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Currently, there are mature test methods for specific sensing devices or processing devices in the Internet of Vehicles (IoV).
However, when a system is combined with these different types of devices and algorithms for real scenarios, the existing
device-level test results cannot reflect the comprehensive functional or performance requirements of the IoV applications at the
system level. Therefore, novel application-oriented system-level evaluation indexes and test methods are needed. To this end,
we extract the data processing functional entities into specific and quantifiable evaluation indexes by considering the IoV
application functions and performance requirements. Then, we build a roadside sensing and processing test system in a real
test zone to collect and process these evaluation indexes into accurate multidimensional ground-truth. According to the actual
test results of multiple manufacturers’ solutions, our proposed test method is verified to effectively evaluate the performance of
the system-level solutions in real IoV application scenarios. The unprecedented evaluation indexes, system-level test method,
and the actual test results in this paper can provide an advanced reference for academics and industry.

1. Introduction

In the Internet of Vehicles (IoV), in-vehicle entertainment,
traffic efficiency, and safety applications rely on the real-
time and dynamically perceived surrounding vehicles and
road information [1]. The information is first sensed by
the sensors as raw data, and then, data is processed by the
computing devices.

The sensors are assembled on the vehicle or the roadside,
including cameras, millimetre-wave radars (mmWave
radars), and lidars [2]. The camera has robust image recog-
nition capability and a lower price, which provides video
and image information in IoV [3]. However, the camera is
so susceptible to light that its raw data has poor quality in
strong light or dark environments [4]. Besides, the dynamic
sensing range of the camera is limited, and a single camera

cannot provide three-dimensional information [5]. The
mmWave radar is used for speed and distance detection in
IoV. It has a more comprehensive range of perception and
is less susceptible to environmental influences because of
its excellent penetration ability [6]. But mmWave radar does
not have a robust recognition capability as lidar. False detec-
tion and missing detection may occur due to the uncertainty
of the effective echo [7]. Lidar has advantages in sensing sta-
bility, response time, distance measure accuracy, and so on,
which achieves the high precise sensing of the traffic envi-
ronment. Lidar is not affected by the light but the specular
reflection on rainy days. The amount of data obtained by
lidar is far greater than mmWave radar, which requires
higher-performance computing capacity to support, and its
deployment cost is also relatively high [8, 9]. A single sensor
lacks the sensing ability required by IoV applications in
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complex scenarios [10]. Therefore, multimodal sensing
information fusion from multiple sensors is emerging as a
promising technology, which provides a more reliable and
wider range of perception capabilities without being affected
by the environment [11, 12]. But multimodal sensing for a
single vehicle cannot increase the vehicle’s perception range.
By means of cooperation between vehicles and roadside
infrastructures, multimodal sensing information can be
shared beyond the single vehicle’s light of sight and used
for complex traffic scenarios [13].

With the increment of sensing information from massive
sensors, the amount of multimodal data processed in IoV
increases exponentially. On the one hand, data processing
performance depends on the computing capacity of the
hardware equipment. To meet the requirement of vehicular
application’s computation intensiveness and delay sensitiv-
ity, multiaccess edge computing (MEC) is proposed to pro-
cess the sensing data closer to the vehicle than cloud
computing [14]. MEC has a relatively robust computing
and storage capacity to process the data fusion algorithm
timely and a multiaccess communication capacity to trans-
mit the processed data, reducing the end-to-end delay of
the applications [15]. On the other hand, the selection of
the data fusion algorithm also influences the data processing
performance. The algorithms for fusing the collected multi-
modal sensing data in IoV are mainly divided into three cat-
egories: raw data fusion (early-fusion), feature-level fusion,
and target-level fusion [16, 17]. Raw data fusion refers to
completing the superposition and fusion of multimodal data
(images, point clouds, etc.) before the target feature extrac-
tion, which preserves the raw information to the greatest
extent and generates high-precision sensing data [18, 19].
However, few manufacturers currently select raw data fusion
algorithms because of the problems such as complex time-
space synchronization and large consumption of computing
capacity for implementation. In contrast, target-level fusion
algorithms are the most common and widely used in the
industry. The target-level fusion algorithm fuses the struc-
tured data generated after raw data is returned by each sen-
sor independently, which is easy to implement and has agile
deployment [20]. The disadvantage of target-level fusion
algorithms is the loss of the raw data accuracy in the inde-
pendent data processing, resulting in a certain degree of
reduction in the accuracy of fusion sensing. Some manufac-
turers also choose feature-level fusion algorithms which
extract the features of raw information from different sen-
sors and then comprehensively analyse and process the fea-
ture information [21–24]. Lidar and camera fusion are
generally used as feature-level fusion, which reduces the dif-
ficulty of implementation, further enriches semantic infor-
mation, and ensures the accuracy of fusion sensing to a
certain extent [25, 26].

It is necessary to test the functionality and performance
of sensing and data processing devices before applying them
in real scenarios. At present, the test methods for sensors like
cameras, mmWave radars, and lidars are relatively mature
and have established the corresponding national or industry
test standards. For cameras, the related standards involve the
China group standard T/ITS 0184-2021 “Testing specifica-

tions for intelligent analysis function of road cameras” and
China group standard T/ITS 0171-2021 “Intelligent trans-
portation system—Technical requirements for roadside
cameras interface.” The test standards of the mmWave radar
are China group standard T/ITS 0128-2021 “Intelligent
transportation system—traffic condition detector by
millimetre-wave radar” and China group standard T/ITS
0172-2021 “Intelligent transportation system—Technical
requirements for the interface of millimetre-wave radar traf-
fic condition detector.” The standard related to lidar testing
is China group standard T/ITS 0173-2021 “Intelligent trans-
portation system—Technical requirements for roadside lidar
interface.” The processing device we mainly focused on as
roadside MEC has also developed a method to test the
capacity of its southern API linked to the sensing devices
and measure its computing capacity for data processing.
However, these existing test methods for the single device
cannot be directly applied to a system-level evaluation in real
scenarios. Specifically, Reference [27] proposes a new
method of lidar simulation, which implements the rapid cre-
ation of point cloud data with accurate point-level labels
using a computer game and a method for automatic calibra-
tion between point clouds and captured images. Reference
[28] focuses on the key function test at the system level of
autonomous driving software, which is based on the simu-
lated vehicle model that realizes the function. In Reference
[29], considering the relationship between different types
of vehicle kinematic simulation software, Minnerup and
Knoll combine different simulation software to meet more
simulation scenarios’ requirement. A large-scale complex
traffic network test environment is simulated in [30] based
on Microsoft AirSim. The vehicle kinematic model, virtual
reality environment model, automatic driving software,
and radar sensors are combined to form their autonomous
driving test platform in a virtual environment. Reference
[31] realizes a virtual environment for testing autonomous
driving by constructing the traffic environment of the test
vehicle; the simulation components of the camera, radar,
and lidar; and the data required by these sensors. Zhang
et al. [32] implement a new traffic scene modelling method
based on image sequences and road GIS data in the Road-
View system, which is used for performance evaluation
and testing of assisted autonomous driving software. Refer-
ence [33] uses lidar and cameras to scan the real traffic sce-
narios and generates the reasonable traffic flows of vehicles
and pedestrians from the acquired trajectory data, which
can be used for test scenario simulation. Reference [34] gives
a machine learning model to implement environmental per-
ception to test the sensing devices. One of the reasons is that
the definitions of test indexes changed. For instance, the
sensing delay in the device-level test only represents the time
taken by the single sensor to collect the raw data, which is
not suitable for describing the comprehensive sensing per-
formance in the system-level test. Another reason is the test
method needs to be redesigned from “device-level” to
“system-level” when devices and algorithms are coupled into
a system.

To measure the better performance of roadside sensing
and processing system in real scenarios, we first propose a
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novel multidimensional evaluation index system based on
IoV application functions and performance requirements.
Then, we build a roadside sensing and processing test system
in a real test zone to obtain the ground-truth of the evalua-
tion indexes. Finally, multiple manufacturers participated
in our test, and the test results show our test method can
effectively detect application-oriented system-level perfor-
mance in real IoV scenarios. The contributions of our work
include the proposed evaluation indexes, system-level test
method, the collected ground-truth, and actual test results
mentioned above, which have a positive effect on academic
research and industrial development.

The remaining of this paper is organized as follows. Sec-
tion 2 introduces the IoV general architecture. The evalua-
tion index system is proposed in Section 3. Section 4
elaborates on the test method and shows the test results with
analysis. Finally, in Section 5, we summarize this work and
introduce future work.

2. Architecture

In this section, a general architecture that supports multi-
modal sensing and processing to meet application functional
and performance requirements on the IoV is introduced in
Figure 1. It is a four-layer architecture, from bottom to
top, roadside equipment and end-user layer, MEC platform
layer, central cloud platform layer, and IoV application
layer.

At the lowest layer of the architecture, the multimodal
data derives from roadside/vehicular sensing devices and
intelligent traffic management infrastructures. The road-
side/vehicular sensing devices (cameras, mmWave radars,
lidars, etc.) collect raw data such as images, videos, and point
clouds in traffic scenarios. The intelligent traffic manage-
ment infrastructures (traffic signals, electronic identifica-
tions, etc.) periodically upload self-generated real-time data
to upper-layer devices in IoV [35, 36]. In the following, we
only focus on the multimodal sensing data collected by var-
ious sensors.

The multimodal data is first uploaded to roadside MEC
equipment before accessing the upper MEC layer. Roadside
sensing devices and intelligent traffic management infra-
structures are generally wired link to roadside MEC equip-
ment via star network topology to upload multimodal data.
The sensing data of vehicular sensing devices are first wire-
lessly transmitted to the roadside unit (RSU) through the
onboard unit (OBU) and then forwarded to the roadside
MEC equipment. After collecting raw data from sensors,
roadside MEC equipment generates structured sensing data
through time-space synchronization and data fusion execu-
tion, including status information of traffic participants
and real-time traffic target and event detection information.

Roadside MEC equipment is deployed near end-users to
process the sensing data with low latency. The processed
data, for one way, is broadcast to various traffic participants
via RSU, providing more diverse and detailed information
on collaborative perception, decision-making, and control
to these traffic participants. For another, the preprocessed
data is uploaded to the upper layer, providing data to sup-

port various applications on the regional MEC platform
and the central cloud platform.

The processed sensing information is ultimately used to
support the implementation of various IoV applications.
We will discuss the IoV applications in detail in the next sec-
tion. The realization of applications depends on the com-
bined implementation of different data processing
functional entities. The data processing functional entities
in IoV are divided into traffic participant detection, traffic
participant localization, traffic participant tracking, traffic
participant recognition, traffic flow detection, and so on. In
general, these functional entities are derived through
research from the standards and technical discussions.
According to the scenarios defined in the standards and
recent industry development, we have extracted the com-
mon requirements as the functional entities for roadside
perception systems in various scenarios.

In this work, we focus on the road sensing and process-
ing system, which involves the roadside MEC equipment
and the road sensing devices (framed by the red dashed line
in Figure 1).

3. Evaluation Index System

Corresponding to the data processing application functional
entities in the above architecture, we first convert them to
specific, quantifiable indexes and then test these indexes in
real scenarios for obtaining the ground-truth of our pro-
posed roadside sensing and processing test system. In Sub-
section 3.1, we first introduce the classified IoV
applications’ functional and performance requirements for
sensing and data processing capabilities. Subsection 3.2
describes the specific evaluation indexes used in the test sys-
tem described in the next section.

3.1. IoV Applications. We divide the applications into the
following four categories according to the capability require-
ments of IoV applications for perception information pro-
vided by multimodal data.

(1) Network Connection Applications. The realization of
these applications requires the network connection
to obtain external device (traffic signal, positioning
facility, etc.) information without sensing informa-
tion. Typical applications include traffic light count-
down, near-field payment, floating car data
collection, and road section traffic control instruc-
tion distribution.

(2) Basic Perception Applications. Sensing and comput-
ing devices are required to provide some basic per-
ception information (traffic flow data, weather
parameters, infrastructure status information, etc.)
for these applications. Applications such as traffic
flow detection, traffic incident identification, and
some safety warnings based on vehicle-road collabo-
ration are sorted into this category.

(3) Enhanced Perception Applications. Compared with
(2), these applications require the perception of
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more detailed, more precise, and more efficient traf-
fic microbehaviours (sensing range, sensing delay,
attribution, and status recognition of traffic partici-
pants), for example, intersection collision warning,
vulnerable road user collision warning, and sensing
data sharing.

(4) Collaborative Decision and Control Applications.
These applications have the highest demands on per-
ception, which requires all-weather, no blind spots,
and robust multimodal data for perception. The
applications enable millisecond-level system latency,
centimetre-level positioning accuracy, extremely
high detection accuracy of traffic incidents and traffic
flow, and continuous coverage sensing, for instance,
collaborative lane change, collaborative merge on
the highway, and crossing the intersection without
signal based on vehicle-road collaboration.

3.2. Evaluation Index System. Considering the data process-
ing functional entities and the application’s performance
requirements, we convert the functional entities into specific,
quantifiable evaluation indexes shown in Figure 2. Here, we
mainly consider the applications with perception demands.
The evaluation indexes are divided into five dimensions:
indexes of system essential capability, target recognition
capability, target positioning capability, and traffic flow

detection capability. We will describe the basis for index
selection and the definition of the indexes below.

From the perspective of the existing industry maturity,
the index system is complete. The indexes of system essential
capability, vehicular kinematics, and target classification are
common basic indexes, which quantify the specific perfor-
mance of the roadside perception system. The performance
of functional indexes such as the traffic flow detection capa-
bility index is restricted by common basic indexes. Generally
speaking, a roadside perception system with high accuracy
of common basic indexes is positively correlated with its
performance in functional indexes.

(1) System essential capability indexes include sensing
range, sensing delay, response time, sensing fre-
quency, and the maximum number of detected
targets

(i) Sensing range, strongly related to the value of posi-
tioning accuracy and considered the maximum
boundary that continuously outputs the target state
information under the positioning accuracy
required by the application layer from the perspec-
tive of supporting business continuity in real sce-
narios, is defined as the maximum distance at
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Figure 1: Architecture supports multimodal data sensing and processing in IoV applications.
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which the roadside sensing and processing system
can stably detect traffic participants or traffic inci-
dents with given positioning accuracy

(ii) Sensing delay, which represents the perception and
computing performance of the roadside sensing
and processing system, is defined as the delay from
raw data acquisition by sensors to generating struc-
tured data by data fusion processing. Sensing delay
is observed from the perspective of the roadside
equipment, the time difference from the start of
the first sensing device obtained the time the first
frame of sensing data, and the result calculated by
roadside MEC equipment. Sensing delay can also
be considered as the inverse of the sensing
frequency

(iii) Response time, evaluating the time deviation when
the vehicle and roadside sensors observed the target
at the same position and used to support various
vehicle-road collaborative applications, is defined
as the time deviation between the moment the road-
side sensing and processing system detects the pres-
ence of traffic participants at any position and the
moment when they are present. Response time is
observed from two perspectives of the vehicle and
the roadside equipment. From the vehicle’s perspec-
tive, the vehicle records the ground-truth of its
absolute position and the time corresponding to
the position. From the roadside equipment’s per-
spective, the time of the vehicle’s position is also
recorded. Response time is the time difference
between the recorded time from both vehicle and
the roadside equipment’s perspective. For IoV
applications, response time is more important and
practical than sensing delay. Because when the vehi-

cle arrives at a certain position, it is more important
to record the accurate time from roadside equip-
ment rather than observing the data from the per-
spective of the vehicle or roadside equipment

(iv) Sensing frequency, which is used to evaluate the
number of sensing message frames generated by
the roadside sensing and processing system per unit
of time and to guide the vehicle to design the receiv-
ing mechanism of roadside messages, is defined as
the instantaneous frequency mean of the sensing
messages sent by the roadside sensing and process-
ing system within a given sampling period

(v) The maximum number of detected targets is defined
as the maximum number of targets detected by the
sensing and processing system in a given period

(2) Target recognition capability indexes include recog-
nition accuracy, classification accuracy, missing
detection rate, and fault detection rate, which are
used to quantify the perception recognition capabil-
ity of the roadside sensing and processing system

(i) Recognition accuracy is defined as the ratio of the
number of correctly recognized samples by the
roadside sensing and processing system to the
actual total number of samples of a particular class
of traffic participants in the given test samples

(ii) Classification accuracy is defined as the ratio of the
number of samples that the roadside sensing and
processing system perceive correctly to the total
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Figure 2: Evaluation indexes for roadside sensing and processing system in IoV.
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number of samples of this particular class of traffic
participants in the given test samples

(iii) Missing detection rate is defined as the ratio of the
number of samples that the roadside sensing and
processing system does not perceive to the actual
total number of samples of a particular class of traf-
fic participants in the given test samples

(iv) Fault detection rate is defined as the ratio of the
number of samples that the roadside sensing and
processing system perceived does not match their
accurate class to the actual total number of samples
of a particular class of traffic participants in the
given test samples

(3) Target positioning capability indexes include posi-
tioning accuracy, speed detection accuracy, heading
angle detection accuracy, trajectory tracking success
rate, and dimensional detection accuracy. Position-
ing accuracy, speed detection accuracy, and heading
angle detection accuracy are used to describe the
deviation of the motion state of traffic participants
perceived by the roadside sensing and processing
system from its actual motion state, which reflects
the perception accuracy of the roadside sensing and
processing system to the traffic microbehaviours at
any given moment. Trajectory tracking success rate
and dimensional detection accuracy are used to eval-
uate the roadside sensing and processing system’s
capability to detect the trajectory tracking of traffic
participants and the spatial size of the targets

(i) Positioning accuracy is defined as the Euclidean dis-
tance between the latitude and longitude of the traf-
fic participants perceived by the roadside sensing
and processing system and their actual latitude
and longitude

(ii) Speed detection accuracy is defined as the deviation
between the value of the traffic participants’ speed
detected by the roadside sensing and processing sys-
tem and the value of their actual speed

(iii) Heading angle detection accuracy is defined as the
deviation between the value of the traffic partici-
pants’ heading angle detected by the roadside sens-
ing and processing system and the value of their
actual heading angle

(iv) Trajectory tracking success rate is defined as the
ratio of the number of targets that the roadside
sensing and processing system stably tracks, shown
as targets’ ID unchanged to the actual number of
targets within a certain time period

(v) Dimensional detection accuracy is defined as the
deviation between the value of the spatial size of

the traffic participants measured by the roadside
sensing and processing system and the value of their
actual spatial size

(4) Traffic flow detection capability indexes are used to
evaluate the capability of the roadside sensing and
processing system to detect traffic flow information,
which describes the traffic volume and concentration
like average time headway and lane occupancy. The
concepts of the traffic flow indexes are depicted in
the typical traffic flow theory, and we will not
describe them in detail here. The most accurate
way to measure these indexes is manual counting.
In addition, it is not easy to record the time param-
eter and test these indexes at the system level,
because there are many combination calculations of
the targets’ classification and targets’ status indexes
involved in testing these indexes. And the calcula-
tions are based on accurately identifying the targets.
Therefore, we selected the relative error of the traffic
flow of each lane in the truncation plane in the same
direction within the specified time as the traffic flow
detection capacity index in this paper, which is more
suitable for system-level testing

4. Test Method and Results

After giving the evaluation index system, in this chapter, we
will introduce the roadside sensing and processing test sys-
tem built by adopting these indexes detected in real scenar-
ios as the ground-truth. Comparing the test results with
the ground-truth of the test system, the performance of dif-
ferent solutions (sensing device deployments and algorithm
schemes) based on the proposed architecture can be tested
and evaluated. The test zone, composition, and provided
ground-truth of the roadside sensing and processing test sys-
tem are presented in Subsection 4.1. We introduce the test
method in Subsection 4.2. The test results are shown and
analysed in Subsection 4.3.

4.1. Test System. Our proposed test system is the first time to
collect the system-level ground-truth for roadside sensing
and processing system in real scenarios, providing a reliable
solution and dataset reference for system-level testing of
roadside sensing and processing system and simulation in
industry and academia.

The specific intersection used in the city is selected as the
test zone for the following reasons. The test zone with dense
traffic flow, multitype traffic participants, and weak signal
blockage can simulate the typical application scenarios in
the IoV to the maximum extent. In addition, rich infrastruc-
ture resources, a fully connected fibre-optic network, and the
abundant power supplement in the test zone can provide the
essential environment for meeting the common deployment
requirements. The test zone’s live picture and simulation
scene are shown in Figures 3(a) and 3(b), respectively.
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We build the roadside sensing and processing test sys-
tem in the test zone and collect the ground-truth of the eval-
uation indexes. The roadside sensing and processing test
system consists of the vehicular ground-truth test system
and the roadside ground-truth test system. The vehicular
ground-truth test system provides reference ground-truth
for single-target-oriented evaluation indexes, such as system
essential capability indexes, vehicular kinematic indexes, and
traffic incident detection capability indexes. The roadside
ground-truth test system provides reference ground-truth
for multi-target-oriented evaluation indexes, such as target
recognition capability indexes, trajectory tracking success
rate, and traffic flow detection capability indexes.

In the vehicular ground-truth test system, the vehicle is
equipped with high-precision integrated inertial navigation
RT-Range, providing the reference ground-truth of the
vehicular kinematic indexes such as the vehicle’s position,
pitch angle, heading angle, and other kinematic information
which is shown in Figure 4. The vehicle is equipped with
onboard RT-Range, including the RT-XLAN antenna,
RT3000, and a host computer. The positioning accuracy of
the vehicle can be premise within 0.02 metres (≤0.02m)
under a good signal environment. In the actual test process,
the vehicle’s positioning deviation in an area with very few
buildings will be limited to within 0.1 metres (≤0.1m),
caused by comprehensive factors such as signal blockage
and error compensation from gyroscope after the vehicle
outages. The main parameters of the indexes are described
in Table 1.

Figure 5 shows that the roadside ground-truth test sys-
tem consists of various sensors and an offline service proces-
sor. Lidar, sets of cameras, and backup roadside computing
equipment are integrated on the roadside. Lidar has 128
laser beams, and cameras collect point clouds and videos,
respectively. The raw sensing data will be back transmitted

to the offline service processor for offline AI processing
instead of processing on the roadside equipment, which is
aimed at obtaining more accurate roadside target informa-
tion. On this basis, the processed image is calibrated by man-
ually reviewing the videos. Considering the uncertainty of AI
processing, it is not easy to quantify the deviation of the
roadside ground-truth test system. In the actual evaluation,
we sample four real scenarios at the intersection and manu-
ally calibrated all data as the absolute ground-truth. Then,
we compare the result generated by the roadside ground-
truth test system and the absolute ground-truth, which
shows that our roadside ground-truth test system can meet
the following index requirements: (1) positioning accuracy
≤ 0:05m, (2) classification accuracy > 95%, (3) missing
detection rate < 3%, (4) fault detection rate < 3%, and (5)
tracking success rate > 90%.

The reasons why our proposed ground-truth test system
is reliable for testing the DUT are as follows. For the vehic-
ular ground-truth test system, the equipped integrated iner-
tial navigation RT-Range is higher precise than the mass-
produced DUT. For the roadside ground-truth test system,
all raw data collected by different sensors is transmitted back
to the offline service processor for data processing. However,
the DUT needs to process a large amount of data in real
time, which will force the DUT to appropriately discard a
part of the data. In addition, we manually calibrated the
processed data by random sampling. The test results verify
that the accuracy of our ground-truth system is much higher
than that of the DUTs.

4.2. Test Method. We further extract the evaluation indexes
except for the traffic flow detection capacity indexes in Sub-
section 3.2 into seven categories of indicators which are
shown in Figure 6: (1) sensing range, (2) sensing delay, (3)
sensing frequency, (4) vehicular kinematic indexes, (5)

(a) (b)

Figure 3: The specific in-use intersection as the test zone: (a) live picture; (b) simulation scene.

7Wireless Communications and Mobile Computing



trajectory tracking success rate, (6) identification accuracy
indexes, and (7) traffic flow detection capability. During
the testing process, four indexes ((1)–(4)) can be tested
simultaneously by a single-target mobile terminal with high
precision positioning for its state, as by the vehicular
ground-truth test system, which will be called the ground-
truth vehicle below. Testing the other two indexes ((5), (6))
and the traffic flow detection capacity indexes requires the
test system to perceive and recognize all traffic participants
at any time, which can be tested by the roadside ground-
truth test system. The relationship between evaluation
indexes and roadside sensing and processing test system is
shown in Figure 6. We will specifically introduce our test
method in the actual testing process below.

(1) Sensing Range. The ground-truth vehicle records its
position in real time, driving from outside into the

system’s sensing range. Suppose the DUT can detect
the vehicular ground-truth test system in 10 consec-
utive frames under the given positioning accuracy. In
that case, the sensing range is calculated as the
Euclidean distance between the position of the first
frame and the sensor calibration position.

(2) Response Time. A reference line perpendicular to the
direction of the lane line is first to be selected; then,
the ground-truth vehicle drives to the reference line
within the sensing range. The moment when the
vehicle reaches the reference line is recorded, and
the moment when the vehicle reaches the reference
line is extracted from the sensing message output
by the DUT. Calculate the time difference between
these two moments as the sensing delay.

(3) Sensing Frequency. Recording the timestamps of
adjacent sensing data frames, calculating the instan-
taneous time interval ϵ, the instantaneous system
frequency is 1/ϵ.

(4) Positioning Accuracy in Vehicular Kinematic Indexes.
The Euclidean distance between the position output
by the ground-truth vehicle and the position where
the DUT sensed the vehicle in a given period.

(5) Trajectory Tracking Success Rate. Selecting the data
frame with the largest number of targets and several
frames before and after, generating the ground-truth
sample B of the trajectory, and initializing the num-
ber of trajectories that the DUT can track stably as
A = 0, DUT is time-aligned with the data frame of
the ground-truth. If the target distance between the
DUT and the ground-truth is less than the threshold
and associated with the target’s ID, for each target, if
there is only one ID corresponding to the target ID
of ground-truth, we set A = A + 1. The success rate
of multitarget trajectory tracking is A/B ∗ 100%.

(6) Identification Accuracy Indexes. Setting the sample
size threshold according to the traffic flow of the real
scenario, the DUT detects synchronously with the

RT3000 Host computer

Vehicular ground-truth test system

Initial parameter setting

Kinematics ground-
truth collection

RT-XLAN antenna

Vehicle equipped with onboard RT-Range

Figure 4: The vehicular ground-truth test system.

Table 1: Main parameters of the indexes.

Indexes Parameters

Positioning accuracy SPS ≤ 1:5m, RTK ≤ 0:01m
Heading angle detection accuracy ≤0.1°

System frequency ≥100Hz

Attitude accuracy ≤0.03°

Speed detection accuracy ≤0.05 km/h

Tracking angle ≤0.07
Offset angle ≤0.15°

Acceleration range ±10g
Acceleration offset ≤2μg
Angular velocity range ≥100°/s
Angular velocity offset ≤2°/hr
Communication coverage ≥500m
Relative distance error ≤0.03m
Relative speed error ≤0.02m/s

Tracking target number ≥4
Line number ≥8
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roadside ground-truth system to collect enough sam-
ples. The ground-truth of each frame is generated by
the roadside ground-truth system, which is com-
pared with the DUT detected result.

(7) Traffic flow detection capability is reflected by the
relative error of the traffic flow of each lane in the
truncation plane in the same direction within the

Offline service processor

Roadside ground-truth test system

Back transmission

Roadside sensing system
lidar + cameras + roadside

computing equipment

Offline AI
processing

Manual
calibration

Multimodal sensing raw data1 Point clouds & video data2 Ground-truth3

Figure 5: The roadside ground-truth test system.
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Figure 6: The relationship between evaluation indexes and roadside sensing and processing test system.

Table 2: Different manufacturers’ solutions.

Solution 1 2 3 4 5 6 7 8 9 10 11 12 13

Lidars ✓ ✓

Integrated radar-video machine ✓ ✓

Camera+mmWave radar ✓ ✓

Camera+lidar ✓ ✓ ✓

Camera+lidar mmWave radar ✓ ✓ ✓ ✓

Roadside MEC ✓ ✓ ✓ ✓ ✓ ✓
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Figure 7: Continued.
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specified time, shown in Formula (1). In the actual
test, we set a truncation plane that covers four lanes
(Lane 1: left turn lane, Lanes 2 and 3: straight lane,
and Lane 4: right turn lane) in the test zone. The
sensing and processing systems under test collect
the traffic flow data of the truncation plane and each
lane within a specified time (10 minutes). The road-
side ground-truth test system records the traffic flow
statistics on the lanes during the test. If there exists
any disagreement with the test results of the roadside
ground-truth test system, we will manually recheck
the test results by videos:

Ptraffic flow = Tactual − T testj j ÷ Tactual × 100%, ð1Þ

where Ptraffic flow (%) represents the relative error between the
detected traffic flow and the actual traffic flow. Tactual is

defined as the number of vehicles passing the test truncation
plane in a given time in the same direction. T test denotes the
number of vehicles passing the test truncation plane detected
by the sensing and processing system under test in a given
time in the same direction. jxj is expressed as the absolute
value of x.

4.3. Test Results and Analysis. There are 13 roadside sensing
and processing solutions from different manufacturers that
participated in our test. Considering technical protection
and other issues, we anonymize and obfuscate the manufac-
turers’ names and devices’ information. But the solutions
selected by each manufacturer and the corresponding test
data shown here are real and accurate. In the test process,
almost all manufacturers have chosen the late-fusion data
fusion algorithms, and some of them directly deploy the
MEC server on the sensor side. The multimodal sensor com-
bination schemes selected by different manufacturers are
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Figure 7: System essential capability indexes for different solutions: (a) sensing range (m); (b) response time (ms); (c) sensing delay (ms); (d)
sensing frequency (no./s); (e) the maximum number of detected targets (no.).
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divided into five categories: lidars (solutions 1, 2), integrated
radar-video machine (solutions 3, 4), camera+mmWave
radar (solutions 5, 6), camera+lidar (solutions 7, 8, and 9),
and camera+lidar+mmWave radar (solutions 10, 11, 12,
and 13), which is shown in Table 2.

Corresponding to the evaluation indexes introduced in
Subsection 3.2, we present the test results and analysis of
these indexes below by categories.

We carry out two rounds of tests on sensing range,
response time, and sensing delay in four different lanes. Par-
ticularly, the sensing range is strongly related to positioning
accuracy. Therefore, we test the sensing range under the
condition of satisfying different positioning accuracies
(≤50 cm, ≤100 cm, ≤150 cm, and ≤200 cm). For sensing fre-
quency and the maximum number of detected targets, we
test them both during the peak period and the off-peak
period. The average value of the collected test data is used
as the test results of system essential capability indexes, sens-
ing range, response time, sensing delay, and sensing fre-
quency, and the maximum number of detected targets for
different solutions is shown in Figures 7(a)–7(e),
respectively.

From the result in Figure 7(a), we find that when the
given positioning accuracy requirement is within 200 centi-
metres, mmWave radar-based systems have a farther sens-
ing range of about 200 metres, and lidar-based systems’
sensing range is about 100 metres. But when the given posi-
tioning accuracy requirement is within 50 centimetres, only
lidar-based systems (solutions 2, 7) can generate a sensing
range of about 50 metres. With the expansion of the posi-
tioning accuracy range, the sensing range also continues to
expand. Figure 7(b) shows that it is about 70% of the solu-
tions that could achieve a response time of around 200 mil-
liseconds, and more than 50% of solutions could achieve
response delays of nearly 150 milliseconds. Since the test
method of the response time is strongly related to the posi-

tioning accuracy, the value can be positive or negative. In
Figure 7(c), the sensing delays of all other solutions with
valid test data except for solution 6 are all within 100 milli-
seconds. By calculating the data in Figure 7(d), there are
about 10.53 and 10.33 average sensing message frames gen-
erated by the roadside sensing and processing system per
unit of time during the off-peak and the peak periods,
respectively. Among the test results, solution 6 had the most
prominent one. According to the results in Figure 7(e),
approximately 38.67 and 45.83 targets can be detected as
the maximum number by the roadside sensing and process-
ing system in the given period on average during the off-
peak and the peak periods, respectively. The outstanding
solution 9 even detects the number of targets as nearly three
times the average during the peak period.

Three types of traffic participants: vehicles, nonmotor
vehicles, and pedestrians are considered the different targets
in the target recognition capability tests. The test results of
recognition accuracy, classification accuracy, missing detec-
tion rate, and fault detection rate are shown in
Figures 8(a)–8(d), respectively. In accordance with the data
shown in the figures, we can conclude that for the target as
a vehicle, the average recognition accuracy of all the solu-
tions is slightly over 60%. It is about 85% of the solutions’
classification accuracy which is over 90%, which is more
accurate than the situation of the target as nonmotor vehicle
and pedestrian. The recognition and classification capabili-
ties of each solution in terms of nonmotor vehicles and
pedestrians are quite different, and the overall performance
needs to be further improved. It is worth noting that the
false detection rate of all traffic participants is basically con-
trolled by 10%. But the missing detection rate of all traffic
participants is fairly high. The reasons for this result relate
to weather, the number of traffic participants, point cloud
occluded by large vehicles, and so on, which is not easy to
control in a real scenario.
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Figure 8: Target recognition capability indexes for different solutions: (a) recognition accuracy (%); (b) classification accuracy (%); (c)
missing detection rate (%); (d) fault detection rate (%).
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The average value of two-round tests for positioning
accuracy, speed detection accuracy, heading angle detection
accuracy, and dimensional detection accuracy in four differ-
ent lanes is given in Figures 9(a)–9(e), respectively.
Figure 9(a) illustrates that more than 50% of the solutions
can position within the accuracy of 2 metres. The position-
ing accuracy of some solutions (solutions 1, 2, and 7) can
be within 1 metre. In Figure 9(b), more than 60% of the
solutions have relatively high accuracy of speed detection;
the deviation between the detected vehicle speed and its
actual speed can be limited to within 1m/s. Figure 9(c) pro-
vides some interesting data regarding the heading angle
detection accuracy of some solutions (solutions 5, 10, and
11). These mmWave radar-based solutions have a short-
term outage of detecting the vehicle’s heading angle caused
by the stationary state of the vehicle (such as stopping at a
traffic light) in continuous tracking because of the zero-

Doppler filtering detection principle. As shown in
Figure 9(d), the range of the trajectory tracking success rate
distribution is approximately between 25% and 65%. The
reason for the unsatisfied results is caused by the occlusion
of the vehicles, which leads to the interruption of trajectory
tracking. Figure 9(e) only demonstrates the dimensional
detection accuracy results of the valid solutions. We can
see that the detection accuracy of vehicle height and width
is relatively higher than vehicle length. In addition, both
integrated radar-video machine solutions (solutions 3, 4)
and camera+mmWave radar solutions (solutions 5, 6) fail
to detect the dimensional information of the vehicles. The
solutions based on camera+lidar (solutions 7, 8, and 9) pro-
vide the best performance of dimensional detection accuracy
of all the solutions.

The traffic flow detection capability index, the relative
error of detected traffic flow (%) in 4 lanes for different
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Figure 9: Target positioning capability indexes for different solutions: (a) positioning accuracy (m); (b) speed detection accuracy (m/s); (c)
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solutions, is shown in Figure 10. Solutions based on camera
+lidar (solutions 7, 8) fail to give valid data and are not
depicted in the figure. The test results reveal that the traffic
flow detection performance of the straight lanes (Lanes 2
and 3) and the left turn/right turn lane (Lanes 1 and 4) is
generally quite different. All solutions perform the most
robust traffic flow detection capability on the straight lane
(Lane 2) with an average of about 20% relative error of
detected traffic flow. In addition, five test results are too large
to be shown in the figure, which is due to oversegmentation
during the detection.

The test results show that various solutions give different
performances for different detection indexes. Therefore, we
only give this real test data to readers as a reference but can-
not draw a conclusion about which type of solution has the
best performance comprehensively. Moreover, based on the
analysis of the actual test process and results, we summarize
the following main factors that affect the performance of the
roadside sensing and processing solutions in IoV: (1) prob-
lems in calibration, including static calibration, camera cali-
bration, external parameter calibration of lidar, and timing
synchronization; (2) the bottleneck of the equipment, like
the bottleneck of hardware in different multimodal sensor
combination schemes and the restricted computing capacity
of roadside MEC; (3) advantages and disadvantages of dif-
ferent multimodal sensing information fusion algorithm
designs, such as early-fusion, feature-level fusion, target-
level fusion, and algorithms. At present, the perception
equipment of traditional intelligent transportation is only
suitable for some safety warning scenarios for vehicle-road
collaborative applications. These kinds of scenarios are
mainly based on the perception capability of the vehicle
and are less dependent on the perception capability of the
roadside equipment. However, for other vehicle-road collab-
orative applications, especially for complex functional sce-
narios like collaborative traffic and high-level autonomous

driving, there is still room for improvement in technology
and product maturity. From the perspective of the index’s
decisiveness, common basic indexes such as system essential
capability, vehicular kinematics, and target classification are
more decisive, which directly affects the performance of
functional indexes. In the next step, considering the different
categories of application scenarios, we will develop a graded
classification standard for roadside perception systems based
on our proposed evaluation index system to promote the
improvement of roadside perception system-related prod-
ucts’ performance and technology maturity.

5. Conclusions

We propose a system-level test method to evaluate roadside
multimodal sensing and processing solutions in real IoV sce-
narios. To this end, we summarize the evaluation index sys-
tem corresponding to the sensing data processing
application functional entities of IoV applications and build
the roadside sensing and processing test system to collect the
ground-truth in real scenarios. The test results show that our
proposed test system can effectively evaluate the perfor-
mance of the IoV sensing and processing system in real sce-
narios. In the future, we will continue to research the test
method to improve the accuracy of the ground-truth under
the multi-target-oriented test and improve the integration
level of test equipment and flexible deployment capabilities.
In addition, we will build a test prototype that simulates the
real scenario based on the absolute ground-truth, which pro-
vides a low-cost and high-efficiency laboratory test method
for academic research and industrial development.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.
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