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Influential spreader identification is a vital research area in complex network theory, which has important influence on application
and popularization. Each of the existing methods has its own advantages and disadvantages, and there are still various methods
proposed to solve this issue. In this paper, we come up with a new centrality of influential spreader identification based on network
connectivity and efficiency (CEC). The consequences of spreader deletion can be generally divided into two parts, one is that the
connectivity of network topology is destroyed, and the other is that network’s performance is degraded, which makes the network
unable to meet the functional requirement. Therefore, the relative changes of connectivity and efficiency of network before and
after removing spreaders are used to present the influence of spreaders. We adopt susceptible-infected (SI) model, a well-
known infectious disease model, to verify the effectiveness of CEC through the spreading ability simulation of spreaders in
actual networks. And the simulation results demonstrate the superiority of CEC.

1. Introduction

At present, complex networks are closely associated with our
real life, for example, networks [1, 2], traffic systems [3, 4],
power grids [5, 6], and ecological networks [7, 8]. Influential
spreader identification remains an open and vital research
issue that has attracted increasing attention, which helps to
understand the structure of networks and control the prop-
agation process. Some hazards caused by load propagation
and cascading effect, for example, North American blackout
and WannaCry’s spread, often begin with a small portion of
spreaders but spread rapidly to the entire network [9, 10];
this small portion of spreaders has a great impact on net-
work. Therefore, accurate quantification and identification
of influential spreaders is very important. For instance, we
can effectively suppress the spread of the virus and prevent
its large-scale outbreak by vaccinating key individuals in
infectious disease network [11]. In power grids, we can effec-
tively prevent the cascading failure with taking prior precau-

tions for circuits in vital areas [12]. In social network, such
as MicroBlog and Twitter, we can control the dissemination
of information to guide speech [13].

A variety of approaches have been proposed over the
past few decades. Most of these approaches measure the
influence of spreaders from the structural information of
network.

There are a lot of methods proposed to search these key
spreaders [14]. Degree centrality (DC) [15], one of the sim-
plest and earliest methods, only counts the number of the
directly connected spreaders and results in low complexity.
Closeness centrality (CC) [16] measures spreader’s capabil-
ity to affect others through the network, while it will fail
when applied to disconnected networks. Betweenness cen-
trality (BC) [17] measures spreader’s influence with the per-
spective from shortest path. Except these classical measures,
some new methods have been proposed such as H-index
centrality [18] and evidence theory [19]. Roberts et al. [20]
suggested a centrality which considered the fourth-level
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neighbors as a trade-off measure. However, these centralities
ignore the connections among spreaders, and then, the Clus-
terRank [21] was proposed by taking the effect of clustering
coefficient into consideration. What is more, Kitsak et al.
[22] measured the influence of spreaders from location per-
spective and put forward a new method named K-shell
decomposition (Ks). The spreaders were moved layer by
layer based on continuously updated DC value. The biggest
problem of Ks is the poor distinguish capacity of centrality
value, i.e., poor monotonicity. Then, some approaches were
put forward to solve this issue. Zeng and Zhang [23] came
up with a MDD approach by considering the degree of initial
spreaders and removed spreaders. Bae and Kim [24]
summed the Ks value of neighbors to measure the impor-
tance of spreaders. In addition, there are also some
approaches based on iteration such as PageRank [25], Lea-
derRank [26], and Hits [27]. Different centralities reflect
the influence of spreaders from limited parts; some
researchers have proposed multiattribute ranking
approaches which combines several centralities to compre-
hensively rank the influence of spreaders. Liu et al. [28] pro-
posed an improved Ks and used TOPSIS to fuse DC, CC,
and BC and improved K-shell decomposition. Yang et al.
[29] combined DC, CC, and BC with VIKOR method and
adopted entropy weighting method to reasonably obtain
the weights of attributes. Wen and Deng proposed a local
information dimensionality (LD) to rank key spreaders
[30]. Wang et al. focused on the contribution of spreaders
to network efficiency and proposed EffC method to identify
influential spreaders [31].

In this paper, we consider the importance of spreaders
from global information perspective, and then, a novel cen-
trality called connectivity and efficiency centrality (CEC) is
put forward. The consequences of network spreaders
removal can be generally divided into two aspects [32, 33],
one is that the connectivity of network topology is destroyed,
and the other is that the performance of the network is
degraded, which makes the network unable to meet the ser-
vice requirement. Therefore, we consider the relative
changes of connectivity and efficiency of network before
and after removing spreaders, and the combination of them
is taken as an indicator to determine the influence of
spreaders. Note that the removal of spreaders will also delete
the links connected to them at the same time. To assess the
effectiveness of CEC, we adopt susceptible-infected (SI)
model [34] to measure spreading ability of spreaders in
actual databases, and we compare the performance between
CEC and others to verify the superiority of CEC.

2. Centralities

Given a network GðV , EÞ, where V and E, respectively, rep-
resent the set of spreaders and the set of edges, they meet
m = jEj and n = jV j. A = ðaijÞn×n indicates the adjacent
matrix; if spreader i and spreader j are connected by edge
eij ∈ E, aij = 1; otherwise, aij = 0:

Degree centrality [15], one of the simplest and earliest
local centrality, only counts the number of the directly con-

nected spreaders and results in low complexity.

DC ið Þ = 〠
n

j

aij: ð1Þ

Degree centrality indicates spreaders’ ability to commu-
nicate directly with others.

Closeness centrality [16] considers the influence of
spreaders based on the distance between them. It measures
spreader’s capability to affect others through the network.

CC ið Þ = n − 1
∑n

j dij
, ð2Þ

wherein dij represents the Euclidean distance between
spreader i and spreader j. CC uses average transmission time
of information to determine the influence of a spreader.

Betweenness centrality [17] measures spreader’s influ-
ence with the perspective from shortest path. BC considers
a spreader influential if it expressed as a “bridge.”

BC ið Þ = 1
n − 1ð Þ n − 2ð Þ 〠

s,t≠i

gst ið Þ
gst

 !
, ð3Þ

wherein gst represents the number of the shortest paths
between spreader s and spreader t and gstðiÞ indicates the
number of shortest paths passing through spreader i. BC
can reflect the degree of independence between spreaders.

K-shell decomposition [22] measures the influence of
spreaders from location perspective, which has important
milestone significance. The spreaders were moved layer by
layer based on continuously updated DC value.

3. The Proposed Centrality

We consider the influence of spreaders from global informa-
tion perspective. The influence of spreaders can be measured
by the relative changes of some global characteristic param-
eters of network before and after removing corresponding
spreaders. The consequences of network spreader deletion
can be generally divided into two parts, one is that the con-
nectivity of network topology is destroyed, and the other is
that the network efficiency is degraded, which makes the
network unable to meet the service requirement. Both the
two aspects should be taken into consideration to give com-
prehensive identification results.

Definition 1. The network connectivity represents the aver-
age influence of network to maintain connectivity, which is
indicated as the mean value of the ratio of number of con-
nected spreader pairs to the total number of spreader pairs
in network.

CON Gð Þ = 1
n n − 1ð Þ〠i∈G

〠
j>i
lij, ð4Þ

wherein lij represents the connection parameter from
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spreader i to spreader j; if they have a connected path,
including directly connected path and indirectly connected
path, then lij = 1; otherwise, lij = 0.

Definition 2. The residual network is denoted as Gk after
removing spreader k from G, and the relative changes of net-
work connectivity can be defined as

RE CON kð Þ = CON Gkð Þ − CON Gð Þj j
CON Gð Þ : ð5Þ

Definition 3. The network efficiency refers to the effective-
ness of information transmission on the network. It is
denoted as

EFF Gð Þ = 1
n n − 1ð Þ〠i≠j

1
dij

, ð6Þ

wherein dij refers to the shortest distance between spreader i
and spreader j. Note that if spreader i and spreader j have no
connected path, dij = +∞ and 1/dij = 0.

Definition 4. The residual network is denoted as Gk after
removing spreader k from G, and the relative changes of net-
work efficiency can be written as

RE EFF kð Þ = EFF Gkð Þ − EFF Gð Þj j
EFF Gð Þ : ð7Þ

Definition 5. The proposed connectivity and efficiency cen-
trality (CEC) can be defined as

CEC kð Þ = 1 + RE CON kð Þð Þ × RE EFF kð Þ: ð8Þ

The greater the value of CECðkÞ, the more influential the
spreader k.

4. Simulation and Analysis

4.1. Datasets. We choose four actual networks to conduct
experiments and simulations, which cover multiple fields
and network scales. (i) Karate club [35]: it is a widely used
dataset describing the relationship between karate club

Table 1: The top 10 spreaders using different centralities: karate
club.

Karate club
Rank DC CC BC Ks CEC I(t)

1 34 1 1 1 1 1

2 1 3 34 34 34 34

3 33 34 33 33 3 3

4 3 32 3 31 33 33

5 2 9 32 3 32 2

6 4 14 9 14 2 9

7 32 33 2 2 14 14

8 9 20 14 4 9 32

9 14 2 20 8 4 4

10 24 4 6 9 20 20

Table 2: The top 10 spreaders using different centralities: Jazz
musicians.

Jazz musicians
Rank DC CC BC Ks CEC I(t)

1 136 136 136 60 136 136

2 60 60 153 168 149 149

3 132 168 60 108 60 96

4 168 70 149 122 5 70

5 70 83 168 33 153 60

6 99 132 167 58 185 153

7 108 122 189 66 189 167

8 83 194 115 100 168 5

9 158 174 96 132 34 83

10 7 158 83 179 83 168

Table 3: The top 10 spreaders using different centralities: USAir97.

USAir97
Rank DC CC BC Ks CEC I(t)

1 118 118 118 67 8 118

2 261 261 8 94 261 67

3 255 67 261 109 118 261

4 152 255 201 112 13 8

5 182 201 47 118 201 182

6 230 182 182 131 152 313

7 166 47 255 146 182 201

8 67 166 152 147 313 152

9 112 248 313 150 67 248

10 201 112 13 152 258 258

Table 4: The top 10 spreaders using different centralities: email.

Email
Rank DC CC BC Ks CEC I(t)

1 105 333 333 299 333 105

2 333 23 105 389 58 333

3 16 105 23 434 355 135

4 23 42 578 552 578 42

5 42 41 76 571 105 3

6 41 76 233 726 21 52

7 196 233 135 756 270 21

8 233 52 41 788 376 355

9 21 135 355 885 42 233

10 76 378 42 886 233 270
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members. (ii) Jazz musicians [36]: it is a social dataset
describing the cooperative relationship between jazz musi-
cians. (iii) USAir97 [37]: it is a transportation dataset repre-
senting the airline relationship of American airports in 1997.
(iv) Email: it describes the email exchange in a university.

4.2. Experiment and Analysis

4.2.1. Experiment 1: Comparison of Top 10 Spreaders Ranked
by Different Centralities. The influence of each spreader in
network is calculated using CEC and classical centralities.
The actual spreading ability I(t) (t = 25) calculated by SI
model is used as benchmark; the definition of I(t) will be
introduced later. We pay attention to the top 10 spreaders
sorted by several centralities. As shown in Table 1, in karate
club network, the identification results of CEC and CC are
the best due to their 10 same spreaders as I(t), and DC and
BC have 9 same spreaders as I(t), while Ks owns 8 same
spreaders. In Jazz musician network, shown in Table 2, there

are 5 same spreaders with I(t) in top 10 lists using DC and
CC, while it is only 2 using Ks. CEC owned 7 same spreaders
as I(t) performs slightly worse than BC. Besides, the top 2
spreaders of CEC are the same with I(t). In USAir97 net-
work (Table 3), DC and CC both own 6 same spreaders;
the number of same spreaders of CEC, BC, and Ks is 9, 7,
and 3, separately. In email network, depicted in Table 4,
CEC, CC, and BC have 6 same spreaders as I(t), which is
lightly greater than DC, while there is no any same spreader
between Ks and I(t). In a word, CEC has the most similar
performance with actual ranking results; that is, CEC can
identify spreaders more accurately.

4.2.2. Experiment 2: Comparison of Capability of Different
Centralities to Distinguish Spreaders’ Spreading Ability.
When ranking the influence of spreaders, we find that some
spreaders have the same centrality value and it is impossible
to distinguish them. This phenomenon will reduce the accu-
racy of centrality. We consider the frequency of spreaders
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Figure 1: Example of a figure caption.
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with same rank as an index to assess the distinguishing capa-
bility. The lower the frequency, the better the method. The
experimental results of different centralities are shown in
Figure 1. In the four networks, CEC has the lowest fre-
quency; that is to say, CEC performs best in distinguishing
spreaders’ spreading ability. However, the frequency of DC
and Ks is greater than other methods. The experimental
result indicates the superiority of our method in distinguish-
ing spreading ability.

4.2.3. Experiment 3: Comparison of the Average Spreading
Ability of Top 10 Spreaders. We conduct transmission simu-
lation with SI model [34] to examine the spreading ability of
spreaders. We take spreader i as the source spreader and the
spread process will start from the source spreader. The total
number of infected spreaders will reach nit after tðt = 1, 2,
⋯Þ time step. Then, the spreading ability, denoted as IiðtÞ
= nit/n, is expressed as ratio of infected spreaders to network

size. And the average spreading ability of top 10 spreaders is
represented as IðtÞ = ð∑10

i=1ItðtÞÞ/10. We set tmax = 50; the
simulation results are presented in Figure 2.

From Figure 2, the average spreading ability of top 10
spreaders increases with t, and eventually almost the entire net-
work is infected. In karate club network, we can see that the
black curve and the blue curve overlap; that is to say, the spread-
ing ability of CEC is the same with CC, because the top 10
spreaders of them are the same. It is clear that the spreading
ability of CEC is superior to that of DC, BC, and Ks. In Jazz
musician network, we can find that there are more infected
spreaders of CEC than others, which demonstrates that the
spreading ability of CEC is better than that of other methods.
In USAir97 network, CEC is marginally better than CC, DC,
and Ks, and BC is the poorest because the average number of
infected spreaders of BC is much less than that of others. In
email network, the number of infected spreaders at each step
of CEC is marginally greater than DC, CC, and BC.
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Figure 2: The average spreading ability of top 10 spreaders sorted with different centralities.
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4.2.4. Experiment 4: Comparison of the Correlation between
Centralities and the Actual Ranking Result. We choose Ken-
dall’s tau coefficient (τ) [36] to be a linear correlation coeffi-
cient between the five methods and the actual ranking result.
The value of τ ranges between [0, 1]; the larger the value of τ
is, the more similar two sequences is. Give two sequences
X = fx1, x2,⋯, xsg and Y = fy1, y2,⋯, ysg. (xi, yi) is
regarded as a positive sequence pair when xi > xj and yi >
yj, or xi < xj and yi < yj, or else it will be considered as a neg-
ative sequence pair. Then, Kendall’s tau can be denoted as
τ = ðn+ − n−/nðn − 1ÞÞ , where n+ and n− indicate the num-
ber of positive sequence pairs and negative sequence pairs,
respectively, and n = n+ + n−.

We consider the ranking list at t = 10 obtained by SI
model as the actual ranking result Ia; then, we calculate
the correlation between Ia and centralities. As shown in
Figure 3, CEC outweighs other centralities before spreading
probability 0.07 in karate club network, and it is lower than

CC after spreading probability 0.08. In Jazz musician net-
work, DC has the greatest τ value, while it has very poor per-
formance in email network, and the τ value of CEC is similar
with CC. In USAir97 network, CEC outweighs other central-
ities across the spreading probability. In email network, the τ
value of CEC is lower than CC and Ks before spreading
probability 0.04, and it is similar with Ks after spreading
probability 0.04. Overall speaking, CEC has the best correla-
tion with actual ranking result in the four networks.

5. Conclusion

Identifying influential spreaders is essential for network
invulnerability. In this paper, we pay attention to the
approach of identifying influential spreaders based on global
information, and the connectivity and efficiency centrality
(CEC) are put forward to achieve this goal. Removing
spreaders and the corresponding links will lead to two

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Spreading probability

0.4

0.5

0.6

0.7

0.8

0.9

1

Karate club

𝜏

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Spreading probability

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Jazz musicians

𝜏

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Spreading probability

USAir97

𝜏

DC
CC
BC

Ks
CEC

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Spreading probability

Email

𝜏

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Figure 3: Comparison of the correlation between centralities and the actual ranking list.
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consequences: the destruction of network connectivity and
the decline of network efficiency. Therefore, we consider
both the two aspects to provide a novel centrality in identi-
fying influential spreaders. The relative changes of network
connectivity and efficiency before and after removing
spreaders are taken as indicators to measure the influence
of spreaders; we combine the relative changes of network
connectivity and efficiency to give comprehensive identify-
ing results. The greater the relative changes, the more influ-
ential the spreader. We conduct several experiments based
on actual datasets, and the results show that CEC performs
better than other methods.

Data Availability

All data are available in the manuscript references, which
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