
Research Article
SoDa: A Serverless-Oriented Deadline-Aware Workflow
Scheduling Engine for IoT Applications in Edge Clouds

Dazhi Li,1 Jiaang Duan,2 Yan Yao ,3 Shiyou Qian ,2 Jie Zhou,2 Guangtao Xue ,2

and Jian Cao2

1College of Information, Mechanical and Electoral Engineering, Shanghai Normal University, Shanghai, China
2Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
3School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China

Correspondence should be addressed to Yan Yao; yaoyan@qlu.edu.cn and Shiyou Qian; qshiyou@sjtu.edu.cn

Received 1 July 2022; Revised 8 September 2022; Accepted 10 September 2022; Published � October 2022

Academic Editor: Mohd Dilshad Ansari

Copyright © 2022 Dazhi Li et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

As a coordination tool, workflow with a large number of interdependent tasks has increasingly become a new paradigm for
orchestrating computationally intensive tasks in large-scale and complex Internet of Things (IoT) applications. Serverless
computing has also recently been applied to real-world problems at the network edge as well, primarily aimed at event based
IoT applications. However, the existing workflow scheduling algorithm based on the virtual machine resource model is
inefficient in ensuring the QoS (Quality of Service) of users on the serverless platform. In this paper, we design an elastic
workflow scheduling framework in edge clouds called EWSF based on the serverless architecture. In addition, we propose a
serverless-oriented deadline-aware workflow scheduling algorithm called SoDa. Furthermore, we implemented the EWSF
prototype based on Knative and Kubernetes and integrated SoDa as the scheduling engine. The performance of SoDa has been
verified on the experimental platform in comparison with six counterparts. The experiment results show that SoDa adapts to
various scheduling environments and achieves better performance in terms of overall makespan and execution success rate. In
the case of tight cluster resources, SoDa improves the overall makespan and success rate by 10.4% and 55%, respectively,
compared with the second-best algorithm.

1. Introduction

With the increasing number of Internet of Things (IoT)
devices, massive amounts of raw data are being generated.
As a coordination tool, workflow with a large number of
interdependent tasks has increasingly become a new para-
digm for orchestrating computationally intensive tasks in
large-scale and complex IoT applications. Cloud computing
has always been utilized to a great extent in IoT scenarios,
offering endless computing capacity and data storage [1].
However, due to the inherently real-time and event-based
workload of IoT applications, the latency has proved a chal-
lenge for real-time IoT applications in cloud environment.

Edge computing, allowing time-sensitive computations
to be executed on compute infrastructure close to the data
sources, is a good solution to reduce latency as well as pri-

vacy [2–6]. Meanwhile, as a recent paradigm shift, serverless
computing would make the IoT application development
process even simple for developers. Utilizing serverless, edge
computing transforms the previously utilized ship-data-to-
code paradigm, which incurred high network latency and
transmission costs, to a ship-code-to-data paradigm.

To execute IoT workflows efficiently, enough resources
(e.g., CPU and memory) need to be allocated to the tasks
of workflows, which leads to many scheduling algorithms
[7–9]. Currently, IoT workflow applications are typically
deployed in clouds or edge clouds [10]. Users need to set
up and configure resources by themselves, which is neither
efficient nor convenient.

Serverless architectures like Function-as-a-Service (FaaS)
are desirable alternatives for executing workflow applica-
tions, turning server-based deployments into service-based

Hindawi
Wireless Communications and Mobile Computing
Volume 2022, Article ID 7862911, 20 pages
https://doi.org/10.1155/2022/7862911

https://orcid.org/0000-0002-0115-7996
https://orcid.org/0000-0001-7775-1740
https://orcid.org/0000-0002-1617-3593
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/7862911

deployments. Generally speaking, a serverless workflow is
the orchestration of functions in an application to imple-
ment the entire business logic. Compared with traditional
architecture, serverless architecture naturally supports the
feature of automatic scaling, which can quickly meet the dif-
ferent QoS of various tasks at different layers of the work-
flow. Therefore, users can focus on their own business
logic without having to consider configuring and adjusting
resources to meet their QoS. In addition, the serverless
architecture adopts a pay-as-you-go cost model, which is
cost-effective for users.

Although serverless architectures are easy to use and
cost-effective for executing workflows, there are still several
issues that hinder their widespread adoption.

First, users are primarily concerned with QoS, such as
deadline or execution success rate on time. There are a large
number of tasks in a workflow application, and each task has
different resource requirements. Heterogeneous resource
requirements for tasks can lead to the over- or under-
provision problems. Specifically, overprovisioning resources
can reduce the efficiency of the cluster, while underprovision-
ingmay cause tasks to fail (e.g., out-of-memory errors). There-
fore, the scheduling algorithm needs to comprehensively
consider the needs of users to execute workflows efficiently.

Second, although many serverless frameworks are elastic,
they do not provide elasticity by themselves, but are actually
implemented based on underlying frameworks such as
Kubernetes [11]. This elasticity implementation has a gap
between user QoS and resource configuration, and it is not
adaptive enough to optimize user QoS and resource
utilization.

To solve the aforementioned problems, we first design
an elastic workflow scheduling framework called EWSF
based on the serverless platform. We then propose a
serverless-oriented and deadline-aware workflow scheduling
algorithm called SoDa, to optimize workflow execution, tak-
ing into account deadline and overall makespan. Finally, we
implemented EWSF based on Knative and Kubernetes and
integrated SoDa as a scheduling engine in EWSF. Further-
more, we present a workflow definition formalism that
allows developers to define inherently scalable and generic
cloud-native workflows.

We conducted extensive experiments to evaluate the per-
formance of SoDa. We compare SoDa with six counterparts,
namely, FWDS [12], ES, PSCP [13], PSWORK [13], WPSCP
[13], and WPSWORK [13]. The experiment results show
that under the condition of tight resources, the overall make-
span of SoDa is 10.4% higher than its counterparts, and the
execution success rate has improved by 55%. In addition,
SoDa has better autoscaling capabilities, improving resource
utilization.

There are four main contributions of this paper:

(i) We designed an edge workflow scheduling frame-
work named EWSF based on the serverless platform

(ii) We proposed a workflow scheduling algorithm
called SoDa that takes into account overall make-
span and deadline

(iii) We implement the EWSF prototype based on the
Knative serverless platform and Kubernetes

(iv) We conduct extensive experiments to evaluate the
performance of SoDa on the testbed

The rest of the paper is organized as follows. Section 1
provides the background knowledge. Section 2 discusses
the related work. The design of the scheduling framework
is detailed in Section 3, and the scheduling algorithm is pre-
sented in Section 4. Section 5 describes the implementation
of the framework. Section 6 analyzes the experiment results.
We conclude the paper in Section 7.

2. Background

In this section, we provide some background knowledge. Note
that tasks and functions in this paper are interchangeable.

2.1. Workflow Model. The workflow is widely modeled as a
directed acyclic graph (DAG) G = ðV , EÞ, where the set of
vertices V = fv1,⋯, vng represents the set of n interdepen-
dent tasks, and the set of directed edges E = fei,jj∀vi, vj ∈ Vg
represents a partial order corresponding to the control and
data dependencies among tasks. For instance, edge ei,j ∈ E, vi
is called a direct predecessor of vj, while vj is called a direct
successor of vi. Here, we use predðviÞ and succðviÞ to denote
the set of all direct predecessors and successors of task vi,
respectively. A successor task cannot start to execute until all
of its direct predecessors have completed running. A task
without any predecessor is called an entry task ventry, and a
task without any successor is called an end task vexit.

Definition 1. Given a task vj in workflow G, l j represents the
level of vj, defined as the length of the longest path from
ventry to vj. The parallelism of vj is represented by f j, which
indicates the number of occurrences of vj at the same level
in G.

Given a workflow G with m tasks, the data transfer rela-
tionship between tasks can be represented by a matrix D of
m ×m. As defined in Eq. (1), dij represents the total amount
of data to be transferred from vi to vj.

D =

d11 d12 ⋯ d1m

d21 d22 ⋯ 2m

⋮ ⋮ ⋱ ⋮

dm1 dm2 ⋯ dmm

2
666664

3
777775: ð1Þ

If some scheduling algorithms only need one start task
and one end task in the workflow, it can be satisfied by add-
ing a dummy start task or dummy end task with empty over-
head and zero transmission data.

2.2. Problem Formulation of Workflow Scheduling. In
essence, workflow scheduling is to establish a mapping rela-
tionship between each task in the workflow and the target

2 Wireless Communications and Mobile Computing

amount of resource in a certain order. Therefore, we need to
establish some indicators to reflect the scheduling effect. The
performance metrics used in this paper are as follows:

(1) Makespan and Total Makespan. Makespan refers to
the completion time of a single workflow, which is
defined as

ms =max ACT vexit
À ÁÈ É

, ð2Þ

where ACTðvexitÞ represents the actual completion time
of the task vexit. If there are multiple end tasks, makespan
is the largest ACT of these end tasks.

In the multiworkflow scheduling problem, the total
makespan is the actual completion time of the last task in
all the workflows submitted to the system, which is defined
as

tms = maxGi∈G ACT Gið Þf g, ð3Þ

where G represents the set of all workflows that needs to be
scheduled, and ACTðGiÞ represents the actual completion
time of workflow Gi.

Execution success rate. Given a workflow with a dead-
line, it is important to ensure that the workflow complete
by the deadline. The ratio of the number of workflows com-
pleted before the deadline to the number of all submitted
workflows is called the workflow execution success rate.
Let di be the deadline of Gi and msi represent the makespan
of Gi. Then,

passi =
1, msi ≤ di,

0, msi > di:

(
ð4Þ

Given the workflow set G, the execution success rate is
calculated as follows:

SuccessRate =
∑ Gj j

i=1passi
Gj j : ð5Þ

Based on the above definitions, the workflow scheduling
problem of optimizing makespan and success rate on the
serverless platform is defined as follows:

Definition 2. Given a workflow set G, scheduling is to estab-
lish a mapping relationship for each workflow Gi ∈G,

SGi
=V ⟶ F, ð6Þ

which means that each task v ∈ V is assigned to a func-
tion f ∈ F and should satisfy the following constraints: (1)
when a task is scheduled, all the predecessor tasks of the task
must be executed, and the required data must be ready; (2)
the overall makespan must be minimized; and (3) the execu-
tion success rate must be maximized.

3. Related Work

Edge cloud is a cloud computing platform built on edge. Ser-
vice workflow is one of the important difficulties in the edge
cloud environment. A dynamic reconfiguration scheme of
service workflow in mobile e-commerce environment based
on cloud edge was proposed, which was more suitable for
edge cloud environment [14]. The task scheduling in edge
cloud often has a large number of tasks. For task scheduling
in cloud systems, the literature has demonstrated an exten-
sive research body which covers a wide range of task sched-
uling aspects for optimizing objectives like cost, execution
time, energy, reliability, security, and energy [15–17]. Top-
cuoglu et al. [18] proposed one of the best heuristics sched-
uling algorithms, the heterogeneous earliest finish-time
(HEFT) algorithm to minimize the overall workflow make-
span through minimizing the earliest finish time for critical
tasks. There exist optimized and extended versions of the
HEFT algorithm. However, the technique is not efficient
for large-scale workflows.

The concept of serverless architecture was first proposed
by Ken Form [19]. In 2014, AWS launched the FaaS plat-
form AWS Lambda [20]. Some research efforts focus on ser-
verless platforms, evaluating or improving the performance
of specific serverless platforms. For example, Kuntsevich
et al. [21] combine compute-intensive tasks, memory-
intensive tasks, and web tasks to perform performance tests
on the Apache OpenWhisk platform, measuring the CPU,
memory, disk, and latency metrics of the platform. Lin and
Glikson [22] propose an optimization method to improve
the cold start performance of the Knative platform.

In general, implementing workflow scheduling in a ser-
verless architecture is a challenge because there is no good
solution to stateful problems. Malawski et al. [23] review
various execution workflows in serverless infrastructures.
Kijak [24] outline the challenges of workflow scheduling
and design a hybrid serverless deadline-budget workflow
scheduling algorithm. The workflow in the above algorithms
is limited to a small scale. Jiang et al. [25] propose a work-
flow execution system in a serverless infrastructure, aiming
to execute small- and large-scale scientific workflows while
solving the resource underutilization problem. However,
the scheduling algorithm batches jobs into Lambda without
considering priorities and dependencies, which increases
communication costs. To reduce execution costs, Pawlik
et al. [26] propose a static heuristic algorithm to scheduling
workflow execution based on price, deadline, and budget in
FaaS. The algorithm does not satisfy automatic resource
management and dynamic scheduling.

Our work is motivated by two aspects. First, scheduling
workflows in a serverless architecture no longer needs to
consider resource configuration, but should primarily focus
on satisfying user QoS. This is different from the goal of
most algorithms in traditional architectures. Second, most
of the existing serverless platforms mainly rely on the underly-
ing Kubernetes platform to achieve elastic scaling, resulting in
a gap between users’ QoS and scaling policies. Therefore, in
this paper, we focus on implementing a workflow scheduling
framework for dynamic workflow scheduling considering

3Wireless Communications and Mobile Computing

deadline and makespan. We use Knative as the serverless plat-
form and Kubernetes as the cluster management system.

4. Edge Workflow Scheduling
Framework (EWSF)

4.1. Overview. While designing an edge workflow scheduling
framework, we comprehensively consider three aspects.
First, since the edge servers are highly dynamic, we need to
optimize multiple objectives (e.g., success rate, makespan,
deadline, and resource utilization) considering the QoS
(Quality of Service) of the client and the resource status of
the edge servers. Second, we expect that fine-grained sched-
uling and adaptive adjustment mechanisms can be imple-
mented in the framework. For example, the number of
function instances and the time interval of the scheduling
algorithm can be dynamically adjusted based on the QoS
of the client and the resource status of the edge servers.
Third, the framework should be flexible enough to support
different scheduling algorithms for different optimizations
in the form of plug-ins.

4.2. The Architecture of EWSF. The architecture of EWSF,
which consists of three layers: workflow preparation pool,

task management center, and resource pool, is shown in
Figure 1. The preparation pool stores workflows and their
related information submitted by the client. The task man-
agement center mainly monitors the status of running tasks
in real time, dynamically adjusts their resource configuration
according to the client’s QoS and cluster status, and records
the task execution results. The resource pool is an abstrac-
tion of running environments in the cluster, which realizes
the mapping of tasks to resources. The following subsections
describe the components contained in these three layers and
their interactions.

4.2.1. Preparation Pool of Workflow Instances. IoT workflow
applications usually contain many tasks with the same func-
tionality but different inputs. The preparation pool is
responsible for converting the workflow into a DAG based
on the workflow definition yaml file submitted by the client.
In addition, the preparation pool stores the input data of
tasks and receives the execution results of tasks. Since differ-
ent scheduling algorithms follow different workflow data
formats, each algorithm has a corresponding preparation
pool in EWSF. In addition to the workflow’s DAG, other
related information is also stored in the preparation pool,
such as task completion status and task cost. In the

Submit task

User 1 User N

Function Function Function

Scheduling
module

Monitoring
module

Adjustment
module

Workflow preparation pool

Task management center

Resource Pool

……

……

……

Submit task

Flow 1 Flow 2 Flow N

Get tasks

Interactive
Invocation

Monitor

Invocation

Monitor Implement

Figure 1: The architecture of EWSF.

4 Wireless Communications and Mobile Computing

implementation, the workflow preparation pool uses the
map object to store all workflows. When the scheduling
module needs to fetch tasks, it accesses the map object.

4.2.2. Task Management Center. The functionality of the task
management center can be divided into three modules:
scheduling, monitoring, and adjustment.

(1) The schedule module implements the workflow
scheduling algorithm. The interaction of the sched-
ule module with the other two modules is as follows.
Information and resource usage of running tasks can
be obtained from the monitoring module. When
updating the execution status or adjusting the num-
ber of task instances, the corresponding interface of
the adjustment module is accessed

(2) The monitoring module is used to collect the
resource usage of running tasks in the resource pool
and the status of tasks. To support the scheduling
algorithm proposed in this paper, the monitoring

Require: a workflow Gi, time cycle t

Ensure: Resource configuration of cpuconfi,j and memconf
i,j for each running task vj ∈Gi

1: CPUi,j = ∅, MEMi,j = ∅ for each running task vj ∈Gi

2: cpumax = 0, memmax = 0
3: For each running task vj ∈Gido

4: cpuðtÞi,j = maximum CPU resource consumed by vj at time cycle t;

5: memðtÞ
i,j = maximum memory resource consumed by vj at time cycle t;

6: Compute f tcpu and f tmem based on Eq. (8);
7: Iff tcpu ≤ 0:05 and f tmem ≤ 0:05then
8: Add cpuðtÞi,j and memðtÞ

i,j to CPUi,j and MEMi,j, respectively;

9: cpuconfi,j =Maxðcpuð1Þi,j ,⋯, cpuðtÞi, j Þ, memconf
i,j =Maxðmemð1Þ

i,j ,⋯,memðtÞ
i,j Þ;

10: Else

11: IfcpuðtÞi, j > cpumaxthen

12: cpumax = cpuðtÞi,j ;
13: End if

14: IfmemðtÞ
i,j >memmaxthen

15: memmax =memðtÞ
i, j ;

16: End if
17: End if
18: IfCPUi, j =∅then

19: cpuconfi,j = cpumax, memconf
i,j =memmax;

20: End if
21: End for

Algorithm 1: Resource configuration of tasks.

Table 1: Knative parameter configuration.

newService.Spec.ConfigurationSpec.Template.Annotations =map[string]string{

“Autoscaling.Knative.Dev/metric”: “Concurrency”,

“Autoscaling.Knative.Dev/window”: “10s”,

“Autoscaling.Knative.Dev/targetBurstCapacity”: “1”,

}

containerConcurrency: = int64(1)

newService.Spec.ConfigurationSpec.Template.Spec.ContainerConcurrency =&

containerConcurrency

Table 2: Parameters of workflow.

Parameter Yaml key Category Necessity

Task sets tasks Basic Yes

Name of workflow flow Basic Yes

Relation set edges Basic Yes

Deadline deadline Basic Yes

Configuration of cluster cluster Additional No

Workflow scheduling pool pool Additional No

5Wireless Communications and Mobile Computing

module also incorporates the relevant information of
the connection pool into the monitoring scope

(3) The adjustment module is responsible for creating
and deleting resources of function instances and
controlling the number of requests for a function
instance. In addition, the adjustment module is also
responsible for the fault tolerance of tasks. Specifi-
cally, if a task fails and the number of retries does
not exceed the threshold, the adjustment module
refactors the requests of the task, and the failure
counter is incremented by 1. If the number of fail-
ures exceeds the threshold, the task is returned to
the schedule module for processing

4.2.3. Resource Pool. The resource pool is an abstraction of
the edge servers. Currently, we mainly consider two types
of resources, namely, CPU and memory. In the implementa-
tion, revision is created through Knative, and resources are
allocated to revision and its corresponding pods, so as to
realize the mapping process from request to resource.

5. Deadline-Aware Workflow Scheduling
Algorithm (SoDa)

The proposed dynamic and flexible scheduling algorithm
called SoDa has two main parts: (1) rational configuration
of the resources of the function, thereby avoiding the over-
and under-provision problem to improve resource effi-
ciency, and (2) dynamical adjustment of the number of
function instances according to the QoSs of the client and
the status of the cluster, achieving a good trade-off between
resource utilization and QoS satisfaction.

5.1. Rationally Configuring the Resources of Task Instances.
We use a feedback mechanism to configure resources for
tasks. Each task instance runs in a container. In this paper,
we mainly consider two types of resources, namely, CPU
and memory. Initially, we set a fixed number of resources
for task instances, e.g., 1 vCPU and 4GB RAM in the imple-
mentation. Then, we collect the maximum CPU and

Task Data

Data redistributionData aggregationData distributionProcess Pipeline

Figure 2: The basic structures of the workflow.

Figure 3: An example structure of highly parallel workflows.

Table 3: Default dataset configuration.

Parameter Values

Number of workflows 10

Average submission interval 200 s

Workflow deadline coefficient Loose [1.5,3.0], strict [1.1,1.3]

Number of branches [1, 5]

Task similarity coefficient [1, 3]

6 Wireless Communications and Mobile Computing

Scheduling algorithms

W
or

kfl
ow

 e
xe

cu
tio

n
tim

e
(s

) 3025

2398

3217

2910

2712 2732

2490

2200

2000

2400

2600

2800

3000

3200

SoDa
FWDS ES

PSCP

PSWORK
WPSCP

WPSWORK

(a) Average execution time

SoDa
FWDS ES

PSCP

PSWORK
WPSCP

WPSWORK

5600

5400

5000

5200

4800

4600

4400

4200

4000

4366

5299
5360

4840
4770

4910
4979

O
ve

ra
ll

m
ak

es
pa

n
(s

)

Scheduling algorithms

(b) Overall makespan

SoDa
FWDS ES

PSCP

PSWORK
WPSCP

WPSWORK
0%

10%

20%

30%

40%

50%

60%

70%

80%

Scheduling algorithms

Su
ce

ss
 ra

te
 (%

)

80.0%

30.0%

10.0%

30.0%

50.0% 50.0%

70.0%

(c) Success rate of workflows

Figure 4: Continued.

7Wireless Communications and Mobile Computing

memory usage of task instances per time period. For each
running task vj ∈Gi, the collected data form two sequences
for CPU and memory, respectively. Assuming that there
are s time periods, the two sequences can be expressed as

CPUi,j = cpu 1ð Þ
i,j ,⋯,cpu sð Þ

i,j

n o
,

MEMi,j = mem 1ð Þ
i,j ,⋯,mem sð Þ

i,j

n o
:

8><
>: ð7Þ

Given the time period t and task vj ∈Gi, if the following
two conditions are met at t:

f tcpu =
cpu tð Þ

i,j − cpu t−1ð Þ
i,j

cpu tð Þ
i,j

�����
����� × 100% ≤ 5%,

f tmem =
mem tð Þ

i,j −mem t−1ð Þ
i,j

mem tð Þ
i,j

�����
����� × 100% ≤ 5%,

8>>>>>><
>>>>>>:

ð8Þ

which means that the resource consumption of vj stabi-

lizes. Thus, cpuðtÞi,j andmemðtÞ
i,j are collected by the monitor as

resource consumption data.
When scheduling new instances for running task vj ∈

Gi, the maximum value in CPUi,j is used to configure
CPU resources. The same goes for memory resource con-
figuration. If no time period satisfies both conditions in
Eq. (8), the respective maximum usage of CPU and mem-
ory is used as the task resource configuration. The pseudo-
code of determining task resource configuration is given in
Algorithm 1. So, to start a new function instance of a run-
ning task, we set the number of containers to 1. The num-
ber of resources allocated to new instances can be
determined based on the maximum CPU and memory
usage of the task over a fixed interval.

5.2. Adjusting the Number of Task Instances. Because clusters
are highly dynamic, it is important to adjust the number of
instances for running tasks to improve resource utilization
and deadline satisfaction. To do so, given a running task
vj ∈Gi, we first dynamically determine the number of
resources allocated to it based on the available resources
in the cluster, vj’s degree of parallelism f i, and the deadline
di of Gi. Then, the number of instances of vj can be deter-
mined. The detailed steps are described below.

(1) For each workflow Gi with running tasks, let ti be the
start time of Gi, di the deadline of Gi, and tcur the
current time, the deadline urgency ΔGi of Gi is
defined as

Δdi =
tcur − ti

di
: ð9Þ

(2) Assuming that there are n workflows with running
tasks, and workflow Gk has rk running tasks, the
number of resources for vj ∈Gi is calculated accord-
ing to the following formula:

cpui,j = cputotal ×
Δdi

∑n
k=1Δdk

×
f i,j

∑n
k=1∑

rk
l=1 f k,l

,

memi,j =memtotal ×
Δdi

∑n
k=1Δdk

×
f i,j

∑n
k=1∑

rk
l=1 f k,l

,

8>>>><
>>>>:

ð10Þ

where cputotal and memtotal are the total available resources
of CPU and memory, respectively, and f k,l is the degree of
parallelism of vl ∈Gk. Given the total available resources,

SoDa
FWDS ES

PSCP

PSWORK
WPSCP

WPSWORK
20

25

30

35

40
40.43%

29.51%

36.84%

41.30% 41.70%41.38%

38.57%

C
PU

 u
sa

ge
 (%

)

Scheduling algorithms

(d) Average CPU usage

Figure 4: Results of submitting 10 workflows.

8 Wireless Communications and Mobile Computing

SoDa
FWDS ES

PSCP

PSWORK
WPSCP

WPSWORK

Scheduling algorithms

W
or

kfl
ow

 e
xe

cu
tio

n
tim

e
(s

)

3000

3194

4087

4330

3806

5530

4063

5563

3500

4000

4500

5000

5500

(a) Average execution time

SoDa
FWDS ES

PSCP

PSWORK
WPSCP

WPSWORK

Scheduling algorithms

O
ve

ra
ll

m
ak

es
pa

n
(s

)

7005

8060

8309

7819

9420

8209

9370

7500

7000

8500

8000

9000

9500

(b) Overall makespan

SoDa
FWDS ES

PSCP

PSWORK
WPSCP

WPSWORK

Scheduling algorithms

Su
cc

es
s r

at
e

(%
)

0%

20%

40%

60%

80%

25.0%

90.0%

25.0%

15.0% 15.0%
20.0%

35.0%

(c) Success rate of workflows

Figure 5: Continued.

9Wireless Communications and Mobile Computing

the number of resources allocated to each running task is
proportional to its deadline urgency and degree of
parallelism.

(3) According to Algorithm??, the resource configura-
tion cpuconfi,j and memconf

i,j of vj ∈Gi is determined.
Given the number of resources allocated, the number
of instances held by vj ∈Gi is calculated as

Ii,j′ =min
cpui,j
cpuconfi,j

,
memi,j

memconf
i,j

 !
: ð11Þ

Based on the current number of instances Ii,j, if Ii,j < Ii,j′ ,

SoDa starts up Ii,j′ − Ii,j new instances for vj ∈Gi; if Ii,j > Ii,j′ ,

Ii,j − Ii,j′ instances are terminated after completion.

5.3. The Scheduling Procedure of SoDa. SoDa is a deadline-
aware workflow scheduling algorithm on a serverless plat-
form. The total resources are allocated to the tasks being
scheduled according to a certain coefficient which is deter-
mined by the deadline of workflows and the degree of paral-
lelism of tasks. The scheduling procedure of SoDa consists of
four steps:

(1) The total available resources of CPU and memory
are obtained

(2) For each running task, the instance resource config-
uration is determined using a feedback mechanism,
as shown in Algorithm??

(3) According to the deadline of workflows and the
degree of parallelism of running tasks, the number

of resources allocated to each running task is dynam-
ically adjusted by Eq. (10)

(4) Given the instance resource configuration and the
number of allocated resources, the number of
instances for each running task is calculated by Eq.
(11)

6. EWSF Implementation

6.1. System Implementation. We implemented the EWSF
prototype based on Knative and Kubernetes and integrated
SoDa as the scheduling engine. Knative is a new serverless
platform based on Kubernetes. Knative defines its unique
resource organization in the form of Service. Based on the
Knative platform, we mainly use the Knative Serving com-
ponent to implement the proposed EWSF framework. Key
features of the Knative Serving component include autoscal-
ing and container routing. In Knative Serving, if clients want
to access a service, they do not need to expose that service
through traditional Nodeport or Kubernetes Service.
Instead, they provide a URL link through which clients can
access the corresponding Knative service. At the same time,
clients can also access the service through the IP address.

The Knative version used in our implementation is
Knative Serving 0:16:0 + Kourier 0:16:0. Since Istio is too
large, we use Kourier developed by Google as the network
router. In Knative, we configure the parameters listed in
Table 1. Specifically, the autoscaling criteria of Knative is
set to Concurrency, each pod handles a request, and the
autoscaling window is 10 seconds.

6.2. Encapsulation of Knative Serving

6.2.1. Service Management. Each task of the workflow is
abstracted as a separate service. Since a workflow may con-
tain multiple parallel tasks, to improve service efficiency, it

SoDa
FWDS ES

PSCP

PSWORK
WPSCP

WPSWORK

Scheduling algorithms

C
PU

 u
sa

ge
 (%

)

40.0

60.0
57.93%

48.92%

46.85%

51.10%

45.43%

49.96%

45.28%

57.5

55.0

52.5

50.0

47.5

45.0

42.5

(d) Average CPU usage

Figure 5: Results of submitting 20 workflows.

10 Wireless Communications and Mobile Computing

2000

2200

2400

2600

2800

3000 2938
2894

3012
2945

2491

2826

2692

W
or

kfl
ow

 e
xe

cu
tio

n
tim

e
(s

)

SoDa
FWDS ES

PSCP

PSWORK
WPSCP

WPSWORK

Scheduling algorithms

(a) Average execution time

4000

4200

4400

4531

4762

5085

4755 4708

4913

5419

4600

4800

5000

5200

5400

5600

O
ve

ra
ll

m
ak

es
pa

n
(s

)

SoDa
FWDS ES

PSCP

PSWORK
WPSCP

WPSWORK

Scheduling algorithms

(b) Overall makespan

0%

10%

20%

30%

40%

50%

60%

70% 70.0%

60.0%

30.0%

10.0%

20.0% 20.0%

30.0%

Su
cc

es
s r

at
e

(%
)

SoDa
FWDS ES

PSCP

PSWORK
WPSCP

WPSWORK

Scheduling algorithms

(c) Success rate of workflows

Figure 6: Continued.

11Wireless Communications and Mobile Computing

is necessary to manage the created services, including oper-
ations such as get, list, create, and delete. In our implemen-
tation, we use the V1 API provided by Knative Serving to
manage services.

6.2.2. Service Configuration. Knative Serving has three
autoscaling indicators: concurrency, CPU, and RPS. Con-
currency refers to the number of requests that each appli-
cation can process concurrently at any time; CPU refers
to the maximum number of CPUs each application can
use (in units of 1m, i.e., 0.001 CPUs); RPS refers to
the number of requests per second that each application
can process.

In our implementation, to be compatible with long tasks
and short tasks, we choose to use the Concurrency indicator.
Knative Serving has a limit on the number of requests that
can be processed instantaneously, which is set by the spec:
configurationspec:template.

spec:containerconcurrency property of the service. In
Knative Serving 0.16.0, the maximum number of transient
processing requests is 10 times the containerconcurrency
property. In our implementation, we set this property to 4,
which means that the system can handle up to 40 transient
requests.

6.3. Workflow Definition Schema. We defined a workflow
template based on the yaml format with strong expressive-
ness and a concise format on the Knative platform, allowing
users to easily define specific workflows by simply writing
the yaml file and packaging the Docker file. In the formal
workflow definition, we divide the workflow parameters into
the following two categories: basic parameters and addi-
tional parameters. Table 2 lists these specific parameters
and their descriptions.

7. Experiments

We now present the evaluations of SoDa to demonstrate the
efficacy in local cluster running Ubuntu 18.04 with K3s
v1.18.6, which consists of one master node and four worker
nodes equipped with 32 vCPUs and 64GB RAM.

7.1. Data Preparation

7.1.1. Workflow Instances. We represent a workflow as a
directed acyclic graph (DAG) of CyberShake workflow
which has several parameters that affect the structure of
workflow–number of tasks, DAG width, and critical path
length. The basic structures of several commonly used work-
flows are shown in Figure 2. Moreover, we also propose two
additional parameters in order to control the workflow
structure–number of branches and task similarity coefficient.
The details of the parameters are as follows:

(i) Number of Tasks. One of the most obvious charac-
teristics of a workflow is the number of tasks it
contains

(ii) DAG Width. The maximum number of tasks that
can be executed simultaneously in the DAG. Rela-
tively small DAGs have small width values. The
shape of the entire DAG is like a chain and the task
parallelism is low

(iii) Critical Path Length. This indicator is used to mea-
sure the execution time of the workflow. If the crit-
ical path length is short, the execution time of the
DAG is relatively short, and vice versa

(iv) Number of Branches. The number of tasks in the
yellow color in Figure 3

20

25

35

30

40

45

40.15%

29.86%

36.87%

42.87%

40.28%
41.49%

37.82%

C
PU

 u
sa

ge
 (%

)

SoDa
FWDS ES

PSCP

PSWORK
WPSCP

WPSWORK

Scheduling algorithms

(d) Average CPU usage

Figure 6: Results of 10 workflows with strict deadlines.

12 Wireless Communications and Mobile Computing

2000

2200

2400

2600

2800

3000

2501

2810
2869

2977
3041

2962
2894

W
or

kfl
ow

 e
xe

cu
tio

n
tim

e
(s

)

SoDa
FWDS ES

PSCP

PSWORK
WPSCP

WPSWORK

Scheduling algorithms

(a) Average execution time

4000

4200

4400

4600

4800

5000

5200

4677

4878
4953

5024 5066 5057

4908

O
ve

ra
ll

M
ak

es
pa

n
(s

)

SoDa
FWDS ES

PSCP

PSWORK
WPSCP

WPSWORK

Scheduling algorithms

(b) Overall makespan

0%

20%

40%

60%

80%

100% 100.0%
90.0%

70.0% 70.0%

60.0%

50.0%

80.0%

Su
cc

es
s r

at
e

(%
)

SoDa
FWDS ES

PSCP

PSWORK
WPSCP

WPSWORK

Scheduling algorithms

(c) Success rate of workflows

Figure 7: Continued.

13Wireless Communications and Mobile Computing

(v) Task Similarity Coefficient. Task types under differ-
ent branches of the third layer. The lower the task
similarity, the more different task types tend to be
under different branches

By setting above parameters and referring to the Cyber-
Shake workflow, we get workflows with a highly parallel
structure, as shown in Figure 3. The first layer is a virtual
entry node, which has no practical significance; the yellow
nodes on the second layer are called generator; on the third
layer, the nodes under each branch are tasks with several
connected operators such as matrix calculations stencil cal-
culation adopting the point wise and merge sorting et al.;
the fourth layer is the virtual exit node of the entire work-
flow, having no practical significance.

7.1.2. Default Configuration. For each set of experiments,
unless otherwise stated, the default configuration of the
workflow dataset is shown in Table 3. Specifically, the
deadline for each workflow is set as the product of the
minimum execution time among all the tested scheduling
algorithms and a given coefficient. The range of the
loose-type coefficient is [1.5, 3.0], and the range of the
strict-type coefficient is [1.1, 1.3]. The average interval of
each submission group is set to 400 seconds. The number
of workflows contained in each submission group is ran-
domly selected from 2, 5, and 9. The number of branches
of each workflow is 2, and the number of tasks under each
branch is 10. Deadline coefficients are randomly generated
from the given range. To simulate the real workflow sub-
mission process, the submission interval of workflows con-
forms to the Poisson distribution.

7.2. Metrics. For each set of experiments, we measure the fol-
lowing performance metrics: average workflow execution
time, overall makespan, workflow success rate, and average

CPU utilization. Of these, the overall makespan and work-
flow success rate are the optimization objectives of the
scheduling algorithm SoDa proposed in this paper.

7.3. Compared Methods. We compare SoDa with the six
scheduling algorithms:

(i) FWDS [12]. Similar to the priority-based dynamic
list scheduling algorithm RANK_HYBD [27]

(ii) ES. Evenly allocates total cluster resources to all
workflows to be executed

(iii) PSCP [13]. A proportional allocation algorithm
according to the length of the critical path

(iv) PSWORK [13]. An algorithm that allocates
resources in proportion to the total number of tasks

(v) WPSCP [13]. An algorithm that allocates resources
based on critical path length and coefficients

(vi) WPSWORK [13]. An algorithm that allocates
resources in proportion to the total number of tasks
and coefficients

7.4. Experiment Results

7.4.1. Influence of the Number of Workflows. In this experi-
ment, two sets of 10 and 20 workflows are submitted to eval-
uate the impact of the number of workflows on the four
performance metrics. Figures 4 and 5 show the experiment
results of submitting 10 and 20 workflows, respectively.

We can see that SoDa outperforms the other algorithms
on all four metrics. Figure 4(b) shows that SoDa has advan-
tages over other methods in the overall makespan. Compared
with the suboptimal algorithm, SoDa improves the perfor-
mance of the overall makespan by about 8.5%. Figure 5(b)

30

32

34

36

38

40

42 41.42%

30.89%

36.64%

39.49%

41.36%

39.80%
38.91%

C
PU

 U
sa

ge
 (%

)

SoDa
FWDS ES

PSCP

PSWORK
WPSCP

WPSWORK

Scheduling algorithms

(d) Average CPU usage

Figure 7: Results of 10 workflows with loose deadlines.

14 Wireless Communications and Mobile Computing

SoDa

PSWORK
PSCPES

FWDS

WPSWORK
WPSCP

W
or

kfl
ow

 e
xe

cu
tio

n
tim

e
(s

)

4365
4597

6752 6667 6758

6262

6525

4000

4500

5000

5500

6000

6500

7000

Scheduling algorithms

(a) Average execution time

SoDa

PSWORK
PSCPES

FWDS

WPSWORK
WPSCP

O
ve

ra
ll

m
ak

es
pa

n
(s

)

6000

6500

7000

7500

8000

8500

9000

6305

6999

7655

8490
8719

8439 8370

Scheduling algorithms

(b) Overall makespan

SoDa

PSWORK
PSCPES

FWDS

WPSWORK
WPSCP

0%

20%

40%

60%

80%

Su
cc

es
s r

at
e

(%
)

90.0%

70.0%

0.0% 0.0% 0.0% 0.0%

10.0%

Scheduling algorithms

(c) Success rate of workflows

Figure 8: Continued.

15Wireless Communications and Mobile Computing

shows that compared with the suboptimal algorithm, and
SoDa improves by 10.4% when 20 workflows are submitted.

By dynamically adjusting the number of task instances,
SoDa can complete workflow execution earlier. In turn, the
overall makespan, workflow success rate, and CPU utilization
have all improved. This is mainly due to the rational resource
configuration of running tasks and dynamical resource adjust-
ment among tasks based on cluster status and the deadline sat-
isfaction. Correspondingly, the success rate of SoDa is nearly
55% higher than that of other algorithms. These results well
validate that SoDa achieves the optimization of deadline satis-
faction and resource utilization.

7.4.2. Influence of Workflow Deadline Parameters. We evalu-
ate two types of workflows with loose and strict deadline con-
straints. The experiment results are shown in Figures 6 and 7.
From these results, we make three observations. First, SoDa
performs best in both cases. The workflow execution time of
SoDa is almost the same for both loose and strict workflows.
Second, for workflows with tight deadlines, SoDa improves
the overall makespan by at least 3.9% over other algorithms
due to the fact that the overall demand for resources is rela-
tively large, and each workflow requires a large number of
resources to meet the deadline requirements.

Third, SoDa still has an advantage in the execution suc-
cess rate for strict deadlines, being at least 10% higher than
the other algorithms.

7.4.3. The Influence of Edger Nodes. In this experiment, we
evaluate the scheduling algorithms on two edge clusters with
2 and 6 nodes, respectively. Figure 8 shows the experiment
results on the 2-nodes edge cluster. Compared with the pre-
vious experiment results, the resources become more
strained due to the reduced number of nodes. Compared
with the suboptimal algorithm FWDS, SoDa achieves a

9.9% improvement in the overall makespan. The average
CPU utilization of SoDA is 47.26%, which is about 20%
higher than the other algorithms. This is because SoDa uses
the autoscaling feature of the serverless architecture to
quickly respond to changes in resources allocated to tasks.
Therefore, SoDa is expected to have significant advantages
over the other algorithms.

The experiment results on the 6-nodes edge cluster are
shown in Figure 9. As the number of nodes increases, the
edge cluster resources are more relaxed, so the advantages
of SoDa are expected to decrease relative to the other algo-
rithms. From Figure 9(d), we can see that SoDa still has
the highest average CPU utilization.

7.4.4. The Evaluation of Auto Scaling Function. In order to
evaluate the auto scaling advantage of SoDa, we use two group
submission ways to submit workflows: (1) submissions with 3
groups and (2) submissions with 5 groups. To test SoDa with-
out autoscaling, the number of nodes in the cluster is fixed to
6. For testing autoscaling, the number of nodes in the cluster is
initially set to 4 and can be expanded to 6. The experimental
results are shown in Figures 10 and 11.

When the cluster supports the operation of adding and
deleting nodes, SoDa can dynamically adjust the total
resources according to the changing workloads. Figures 10
and 11 show the results with relatively light workload sub-
mitted by different groups. The resource utilization with
auto scaling is higher than that without node scaling, which
shows that the method with auto scaling scales nodes when
the resource required by cluster load is small and redundant
nodes are released. Generally speaking, scaling with nodes
has a certain node scheduling overhead compared with scal-
ing without nodes, but correspondingly, it can have higher
resource utilization.

SoDa

PSWORK
PSCPES

FWDS

WPSWORK
WPSCP

C
PU

 u
sa

ge
 (%

)

Scheduling algorithms

30.0

32.5

35.0

37.5

40.0

42.5

45.0

47.5 47.28%

38.44%
39.61%

34.75%
33.13%

37.96% 38.33%

(d) Average CPU usage

Figure 8: Results on the 2-node edge cluster.

16 Wireless Communications and Mobile Computing

1000
SoDa

PSWORK
PSCPES

FWDS

WPSWORK
WPSCP

W
or

kfl
ow

 e
xe

cu
tio

n
tim

e
(s

)

1200

1400

1600

1800

2000

2200

2400

2600

1928

2635 2663

1995 2028

2193

2040

Scheduling algorithms

(a) Average execution time

SoDa

PSWORK
PSCPES

FWDS

WPSWORK
WPSCP

4000

O
ve

ra
l m

ak
es

pa
n

(s
)

4200

4400

4600

4800

5000
4899

4199

4420

4649

4330

4092

4539

Scheduling algorithms

(b) Overall makespan

SoDa

PSWORK
PSCPES

FWDS

WPSWORK
WPSCP

0%

20%

40%

60%

80%

100% 100.0% 100.0% 100.0%
90.0% 90.0%

80.0%

70.0%

Su
cc

es
s r

at
e

(%
)

Scheduling algorithms

(c) Success rate of workflows

Figure 9: Continued.

17Wireless Communications and Mobile Computing

30

32

34

36

38

40

SoDa

PSWORK
PSCPES

FWDS

WPSWORK
WPSCP

39.06%

35.95%

C
PU

 u
sa

ge
 (%

)
31.70%

34.75%

33.13%

31.77%

33.90%

Scheduling algorithms

(d) Average CPU usage

Figure 9: Results on the 6-node edge cluster.

No node scaling Node scaling

27.5

25.0

22.5

18.32%

27.63%

20.0

17.5

15.0

12.5

10

Av
er

ag
e

C
PU

 u
sa

ge
 (%

)

(a) Overall makespan

20

40

60

0 250 500 750 1000 1250 1500 1750 2000
CPU of cluster usage

Node scaling
No node scaling

80

0

(b) Success rate of workflows

Figure 10: Results of submissions with 3 groups.

No node scaling Node scaling

24

22

20

15.41%

24.55%

18

16

14

12

10

Av
er

ag
e

C
PU

 u
sa

ge
 (%

)

(a) Overall makespan

20

40

60

80

0
0 500 1000 1500 2000

CPU of cluster usage

2500 3000

100

120

Node scaling
No node scaling

(b) Success rate of workflows

Figure 11: Results of submissions with 3 groups.

18 Wireless Communications and Mobile Computing

8. Conclusion

We propose an edge workflow scheduling framework
(EWSF) in the serverless architecture and implement the
framework using Knative and Kubernetes as the technology
stack. To address the scalability and interdependence of
tasks, EWSF implements scheduling, monitoring, and
adjustment functionality. EWSF converts workflow tasks
into Knative Serving resources and manages them. In addi-
tion, we define a format of workflows, making it easy for cli-
ents to specify and create various types of workflows
regardless of the operating environments and dependencies.
Furthermore, we propose a serverless-oriented and deadline-
aware workflow scheduling algorithm called SoDa. By
leveraging the autoscaling capabilities of the serverless archi-
tecture, SoDa significantly improves workflow execution
efficiency in terms of overall makespan and success rate.

Data Availability

No public dataset were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the National Key Research and
Development Program of China (2019YFB1 and 704400),
the National Natural Science Foundation of China
(61772334 and 61702151), and the Special Fund for Scien-
tific Instruments of the National Natural Science Foundation
of China (61827810).

References

[1] Y. Huang, H. Xu, H. Gao, X. Ma, and W. Hussain, “Ssur: an
approach to optimizing virtual machine allocation strategy
based on user requirements for cloud data center,” IEEE
Transactions on Green Communications and Networking,
vol. 5, no. 2, pp. 670–681, 2021.

[2] P. Gautam, M. D. Ansari, and S. K. Sharma, “Enhanced secu-
rity for electronic health care information using obfuscation
and RSA algorithm in cloud computing,” International Jour-
nal of Information Security and Privacy, vol. 13, no. 1,
pp. 59–69, 2019.

[3] L. Ting, M. Khan, A. Sharma, and M. D. Ansari, “A secure
framework for iot-based smart climate agriculture system:
toward blockchain and edge computing,” Journal of Intelligent
Systems, vol. 31, no. 1, pp. 221–236, 2022.

[4] M. D. Ansari, V. K. Gunjan, and E. Rashid, “On security and
data integrity framework for cloud computing using tamper-
proofing,” in ICCCE 2020, A. Kumar and S. Mozar, Eds.,
vol. 698 of Lecture Notes in Electrical Engineering, pp. 1419–
1427, Springer, Singapore, 2021.

[5] J. Zhu, L. Huo, M. D. Ansari, and M. A. Ikbal, “Research on
data security detection algorithm in iot based on k-means,”
Scalable Computing: Practice and Experience, vol. 22, no. 2,
pp. 149–159, 2021.

[6] M. Ahmed, M. D. Ansari, N. Singh, V. K. Gunjan, B. V.
Santhosh Krishna, and M. Khan, “Rating-based recommender
system based on textual reviews using iot smart devices,”
Mobile Information Systems, vol. 2022, Article ID 2854741,
18 pages, 2022.

[7] H. Arabnejad and J. G. Barbosa, “List scheduling algorithm for
heterogeneous systems by an optimistic cost table,” IEEE
Transactions on Parallel and Distributed Systems, vol. 25,
no. 3, pp. 682–694, 2014.

[8] N. Zhou, D. Qi, X. Wang, Z. Zheng, and W. Lin, “A list sched-
uling algorithm for heterogeneous systems based on a critical
node cost table and pessimistic cost table,” Concurrency and
Computation: Practice and Experience, vol. 29, no. 5, p. 3944,
2017.

[9] H. Chen, X. Zhu, D. Qiu, L. Liu, and Z. Du, “Scheduling for
workflows with security-sensitive intermediate data by selec-
tive tasks duplication in clouds,” IEEE Transactions on Parallel
and distributed systems, vol. 28, no. 9, pp. 2674–2688, 2017.

[10] A. Yoosefi and H. R. Naji, “A clustering algorithm for
communication-aware scheduling of task graphs on multi-
core reconfigurable systems,” IEEE Transactions on Parallel
and Distributed Systems, vol. 28, no. 10, pp. 2718–2732, 2017.

[11] “Kubernets documentation,” https://kubernetes.io/docs/
home.

[12] H. Arabnejad and J. Barbosa, “Fairness resource sharing for
dynamic workflow scheduling on heterogeneous systems,” in
2012 IEEE 10th International Symposium on Parallel and Dis-
tributed Processing with Applications, pp. 633–639, Leganes,
Spain, 2012.

[13] T. N'Takpe and F. Suter, “Concurrent scheduling of parallel
task graphs on multi-clusters using constrained resource allo-
cations,” in 2009 IEEE International Symposium on Parallel &
Distributed Processing, pp. 1–8, Rome, Italy, 2009.

[14] H. Gao, W. Huang, and Y. Duan, “The cloud-edge-based
dynamic reconfiguration to service workflow for mobile ecom-
merce environments,” ACM Transactions on Internet Technol-
ogy (TOIT), vol. 21, no. 1, pp. 1–23, 2021.

[15] M. Adhikari, T. Amgoth, and S. N. Srirama, “A survey on
scheduling strategies for workflows in cloud environment
and emerging trends,” ACM Computing Surveys, vol. 52,
no. 4, pp. 1–36, 2019.

[16] X. Ma, H. Xu, H. Gao, and M. Bian, “Real-time multiple-
workflow scheduling in cloud environments,” IEEE Transac-
tions on Network and Service Management, vol. 18, no. 4,
pp. 4002–4018, 2021.

[17] X. Ma, H. Gao, H. Xu, and M. Bian, “An iot-based task sched-
uling optimization scheme considering the deadline and cost-
aware scientific workflow for cloud computing,” EURASIP
Journal on Wireless Communications and Networking,
vol. 2019, no. 1, 2019.

[18] H. Topcuoglu, S. Hariri, and M. Wu, “Performance-effective
and low-complexity task scheduling for heterogeneous com-
puting,” EEE Transactions on Parallel and Distributed Systems,
vol. 13, no. 3, pp. 260–274, 2002.

[19] K. Fromm, “Why the future of software and apps is serverless,”
2012, http://readwrite.com/2012/10/15/why-the-future-of-
software-and-apps-is-serverless.

[20] “What is AWS Lambda?,” 2019, https://docs.aws.amazon
.com/lambda/latest/dg/welcome.html.

[21] A. Kuntsevich, P. Nasirifard, and H. Jacobsen, “A distributed
analysis and benchmarking framework for apache openwhisk

19Wireless Communications and Mobile Computing

https://kubernetes.io/docs/home
https://kubernetes.io/docs/home
http://readwrite.com/2012/10/15/why-the-future-of-software-and-apps-is-serverless
http://readwrite.com/2012/10/15/why-the-future-of-software-and-apps-is-serverless
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html

serverless platform,” in Proceedings of the 19th International
Middleware Conference (Posters), pp. 3-4, New York, NY,
USA, 2018.

[22] P. Lin and A. Glikson, “Mitigating cold starts in serverless plat-
forms: a pool-based approach,” 2019, https://arxiv.org/abs/
1903.12221.

[23] M. Malawski, A. Gajek, A. Zima, B. Balis, and K. Figiela, “Server-
less execution of scientific workflows: Experiments with Hyper-
Flow, AWS Lambda and Google Cloud Functions,” Future
Generation Computer Systems, vol. 110, pp. 502–514, 2020.

[24] J. Kijak, P. Martyna, M. Pawlik, B. Balis, andM.Malawski, “Chal-
lenges for scheduling scientific workflows on cloud functions,” in
2018 IEEE 11th International Conference on Cloud Computing
(CLOUD), pp. 460–467, San Francisco, CA, USA, 2018.

[25] Q. Jiang, Y. C. Lee, and A. Y. Zomaya, “Serverless execution of
scientific workflows,” in Service-Oriented Computing. ICSOC
2017, Lecture Notes in Computer Science, M. Maximilien, A.
Vallecillo, J. Wang, and M. Oriol, Eds., pp. 706–721, Springer,
Cham, 2017.

[26] M. Pawlik, P. Banach, and M. Malawski, “Adaptation of work-
flow application scheduling algorithm to serverless infrastruc-
ture,” in Euro-Par 2019: Parallel Processing Workshops. Euro-
Par 2019, Lecture Notes in Computer Science, pp. 345–356,
Springer, Cham, 2020.

[27] Z. Yu and W. Shi, “A planner-guided scheduling strategy for
multiple workflow applications,” in 2008 International Confer-
ence on Parallel Processing -Workshops, pp. 1–8, Portland, OR,
USA, 2008.

20 Wireless Communications and Mobile Computing

https://arxiv.org/abs/1903.12221
https://arxiv.org/abs/1903.12221

	SoDa: A Serverless-Oriented Deadline-Aware Workflow Scheduling Engine for IoT Applications in Edge Clouds
	1. Introduction
	2. Background
	2.1. Workflow Model
	2.2. Problem Formulation of Workflow Scheduling

	3. Related Work
	4. Edge Workflow Scheduling Framework (EWSF)
	4.1. Overview
	4.2. The Architecture of EWSF
	4.2.1. Preparation Pool of Workflow Instances
	4.2.2. Task Management Center
	4.2.3. Resource Pool

	5. Deadline-Aware Workflow Scheduling Algorithm (SoDa)
	5.1. Rationally Configuring the Resources of Task Instances
	5.2. Adjusting the Number of Task Instances
	5.3. The Scheduling Procedure of SoDa

	6. EWSF Implementation
	6.1. System Implementation
	6.2. Encapsulation of Knative Serving
	6.2.1. Service Management
	6.2.2. Service Configuration

	6.3. Workflow Definition Schema

	7. Experiments
	7.1. Data Preparation
	7.1.1. Workflow Instances
	7.1.2. Default Configuration

	7.2. Metrics
	7.3. Compared Methods
	7.4. Experiment Results
	7.4.1. Influence of the Number of Workflows
	7.4.2. Influence of Workflow Deadline Parameters
	7.4.3. The Influence of Edger Nodes
	7.4.4. The Evaluation of Auto Scaling Function

	8. Conclusion
	Data Availability
	Conflicts of Interest
	Acknowledgments

