decoder architecture
used for semantic segmentation in this paper, the encoder

phase is similar to the conventional CNN classification model
and consists of multiple convolutional and pooling layers.
Each convolutional layer first convolves its input and then also
applies batch normalization and an activation function. The
pooling layer is used to downsample the image. In the pooling
layer, a sliding window is passed through the image and is

Encoder

Input image

Up-sampling layers

Down-sampling/pooling layers

Convolutional layers

Final softmax layers

Output image

Decoder

Figure 2: The architecture of the encoder-decoder network. The encoder consists of consecutive convolutional and pooling layers. This is
followed by decoder with consecutive upsampling and convolutional layers. Softmax layer is used at the output to classify each pixel into a
class.

Down sampling

a b d W

U c e f

i j k l

X g V h

UP sampling

Pooling indices

U W

X V

0 0 0 W

U 0 0 0

0 0 0 0

X 0 V 0

Figure 4: SegNet uses nonlinear upsampling strategy. The indices from the corresponding pooling filter from the encoder stage are passed to
the upsampling filter.

Image

Encoder

Decoder

1 × 1 conv

Prediction

1 × 1 conv

1 × 1 conv

3 × 3 conv
rate 6

3 × 3 conv
rate 12

3 × 3 conv
rate 18

Image
pooling

3 × 3 convConcat
Upsample

by 4

Upsample
by 4

DCNN

Atrous convolutions

Figure 3: DeepLabv3Plus architecture. The encoder applies Atrous convolution at multiple scales [38].

5Wireless Communications and Mobile Computing



used to summarize the information by selecting minimum/
maximum/average from the window. The encoder is used to
classify the objects within an image. At the end of encoder
stage, a low-resolution feature map is obtained. Encoder is
followed by a decoder which works in an opposite manner
to the encoder. It consists of multiple upsampling and convo-
lutional networks to bring the output to the same size as that
of the input. Decoder is used for the localization of objects to
generate boundaries of the objects within the image.

For computer vision problems of semantic segmentation,
the encoder-decoder architecture gave better results than
other CNN architectures. We are using two of the encoder-
decoder architectures that are DeepLabv3Plus and SegNet.

3.2. DeepLabv3Plus. DeepLab is one of the popular semantic
segmentation architectures and is used in [37]. DeepLab is a
model designed and open sourced by Google. It uses Atrous
convolution in place of deconvolutional networks. Atrous
convolution allows enlarging the field of view of filters with-
out increasing the number of parameters or the amount of
computation. Multiple Atrous convolutions are used in par-
allel to catch the contextual information at multiple scales.

Deep convolutional network consists of multiple layers
due to which information of the smaller scale objects is lost.

This is because the input feature map reduces as we move in
the network. Atrous convolutions are used in DeepLab in
the convolutional layers to counter this problem. Atrous
convolution consists of an additional parameter of rate r
which is the stride at which input signal is sampled. The nor-
mal convolution is a specific case for r = 1. In [38], denser
features are extracted by the use of Atrous convolutions
without the need of extra parameters.

DeepLabv3Plus consists of multiple Atrous convolutions
(see Figure 3). The Atrous rate applied to each of the convo-
lutional layers is different which enables to extract features at
different resolutions. This enables the extraction of denser
features. DeepLabv3Plus obtained an accuracy of 89% on
PASCAL VOC 2012 test datasets.

This research work uses DeepLabv3Plus upgraded ver-
sions; the results show improvement across object bound-
aries. ResNet-18 is used as an encoder for DeepLabv3Plus.
Two variants of the model are trained; one is with data aug-
mentation, and the other one is without data augmentation.

3.3. SegNet. SegNet is a semantic segmentation model devel-
oped by the University of Cambridge [7]. The encoder con-
sists of 13 convolutional layers in the VGG16 network. At
the decoder stage, it performs nonlinear upsampling, which

(a) (b)

Figure 5: (a) Shows the original image. (b) Shows the new image produced by reflection along the x-axis.

Segnet without 
augmentation 

Predictions with
probability of
each class at
each pixel

Predictions with
probability of
each class at
each pixel

Predictions with
probability of
each class at
each pixel

Predictions with
probability of
each class at
each pixel

Average of the
probabilities of each
class at each pixel DeepLabv3plus

without 
augmentation 

DeepLabv3plus
+

augmentation 

Segnet with
augmentation 

For each pixel, predict
class with highest

average probability 

Figure 6: The architecture of the ensemble method. The predictions are calculated for all 4 of the models. The predictions are of the shape
128 × 128 × 7 and show the probability of each pixel belonging to each class. The average of the four 128 × 128 × 7 arrays is taken. The class
with the highest average probability is labeled as the class for that pixel.
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uses indices computed in the max-pooling step of the corre-
sponding encoder.

The major difference between SegNet and other encoder-
decoder architectures is in the way it upsamples data. During
the downsampling in the encoder stage, the pooling indices
are stored in SegNet. During the decoder stage, the pooling indi-
ces are used to place the values in their original position as
before the downsampling. In [7], such case is presented where
the information of the pooling indices is passed on to the
upsampling stage to produce dense feature maps (see
Figure 4). The U-Net presented in [39] on the other hand trans-
fers entire feature map from the encoder to the decoder. U-Net
requires greater memory and training time due to this task. The
first advantage of SegNet is that in the decoder, the upsampling
layer is used which keeps intact the high-frequency details. The
second advantage is convolutional layers are used in place of
fully connected layers. The convolutional layers can remember
the indices of image features as discussed in [38, 40–43].

In this paper, SegNet with VGG16 encoder is used in two
variants. One of the variants is with data augmentation, and
the other is without data augmentation.

3.4. Data Augmentation. CNNs require a large quantity of
data to learn from the images and perform well. Data aug-
mentation is a technique to increase the size of data from
the original data. New artificial training data is created in
this process. The original training data is transformed to
produce new training data. The transformations include a
range of mathematical operations such as flipping, rotation,
padding, scaling, cropping, and changing its colour.

The purpose of data augmentation in the presented
models of this research work is to increase the data size. This
allows the model to better generalize and learn from the data
(see Figure 5) for the effect of reflection in the data along the
x-axis. Translation and reflection are used as the data aug-
mentation techniques.

3.5. Application. In this paper, 5 models are developed for
seismic facies segmentation of the generated images from
the F3 Netherlands block.

(i) DeepLabv3Plus with ResNet-18 encoder (without
augmentation)

(ii) DeepLabv3Plus with ResNet-18 encoder (with
augmentation)

(iii) SegNet with VGG16 encoder (without
augmentation)

(iv) SegNet with VGG16 encoder (with augmentation)

(v) Ensemble of the models 1-4

Table 2: Median frequency class weights are calculated based on
the frequency of pixel counts of each class. Middle NS is taken as
the reference and is given a weight of 1.00.

Class name Pixel count Image pixel count Class weights

UpperNS 5:0432e + 07 1:5e + 08 0.5340

MiddleNS 3:6849e + 07 2:0524e + 08 1.0000

LowerNS 1:6513e + 08 3:6053e + 08 0.3920

RijanlandChalk 2:0753e + 07 1:5661e + 08 1.3549

Scruff 9:1123e + 06 9:18e + 07 1.8087

Zechstein 4:6377e + 06 3:4882e + 07 1.3504

Background 7:9559e + 07 1:8937e + 08 0.4273
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Figure 7: Visualization of the ratio of the pixel counts of classes. Lower NS is the class with the highest ratio of pixels at about 45%.
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Two semantic segmentation networks, DeepLabv3Plus
and SegNet are used. Both are based on encoder-decoder
architecture. Two models are trained using DeepLabv3Plus
with encoder as ResNet-18. One model is trained without
data augmentation, and the second was trained with data
augmentation (translation and reflection). Two more models
are trained using SegNet with encoder as vgg16, one with
training data augmented and the other without augmenta-
tion. Ensembles of four models are created. For ensemble,
averages of the predicted scores of the four models, corre-
sponding to each class for a single pixel, are taken. The class
with the highest average probability represented the pixel
(see Figure 6). Results of the individual models and the
ensemble are compared.

The numbers of pixels of seven classes in generated
training patches are imbalanced (see Figure 7). This imbal-
ance is detrimental to the learning process because the learn-
ing is biased in favor of the dominant classes. Class
weighting is used to handle this issue. Median frequency
class weights were calculated (see Table 2)

Weights in the pixel classification layers in encoders
for both DeepLabv3Plus and SegNet are replaced with
median class weights calculated (see Table 2) to compen-
sate the class imbalance for training to be unbiased. Train-
ing options used for four models are as follows: Adam
optimizer is used as weight optimization, initial learning
rate is set to 0.001, squared gradient decay factor is set
to 0.99, and minibatch size was 32. Due to pretrained
encoders, training for all four models converged in few
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Figure 8: The training accuracy and loss plots for DeepLabv3Plus models. (a) Shows the model without segmentation, and (b) shows the
model with data augmentation.
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epochs. Training of each model is started with ten epochs
but due to no change in accuracy and RMSE after five
epochs, it is stopped early.

The validation loss and accuracy plots with epochs are
presented in Figures 8 and 9) for DeepLabv3Plus and SegNet
models, respectively. There is no change in RMSE and accu-
racy in all of the models after five epochs. Early stopping is
applied on all four of the models after five epochs.

4. Results

To assess the performance of the proposed architecture, the
following evaluation metrics are used.

(i) Class accuracy (CA)

The percentage of the correctly classified pixels in a class
i, is called class accuracy.

CAi =
Pi
T

Ti

Ti
, ð1Þ

where i represents class, P represents predicted pixels, and T
represents true pixels.

(ii) Intersection over union (IU)

This evaluation metric measures how to perfectly predict
pixel overlap in ground truth. An output of 1 means perfect
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Figure 9: The training accuracy and loss plots for SegNet models. (a) Shows the model without segmentation, and (b) shows the model with
data augmentation.
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match, and 0 means no match.

IUi =
Pi
T

Ti

Pi
S

Ti
: ð2Þ

(iii) Mean intersection over union (MIU)

The mean of IU of all classes is mean IU. nc is total num-
ber of classes.

MIU = 1
nc

〠
ⅈ

IUi

 !
: ð3Þ

Moreover, the results of the individual models are pre-
sented in Tables 3–6. The results show a comprehensive
analysis of presented models in terms of accuracy and inter-
section over union.

In Table 7, results of the ensemble for the proposed four
models are presented (see Table 7). Ensemble gives the best
result for GPA, MCA, and MIoU. Global pixel accuracy
(GPA) is the percentage of pixels over all classes that are cor-
rectly classified. Mean class accuracy (MCA) is the average of
class accuracy over all classes whereas class accuracy for a class
is the percentage of pixels that are correctly classified in that
class. Intersection over union (IoU) measures the overlap
between the two sets, and it should be 1 if and only if all pixels
were correctly classified. Further, averaging IoU over all clas-
ses gives the mean intersection over union (mean IoU).

The MCA and MIoU achieved with the ensemble
method are 0.9655 and 0.9392 which are the highest
amongst all five of the models. This shows that using an
ensemble of various models is a useful technique that
improves the results. The error in individual models gener-
ally occurs at the boundaries of various classes. The ensem-
ble takes the average for each pixel, by which a wrong
prediction made by one model can be compensated by the
right prediction made by the other models.

Amongst the individual models, DeepLabv3Plus with
basenet of ResNet-18 with data augmentations gives far bet-
ter results, with a MCA and MIoU of 0.9655 and 0.9355,
respectively. For both DeepLabv3Plus and SegNet, the
results with data augmentation are better than the results

Table 3: SegNet+augmentation with basenet vgg-16 (Model 1).

Class accuracy IoU

UpperNS 0.9781 0.9681

MiddleNS 0.9398 0.8914

LowerNS 0.9832 0.9713

RijlandChalk 0.9514 0.8576

Scruff 0.8257 0.7674

Zechstein 0.9392 0.7356

Background 0.9992 0.9947

Global pixel accuracy Mean class accuracy Mean IoU

0.9755 0.9452 0.8837

Table 4: SegNet+no augmentation with basenet vgg-16 (Model 2).

Class accuracy IoU

UpperNS 0.9851 0.9734

MiddleNS 0.9457 0.9053

LowerNS 0.9919 0.9804

RijlandChalk 0.9146 0.8870

Scruff 0.9520 0.7708

Zechstein 0.7879 0.7378

Background 0.9999 0.9998

Global pixel accuracy Mean class accuracy Mean IoU

0.9800 0.9396 0.8935

Table 5: DeepLabv3Plus+augmentation with basenet ResNet-18
(Model 3).

Class accuracy IoU

UpperNS 0.9856 0.9736

MiddleNS 0.9610 0.9068

LowerNS 0.9882 0.9806

RijlandChalk 0.9493 0.9176

Scruff 0.9445 0.8652

Zechstein 0.9302 0.8902

Background 0.9998 0.9984

Global pixel accuracy Mean class accuracy Mean IoU

0.9837 0.9655 0.9331

Table 6: DeepLabv3Plus+no augmentation with basenet ResNet-
18 (Model 4).

Class accuracy IoU

UpperNS 0.9831 0.9713

MiddleNS 0.9250 0.8863

LowerNS 0.9912 0.9755

RijlandChalk 0.9287 0.9034

Scruff 0.9566 0.8318

Zechstein 0.9319 0.8696

Background 0.9969 0.9918

Global pixel accuracy Mean class accuracy Mean IoU

0.9795 0.9590 0.9185

Table 7: Ensemble of four models.

Class accuracy IoU

UpperNS 0.9852 0.9752

MiddleNS 0.9512 0.9101

LowerNS 0.9921 0.9825

RijlandChalk 0.9571 0.9300

Scruff 0.9518 0.8799

Zechstein 0.9443 0.8976

Background 0.9999 0.9994

Global pixel accuracy Mean class accuracy Mean IoU

0.9852 0.9688 0.9392
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without augmentation. This proves that augmentation is a
useful technique that can be used to increase the data size
for seismic applications. The model is able to learn better
with this increased data size and gives better results.

A random image and its labels are taken from the test set
to calculate MIoU using individual models and ensemble
(see Figure 10). Ensemble did not give the highest MIoU
on this random test image (see Table 8).

Visual results of the ensemble are better than those of
other models (see Figure 11) because ensemble gives two

classes the highest IoU whereas other models gives the high-
est IoU either to one class or none highlighted in italic. In
Figure 11, when predicted pixels of a class went beyond
the boundary of that class, those pixels are marked as green.
When predicted pixels of a class did not reach the boundary
of that class, the gap is marked as magenta.

When pixels of a certain class are present in both predic-
tion and ground truth but in nonoverlapping regions, then
the IoU is calculated as 0. When a pixel of a certain class is
not present in both prediction and ground truth, IoU is

(a) (b)

Figure 10: An image was randomly selected from the test set. (a) Shows the seismic image and (b) shows the ground truth/labels.

Table 8: MIoU calculated on a random test image using individual models and ensemble IoU.

Classes Model 1 Model 2 Model 3 Model 4 Ensemble

UpperNS NaN NaN NaN NaN NaN

MiddleNS NaN NaN NaN NaN NaN

LowerNS 0.9856 0.9809 0.9860 0.9721 0.9878

RijlandChalk 0.8701 0.8139 0.8848 0.8504 0.8849

Scruff 0.4740 0.5227 0.5391 0.5582 0.5289

Zechstein 0.9496 0.8369 0.9443 0.9224 0.9418

Background NaN NaN NaN NaN NaN

MIoU 0.6558 0.7886 0.8385 0.8257 0.8358

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 11: (a–e) Predictions by SegNet+augmentation, SegNet+no augmentation, DeepLabv3Plus+augmentation, DeepLabv3Plus+no
augmentation, and ensemble. (f–j) Green and magenta colours show the difference between ground truth and prediction of the
corresponding model from (a) to (e).
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calculated as NaN. Classes with IoU as NaN are not included
in calculating GPA, MCA, or MIoU.

5. Conclusions

The ensemble of semantic segmentation networks gave bet-
ter results as compared to individual models. The ensemble
of Fully Convolutional Network (FCN), SegNet, U-Net,
ENET, and DeepLabv3Plus with ResNet-50 and ResNet-
101 as encoders is proposed for future works. Dataset in
the form of images is open sourced so that researchers may
try other semantic segmentation networks and ensemble
them.

The automatic seismic facies segmentation proves to be a
promising alternate to manual labelling of seismic facies by
geologists. For manual labelling, a high degree of subject
expertise is required, which can introduce into the results.
The process is very complicated and computationally
exhaustive and requires high degree of accuracy. It is not fea-
sible for the geologists to label the entire area, and so usually,
labelling is performed on only few of the images or portions
of the block. These limitations can be countered by using
deep learning techniques since they prove to give accurate
results. Deep learning will require the labelling of some of
the images, on which the models can be trained. After this,
it could be applied to the complete area to make predictions.

6. Future Work

For future work, pretrained CNNs like VGG-19, ResNet-34,
ResNet-50, ResNet-101, ResNet-152, Inception-v1, Incep-
tion-v3, SE-ResNet, ResNext, SENet-154, DenseNet-121,
DenseNet-169, and DenseNet201 can be used as encoders
in semantic segmentation networks like U-Net, Linknet,
PSPNet, and FPN. Moreover, average ensemble results can
be compared with voting ensemble. Success of the proposed
architecture in the paper encourages improvising not only
with other semantic segmentation networks and encoders
but also with the data augmentation. Also, in the proposed
architecture, crossentropy loss function is used. This loss
function can be replaced with other loss functions to check
if improvement in IU can be achieved.

Data Availability

The dataset is publically available in [12].

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] M. Hafner, S. Tagliapietra, L. de Strasser, M. Hafner,
S. Tagliapietra, and L. de Strasser, “The role of hydrocarbons
in Africa’s energy mix,” in Energy in Africa, pp. 23–45,
Springer, Cham, 2018.

[2] D. Chevitarese, D. Szwarcman, R. M. D. Silva, and E. V. Brazil,
“Seismic facies segmentation using deep learning,” AAPG
Annual and Exhibition, 2018.

[3] D. Cristea, PS The use of seismic data in analyzing offshore res-
ervoirs in the Black Sea, 2018.

[4] D. Civitarese, D. Szwarcman, E. V. Brazil, and B. Zadrozny,
“Semantic segmentation of seismic images,” 2019, http://arxi-
v.org/abs/1905.04307.

[5] A. Voulodimos, N. Doulamis, A. Doulamis, and
E. Protopapadakis, “Deep learning for computer vision: a brief
review,” Computational Intelli gence and Neuroscience,
vol. 2018, pp. 1–13, 2018.

[6] N. Aloysius and M. Geetha, “A review on deep convolutional
neural networks,” 2017 international conference on communi-
cation and signal processing, 2018, Chennai, India, April 2017,
2018.

[7] V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: a deep
convolutional encoder-decoder architecture for image seg-
mentation,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 39, no. 12, pp. 2481–2495, 2017.

[8] M. Liu, W. Li, M. Jervis, and P. Nivlet, “3D seismic facies clas-
sification using convolutional neural network and semi super-
vised generative adversarial network,” SEG Technical Program
Expanded Abstracts 2019. Society of Exploration Geophysicists,
pp. 4995–4999, 2019.

[9] T. Zhao, “Seismic facies classification using different deep con-
volutional neural networks,” SEG Technical Program
Expanded Abstracts 2018. Society of Exploration Geophysicists,
pp. 2046–2050, 2018.

[10] H. Di, Z. Wang, and G. AlRegib, “Real-time seismic-image
interpretation via deconvolutional neural network,” SEG Tech-
nical Program Expanded Abstracts 2018. Society of Exploration
Geophysicists, pp. 2051–2055, 2018.

[11] C. R. Ildstad and P. Bormann, “MalenoV: tool for training and
classifying SEGY seismic facies using deep neural networks,”
2017, https://github. Com/bolgebrygg.

[12] Y. Alaudah, P. Michałowicz, M. Alfarraj, and G. AlRegib, “A
machine-learning benchmark for facies classification,” Inter-
pretation, vol. 7, no. 3, pp. SE175–SE187, 2019.

[13] B. West, S. May, J. Eastwood, and C. Rossen, “Interactive seis-
mic facies classification of stack and avo data using textural
attributes and neural networks,” 2001 SEG Annual Meeting,
vol. 21, pp. 1042–1049, 2001.

[14] D. Gao, “Latest developments in seismic texture analysis for
subsurface structure, facies, and reservoir characterization: a
review,” Geophysics, vol. 76, no. 2, pp. W1–W13, 2011.

[15] M. A. Shafiq, Y. Alaudah, G. AlRegib, and M. Deriche, “Phase
congruency for image understanding with applications in
computational seismic interpretation,” in 2017 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing,
New Orleans, LA, USA, March 2017.

[16] A. Amin and M. Deriche, “Salt-dome detection using a
codebook-based learning model,” IEEE Geoscience and Remote
Sensing Letters, vol. 13, no. 11, pp. 1636–1640, 2016.

[17] C. Song, Z. Liu, H. Cai, Y. Wang, X. Li, and G. Hu, “Unsuper-
vised seismic facies analysis with spatial constraints using reg-
ularized fuzzy c-means,” Journal of Geophysics and
Engineering, vol. 14, no. 6, pp. 1535–1543, 2017.

[18] A. B. Mattos, R. S. Ferreira, R. M. D. G. Silva, M. Riva, and E. V.
Brazil, “Assessing texture descriptors for seismic image
retrieval,” in 2017 30th SIBGRAPI Conference on Graphics,
Patterns and Images, Niteroi, Brazil, Oct. 2017.

[19] P. Guillen, G. Larrazabal, G. González, D. Boumber, and
R. Vilalta, “Supervised learning to detect salt body,” SEG

12 Wireless Communications and Mobile Computing

https://github


Technical Program Expanded Abstracts, vol. 34, pp. 1826–
1829, 2015.

[20] T. Wrona, I. Pan, R. L. Gawthorpe, and H. Fossen, “Seismic
facies analysis using machine learning,” Geophysics, vol. 83,
no. 5, pp. O83–O95, 2018.

[21] T. Zhao, V. Jayaram, A. Roy, and K. J. Marfurt, “A comparison
of classification techniques for seismic facies recognition,”
Interpretation, vol. 3, no. 4, p. SAE29–SAE58, 2015.

[22] M. K. Dubois, G. C. Bohling, and S. Chakrabarti, “Comparison
of four approaches to a rock facies classification problem,”
Computers and Geosciences, vol. 33, no. 5, pp. 599–617, 2007.

[23] T. Coléou, M. Poupon, and K. Azbel, “Unsupervised seismic
facies classification: a review and comparison of techniques
and implementation,” Leading Edge (Tulsa, OK), vol. 22,
no. 10, pp. 942–953, 2003.

[24] M. M. Saggaf, M. N. Toksöz, and M. I. Marhoon, “Seismic
facies classification and identification by competitive neural
networks,” Geophysics, vol. 68, no. 6, pp. 1984–1999, 2003.

[25] M. C. de Matos, P. L. Osorio, and P. R. Johann, “Unsupervised
seismic facies analysis using wavelet transform and self-
organizing maps,” Geophysics, vol. 72, pp. 9–21, 2007.

[26] F. Qian, M. Yin, X. Y. Liu, Y. J. Wang, C. Lu, and G. M. Hu,
“Unsupervised seismic facies analysis via deep convolutional
autoencoders,” Geophysics, vol. 83, no. 3, pp. A39–A43, 2018.

[27] M. A. Shafiq, M. Prabhushankar, H. Di, and G. AlRegib,
“Towards understanding common features between natural
and seismic images,” SEG Technical Program Expanded
Abstracts, pp. 2076–2080, 2019.

[28] A. U. Waldeland, A. C. Jensen, L. J. Gelius, and A. H. S. Sol-
berg, “Convolutional neural networks for automated seismic
interpretation,” The Leading Edge, vol. 37, no. 7, pp. 529–
537, 2018.

[29] J. S. Dramsch and M. Lüthje, “Deep learning seismic facies on
state-of-the-art CNN architectures,” Seg Technical Program
Expanded Abstracts, pp. 2036–2040, 2018.

[30] W. Xiong, X. Ji, Y. Ma et al., “Seismic fault detection with con-
volutional neural network,” Geophysics, vol. 83, no. 5,
pp. O97–O103, 2018.

[31] E. Shelhamer, J. Long, and T. Darrell, “Fully convolutional net-
works for semantic segmentation,” Ieee Transactions on Pat-
tern Analysis and Machine Intelligence, vol. 39, no. 4,
pp. 640–651, 2017.

[32] Z.Wang, F. Li, T. R. Taha, and H. R. Arabnia, “Improved auto-
mating seismic facies analysis using deep dilated attention
autoen- coders,” in In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops, 2019.

[33] Y. Babakhin, A. Sanakoyeu, and H. Kitamura, “Semi-super-
vised segmentation of salt bodies in seismic images using an
ensemble of convolutional neural networks,” German Confer-
ence on Pattern Recognition, , Cham, 2019Springer, 2019.

[34] J. Ma, F. Yang, and W. Wang, “Automatic salt detection with
machine learning,” 80th EAGE Conference and Exhibition,
vol. 2018, pp. 1–5, 2018.

[35] Y. Guo, Y. Liu, T. Georgiou, and M. S. Lew, “A review of
semantic segmentation using deep neural networks,” Interna-
tional journal of multimedia information retrieval, vol. 7,
no. 2, pp. 87–93, 2018.

[36] H. Noh, S. Hong, and B. Han, “Learning deconvolution net-
work for semantic segmentation,” in 2015 IEEE International
Conference on Computer Vision (ICCV), pp. 1520–1528, Santi-
ago, Chile, 2015.

[37] L. C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L.
Yuille, “DeepLab: semantic image segmentation with deep
convolutional nets, atrous convolution, and fully connected
CRFs,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 40, no. 4, pp. 834–848, 2018.

[38] Y. Zhang, Y. Liu, H. Zhang, and H. Xue, “Seismic facies anal-
ysis based on deep learning,” IEEE Geoscience and Remote
Sensing Letters, vol. 17, no. 7, pp. 1119–1123, 2020.

[39] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: convolu-
tional networks for biomedical image segmentation,” in In
International Conference on Medical image computing and
computer-assisted intervention, pp. 234–241, Springer, Cham,
2015.

[40] H. Wu and B. Zhang, “A deep convolutional encoder-decoder
neural network in assisting seismic horizon tracking,” 2018,
http://arxiv.org/abs/1804.06814.

[41] F. Li, H. Zhou, Z. Wang, and X.Wu, “ADDCNN: an attention-
based deep dilated convolutional neural network for seismic
facies analysis with interpretable spatial–spectral maps,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 59, no. 2,
pp. 1733–1744, 2021.

[42] M. Quamer Nasim, T. Maiti, A. Srivastava, T. Singh, and
J. Mei, “Seismic facies analysis: a deep domain adaptation
approach,” IEEE Transactions on Geoscience and Remote Sens-
ing, p. 1, 2022.

[43] A. Mustafa and G. AlRegib, “Man-recon: manifold learning for
reconstruction with deep autoencoder for smart seismic inter-
pretation,” IEEE International Conference on Image Processing
(ICIP), , pp. 2953–2957, Anchorage, AK, USA, Sept. 2021.

13Wireless Communications and Mobile Computing


	Seismic Facies Segmentation Using Ensemble of Convolutional Neural Networks
	1. Introduction
	1.1. Artificial Intelligence
	1.2. Machine Learning

	2. Related Work
	2.1. Dataset

	3. Methodology
	3.1. Semantic Segmentation
	3.2. DeepLabv3Plus
	3.3. SegNet
	3.4. Data Augmentation
	3.5. Application

	4. Results
	5. Conclusions
	6. Future Work
	Data Availability
	Conflicts of Interest

