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Satellite communications have historically played a vital role in a variety of industries, including maritime communications. The
marine communication environment is exceedingly complicated, and extracting the characteristics of communication equipment
signals is difficult. This research proposes a method for extracting satellite signal fingerprint characteristics based on the maritime
complex communication environment. To create the signal fingerprint feature vector, the marginal spectral entropy is determined
using the HHT (Hilbert-Huang transform) time-frequency analysis approach. Furthermore, by merging the Mahalanobis distance
approach with the EEMD (ensemble empirical mode decomposition) algorithm, this study enhances it. The improved EEMD
algorithm decomposes the original signal using EEMD, calculates the Mahalanobis distance between each IMF (intrinsic mode
function) component and the raw data, optimizes the adaptive threshold using MPA (marine predators algorithm), and then
analyzes the IMF components and redundant IMF components. It was decided to eliminate superfluous IMF components.
Finally, this article mimics the Iridium satellite signal. The results of the experiments suggest that using this strategy minimizes
the computational cost of the next step in fingerprint feature extraction while ensuring the accuracy of signal fingerprint
feature recognition.

1. Introduction

The development of signal processing theory and technology
has brought great changes and far-reaching influence on peo-
ple’s daily life. Electronic systems in many fields (such as com-
munication, medicine, and radar) have achieved rapid
development, and satellite communication technology has
also achieved rapid development. There are rapid break-
throughs in various scenarios transportation management
business, positioning function, smart grids, telecommunica-
tion systems, fishing operations, oil exploration, and defense
applications such as weapon precision strikes [1, 2]. Since
1960, many new signal processing methods have appeared,
and as the complexity of the research object has increased,
the study of the subtle characteristics of the signal has become
more and more important. At the same time, the research in
the field of machine learning has also made great break-
throughs, and the signal processing technology can combine

many new clustering and classification methods [3]. Commu-
nication signals must contain both conscious modulation and
unconscious modulation. The phase noise of unconscious
modulation will change with different hardware. Therefore,
unconscious modulation can be used to extract signal finger-
print features, and the source of different signals can be judged
according to the fingerprint features. Due to the urgency and
complexity of extracting signal fingerprint features, it is neces-
sary for developing communication satellite signal fingerprint
feature extraction method to realize effective ocean signal fea-
ture extraction technology and accurate satellite signal identi-
fication, which has always been a key subject in the field of
signal processing. Therefore, it is very important to design a
practical communication satellite signal feature extraction
method in the marine environment.

More and more nonlinear analysis techniques can be
applied to signal processing and recognition [4]. Examples
are combining high-order spectrum [5], wavelet packet

Hindawi
Wireless Communications and Mobile Computing
Volume 2022, Article ID 7796017, 10 pages
https://doi.org/10.1155/2022/7796017

https://orcid.org/0000-0002-6171-2728
https://orcid.org/0000-0002-4604-7977
https://orcid.org/0000-0003-1010-2484
https://orcid.org/0000-0002-9173-6990
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/7796017


transform [6], Hilbert transforms [7], extracting eigenfrequen-
cies from signals, empirical mode decomposition, and other
advanced signal processing techniques. EMD has become a
popularmethod due to its inherent properties and adaptability
to nonstationary signals [8]. Aiming at the shortcomings of
traditional EMDmethods, improved methods such as weight-
ing [9], wavelet threshold denoising [10], ensemble empirical
mode decomposition [11], and partial ensemble empirical
mode decomposition [12] have appeared. Later, with the
development of artificial intelligence [13], pattern recognition
is gradually combined with signal recognition technology. The
most important thing in signal recognition technology is the
selection of feature vectors, which determine the practicability
and validity of signal recognition. These feature vectors can
show the subtle features of signals. Later, some entropy-
based methods were proposed, such as hierarchical entropy
[14], fuzzy entropy [15], sample entropy [16], approximate
entropy [17], hierarchical fuzzy entropy [18], and mixed
entropy of different features [19], which can extract the dom-
inant feature vector from the signal.

In this research, a method for extracting fingerprint fea-
tures from maritime satellite signals them is proposed in the
context of marine satellite communication. The EEMD
(ensemble empirical mode decomposition) method is used
to address the problems of modal aliasing and excessive
redundant IMF (intrinsic mode function) components in the
EMD (empirical mode decomposition) method in the tradi-
tional HHT (Hilbert-Huang Transform) decomposition
method. MPA (marine predators algorithm) [20] was intro-
duced for threshold optimization to remove redundant IMF
components, which greatly reduces the computational com-
plexity, to effectively solve the modal aliasing problem by cal-
culating the Mahalanobis distance between each IMF
component and the raw data. The signal will be evaluated
using the modified EEMD approach in this study. The HHT
time spectrum will be generated by HT (Hilbert transform)
transformation of the nonredundant IMF components
acquired by the analysis, the marginal spectrum will be
obtained by calculation, and the marginal spectral entropy will
be obtained as the signal fingerprint characteristic. Finally,
simulation tests are used to verify the practicality of the finger-
print feature extraction approach for marine satellite signals.

2. Signal Fingerprint Feature
Extraction Principle

2.1. The Principle of Ensemble Empirical Mode
Decomposition Algorithm. HHT is mainly divided into two
steps. First, EMD decomposes the raw data, the IMF compo-
nent can be decomposed from the raw signal data, and then,
Hilbert transform was performed on each of the obtained
IMF components. This paper will improve the modal alias-
ing problem and the redundant component problem of
EMD in HHT.

The main steps of the EMD method can be expressed as
follows:

(1) Find all extreme values of the original signal data x
ðtÞ, obtain the upper envelope bmaxðtÞ and lower

envelope bminðtÞ of xðtÞ, and calculate the mean
value of the two envelopes:

a1 =
bmax tð Þ + bmin tð Þ

2
ð1Þ

(2) If the raw data xðtÞ minus a1ðtÞ meets the standard
conditions of the IMF, it can be expressed as

p1 tð Þ = p1 tð Þ − a1 tð Þ ð2Þ

(3) If p1ðtÞ does not meet the conditions in (2), take it as
the new raw signal data, repeat (1) and (2), then
obtain the mean value a11ðtÞ of the upper and lower
envelope, and then subtract the mean value from the
new original data p1ðtÞ:

p11 tð Þ = p1 tð Þ − a11 tð Þ ð3Þ

(4) If p11ðtÞ still does not meet the conditions in (2),
repeat the operation in (3) until the IMF screening
conditions are met, and then separate the first IMF
component from the raw signal data xðtÞ:

d1 tð Þ = x tð Þ − imf1 tð Þ ð4Þ

(5) Take d1ðtÞ as the new raw data, and cycle the above
steps to separate all qualified IMF components. The
signal raw data xðtÞ is finally decomposed into n
IMF components and a residual component dnðtÞ,
which be as follows:

x tð Þ = 〠
n

i=1
imf i tð Þ + dn tð Þ ð5Þ

To reduce the phenomenon of modal aliasing, the
EEMD method is used in this paper. EEMD adds randomly
and uniformly distributed Gaussian white noise signal to the
original signal, decomposes each IMF component by the
EMD method, and finally generates a series of stable IMF
components with different characteristic components and a
residual component dnðtÞ, which can be expressed as

x tð Þ = 〠
n

i=1
imf i tð Þ + dn tð Þ: ð6Þ
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2.2. The Principle of the Mahalanobis Distance Algorithm.
Since the white noise signal used in the EEMD method
has the characteristics of zero mean, the interference noise
of the EMD can be effectively reduced, and the modal
aliasing phenomenon in the EMD method is improved.
However, both the original termination conditions in the
EMD and EEMD methods are difficult to satisfy. Too
many iterations will lead to overdecomposition of the orig-
inal signal, resulting in a feature related to the original sig-
nal. For redundant IMF components with a very low
degree, these components have very little reflection on
the signal characteristics, have little effect on the subse-
quent signal identification, and increase the computational
complexity of the Hilbert transform [21]. In response to
this problem, this research proposes to use the Mahalano-
bis distance as an index to evaluate the effect of signal
decomposition, reduce the computational complexity, cal-
culate the optimal threshold of the IMF component
through the ocean predator algorithm, and better deal
with the noisy IMF component. Under the condition of
ensuring the main features of the signal, a reasonable
strategy is designed to remove redundant components
and speed up the extraction of fingerprint features.

Mahalanobis distance is an effective method to calcu-
late the similarity between two unknown sample sets,
which has a certain degree of application in the field of
navigation satellite systems [22–24]. Mahalanobis distance
can judge the similarity between two one-dimensional sig-
nal probability density functions. Let M1 and M2 be two
samples from population G, and the sample covariance
matrix is Σ. Then, the Mahalanobis distance between M1
and M2 can be defined as

DM M1,M2ð Þ = M1 −M2ð ÞTΣ−1 M1 −M2ð Þ: ð7Þ

2.3. The Principle of Marine Predators Algorithm. MPA
(marine predators algorithm) is a new metaheuristic opti-
mization algorithm proposed in 2020. The algorithm sim-
ulates the movement of marine predators and prey. The
optimal foraging strategy was chosen between the Levi
walk or Brown walk. Prey also acts as a predator in the
process of being preyed on, which makes MPA more
dynamic and has a unique marine memory storage stage
and ocean eddy influence stage, which can improve the
updated population quality [25]. The optimization steps
can be expressed as follows:

(1) Initial populations were randomly generated within
the search space:

X0 = Xmin + rand Xmax − Xminð Þ, ð8Þ

where Xmin and Xmax are the range of search space; rand ðÞ is
a random number within ½0, 1�

(2) If the predator is faster than the prey at the begin-
ning of the iteration, the MPA optimization process
is based on the exploration strategy:

stepsicei = RB⨂ Elitei − RBPreyið Þ
Preyi = Preyi + P∙R⨂stepsicei

( )
, i = 1, 2, 3,⋯, n,

I <
1
3
Max−I,

ð9Þ

where stepsice is the moving step, RB is a Brownian walk
random vector with normal distribution, Elitei is an elite
matrix composed of top predators, Preyi is the prey matrix,
which has the same dimension as the elite matrix, ⨂ is a
term-by-term multiplication operator, P equals 0.5, R is a
uniform random vector within ½0, 1�, n represents popula-
tion size, I is the current number of iterations, and Max−I
is the maximum number of iterations.

In the middle of the iteration, if the speed of the predator
and the prey is the same, the prey is responsible for the
development based on the Levy walk strategy; the predator
is responsible for the exploration based on the Brown walk
strategy and gradually changes from the exploration strategy
to the development strategy:

stepsicei = RL⨂ Elitei − RLPreyið Þ
Preyi = Preyi + P∙R⨂stepsicei

( )
, i = 1, 2, 3,⋯,

n
2
,

1
3
Max−I < I <

2
3
Max−I,

stepsicei = RB⨂ RB⨂Elitei − RBPreyið Þ
Preyi = Elitei + P∙CF⨂stepsicei

( )
, i =

n
2
,⋯, n,

1
3
Max−I < I <

2
3
Max−I,

ð10Þ

where RL is a random vector with a Levy distribution, CF is
an adaptive parameter that controls the predator’s moving

step size, CF = ð1 − Iter/Max iterÞð2∙Iter/Max IterÞ:
At the end of the iteration, if the speed of the predator is

slower than that of the prey, the predator adopts the devel-
opment strategy based on the Levy walk:

stepsicei = RL⨂ RL⨂Elitei − Preyið Þ
Preyi = Elitei + P∙CF⨂stepsicei

( )
, i = 1, 2, 3,⋯, n,

I >
2
3
Max−I

ð11Þ

(3) The foraging behavior of marine predators will be
affected by FADs (fish aggregation devices) or eddy
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effects. Based on this strategy, MPA can overcome
the problem of premature convergence and escape
from local extremes in the optimization process:

Preyi =
Preyi + CF Xmin + RL⨂ Xmax − Xminð Þ½ �⨂U , a ≤ FADs,

Preyi + FADs 1 − að Þ + a½ � Preya1 − Preya2ð Þ, a > FADs,

(

ð12Þ

where H is a binary vector; FADs represent the impact prob-
ability, taken as 0.2; a is a random number within ½0, 1�; and

a1 and a2 are the random indexes of the prey matrix,
respectively.

3. Signal Fingerprint Feature
Extraction Method

In this section, the signal fingerprint feature design is based
on the HHT time spectrum. After the EEMD algorithm
decomposes the signal, according to the principle of the
improved EEMD algorithm, the obtained IMF components
are redundantly removed, and the Hilbert transform is per-
formed on the redundant IMF components. The time
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Figure 1: Signal processing based on improved EEMD algorithm.

I signal

Q signal

QPSK signal

Time

–1

0

1

Time

–1

0

1

0 2 4 6 8 10 12 14 16 18 20

0 2 4 6 8 10 12 14 16 18 20

0 2 4 6 8 10 12 14 16 18 20

Time

–2

0

2

Figure 2: QPSK modulation waveform diagram.
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spectrum difference is analyzed, and the edge spectrum
entropy is extracted as the signal fingerprint feature. Con-
structing the eigenvectors of edge spectral entropy can be
used for signal identification. Figure 1 shows the specific
steps.

3.1. Signal Processing Based on Improved EEMD Algorithm.
The EEMD algorithm decomposes to obtain multiple IMF
components, including components reflecting modulation
information and redundant components, sets thresholds in
all IMF components for screening, and removes redundant
components whose Mahalanobis distance is less than the
threshold. The specific steps of the removal method can be
expressed as follows:

(1) Preprocess the original signal to obtain the original
signal data x(t)

(2) xðtÞ is decomposed by EEMD to obtain imf1ðtÞ ~
imfnðtÞ components

(3) The method based on PDF (probability density func-
tion) and MD (Mahalanobis distance) is used to
judge the components and redundant components

reflecting modulation information and calculate the
Mahalanobis distance between each component
imf iðtÞ, i = 1, 2,⋯, n and the original signal:

d ið Þ =MD PDF x tð Þð Þ, PDF imf i tð Þð Þð Þ ð13Þ

(4) Determine the threshold between the component
reflecting the modulation information and the
redundant component γ = ðargmax/1 ≤ i ≤NÞfdðiÞg
, MPA is used to optimize the threshold globally.
Remove the components whose Mahalanobis dis-
tance is greater than the threshold in imf1ðtÞ ~
imfnðtÞ components and retain the remaining
components

The above method can effectively retain the main modu-
lation information of the signal and reasonably remove
redundant components that do not affect subsequent
identification.
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3.2. Signal Fingerprint Feature Extraction Based on Marginal
Spectral Entropy. There are subtle differences in the marginal
spectrum between different signals. These differences are the
signal fingerprint features carried by the signal. The signal
fingerprint features can be extracted based on the marginal
spectrum of the signal. The specific process can be expressed
as follows:

(1) Use the improved EEMD decomposition algorithm
to decompose the original signal, obtain the HHT
time spectrum according to the HHT correlation
theory, and normalize the HHT time spectrum:

TFn t, fð Þ = TF t, fð Þ
E

ð14Þ

(2) Obtain the marginal spectrum according to the nor-
malized HHT time spectrum:

Jn fð Þ =〠
t

TFn t, fð Þ ð15Þ

(3) Calculate the marginal spectral entropy to represent
the uniformity of the marginal spectral energy
distribution:

Hse = −〠
f

Jn fð Þ ln Jn fð Þ ð16Þ

The marginal spectral entropy of different satellite sig-
nals is different. The marginal spectral entropy of different
satellite signals varies in a small range and is relatively stable.
Therefore, the marginal spectral entropy of the signal can be
used as a signal fingerprint feature.

4. Simulation Experiments and Analysis

To verify the satellite signal fingerprint extraction method
proposed in this paper, this paper will use the simulation
experiment mode to verify the improved EEMD method.
The experimental platform used is MATLAB built on
Windows 10. To simulate the satellite communication in
the real ocean environment, we will simulate the Iridium sat-
ellite signal as the original signal of the experiment. The irid-
ium communication system is a global mobile personal
communication satellite system based on low-orbit satellites.
The iridium mobile phone establishes a communication link
with the space satellite of the iridium communication sys-
tem, which can be transmitted through the forwarding of
the satellite constellation. The iridium communication sys-
tem supports global wireless digital communication. The
iridium communication system uses QPSK (quadrature
phase-shift keying) for debugging at gateway stations and
user terminals, so the original simulated signal in this exper-
iment is based on QPSK modulation. Figure 2 shows the
waveforms of the I channel, Q channel, and original signal
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Table 1: Signal HT time comparison.

Original EEMD algorithm Improved EEMD algorithm

HT time 0.091 s 0.066 s
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(QPSK) transmitted after QPSK modulation is multiplied by
the carrier signal.

The original signal is decomposed according to the EEMD
decomposition method, and 9 IMF components, and one
residual component are obtained, as shown in Figure 3.

Due to the inherent decomposition error of the EEMD
decomposition algorithm, the number of iterations is large.
Overdecomposition of the signal occurs, resulting in redun-
dant IMF components that are less correlated with the orig-
inal signal. These redundant components have very little
reflection on the signal characteristics and have very little
effect on signal identification, which will also increase the
subsequent computational complexity. Therefore, to reduce
the computational complexity and speed up the extraction
of subsequent signal fingerprint features, this paper proposes
to use Mahalanobis distance to remove redundant compo-
nents. To better calculate the Mahalanobis distance between
each IMF component and the raw data, first calculate the
one-dimensional signal probability density function PDF of
the original signal and each IMF component, and then cal-
culate the Mahalanobis distance between each IMF compo-
nent and the original signal data PDF, the results are
shown in Figure 4.

The curve increases sharply at the third IMF, indicating
that the similarity becomes smaller. To more reasonably select
the threshold for removing redundant IMF components, the
marine predators algorithm intelligent optimization algorithm
will be used to find the optimal threshold. The final optimal
threshold is about 1.533. It can also be determined that the
similarity of the IMF components after IMF3 is small and
can be removed as redundant components.

Using the improved EEMD decomposition method to
decompose the same original signal, the generated IMF com-
ponents are reduced from 9 to 3, which can greatly reduce
the amount of calculation. It can be seen from the previous
analysis that the three IMF components have high similarity
and can retain the original most of useful information of the
signal. The EEMD algorithm before and after the improve-
ment is used to perform HT transformation. The operating
platforms are Windows 10 operating system, Intel Core i7-
11800H CPU, and MATLAB R2018a. The test results are
shown in Table 1. The improved EEMD algorithm reduces
the computational complexity of the subsequent Hilbert
transform and improves the efficiency of signal processing.

From the results of the above experiments, it can be con-
cluded that using the improved EEMD method to remove
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redundant IMF components can reduce the computational
complexity of subsequent feature extraction. Next, perform
the Hilbert transform on the IMF components with redun-
dant parts removed to obtain the Hilbert spectrum.
Figure 5 shows the Hilbert spectrum with redundant com-
ponents removed. Then, find and draw the marginal spec-
trum as shown in Figure 5. According to the marginal
spectrum, the marginal spectral entropy is obtained as the
signal fingerprint feature, and the marginal spectral entropy
after removing redundant components is shown in Figure 5.
To verify the accuracy of the improved EEMD method for
removing redundant components based on Mahalanobis
distance, the Hilbert spectrum, edge spectrum, and edge
spectrum entropy based on the EEMD method were
obtained, as shown in Figure 6. Figure 7 shows the compar-
ison of the marginal spectral entropy based on the original
EEMD method and the marginal spectral entropy based on
the improved EEMD method. It can be seen that the two
are similar, and the correlation coefficient between the two
is 0.9996. Therefore, the signal fingerprint features extracted
by the improved EEMD algorithm can ensure accuracy. To
sum up, the improved EEMDmethod based on Mahalanobis
distance for redundant IMF component removal can reduce
the computational complexity of subsequent Hilbert trans-
form and signal fingerprint feature extraction while ensuring
the integrity of signal fingerprint features.

5. Conclusions

The above fingerprint extraction method can be applied to
satellite communication scenarios in marine environment.
The traditional Hilbert-Huang transform method is
improved, the EEMD decomposition method is used to solve
the modal aliasing problem, and the Mahalanobis distance
method is used to distinguish redundant IMF components
in the IMF components obtained by EEMD decomposition.
The redundant IMF components are removed by the thresh-
old optimized by the marine predators algorithm. The
Hilbert-Huang transform time-frequency analysis method
is used to extract the signal fingerprint features, and the mar-
ginal entropy is used to construct the signal fingerprint fea-
ture vector. The experimental results show that the
improved EEMD algorithm reduces the computational com-
plexity of subsequent Hilbert transform and signal finger-
print feature extraction while ensuring the accuracy of
signal fingerprint feature recognition. However, improving
the EEMD algorithm may have the problem of low recogni-
tion accuracy in some scenarios, and further improvement is
needed, which is also the next research topic.
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