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Although the performance estimation of technological innovation activities in the Chinese high-tech industry has been discussed
continuously in prior literature, few studies analyze the imbalance development of subindustries and regional heterogeneity.
Therefore, this study develops a parallel slack-based measure data envelopment analysis approach to estimate the innovation
efficiency of the high-tech industry from regional and industrial perspectives. Compared with prior research, the proposed
SBM-DEA model can be used to identify the inefficiencies caused by the subindustries via considering internal subindustries as
parallel subunits. The proposed model is applied in the Chinese high-tech industry between 2011 and 2014. Empirical results
reveal three critical findings. First, there exists an improving potential for innovation efficiency. Second, significant disparities
in innovation efficiency are observed at the industrial level and regional level. Third, the inefficiency of the high-tech industry
mainly stems from the low performance of the electronic equipment and communication equipment subindustry and
computer and office equipment subindustry. Some suggestions for enhancing innovation efficiency are also proposed.

1. Introduction

Generally, the high-tech industry is regarded as a set of
enterprises executing intense innovation activities with
advanced technology foundations [1], playing a critical role
in the economic development in China. Therefore, the Chi-
nese government launched a series of innovation-related
policies to facilitate innovation in the high-tech field [2],
such as the national high-tech research and development
program (863 programs) and “Made in China 2025.” In
the past decades, China’s high-tech industry developed dra-
matically, which was reflected by the significant expansion in
scale. The business income of China’s high-tech sector in
2019 (i.e., 15.88 trillion RMB) is 2.66 times as large as that
in 2009 (i.e., 5.96 trillion RMB) [1, 3]. The high-tech indus-
try is an important force for innovation. However, the 2020
Global Innovation Index reports that China ranks 14th out
of 131 economies. It indirectly indicates that although
China’s high-tech industry developed remarkably, there

exists a long way to catch up with developed countries in
innovation. Therefore, improving the performance in the
high-tech industry is an urgent issue in China.

The first thing of performance improvement is the per-
formance evaluation of innovation production. In existing
studies, innovation production is considered as a complex
transformation process of innovation resources to innova-
tion outcomes, and the performance of innovation produc-
tion can be evaluated by a comprehensive metric called
“innovation efficiency” (e.g., [2, 4, 5]). Innovation efficiency
is defined as the rate of resource investments to outcomes in
innovation production [4]. In short, it attaches a greater
innovation efficiency if it achieves more outcomes with con-
sistent investments or achieves consistent outcomes with
fewer investments. Accordingly, innovation efficiency is an
appropriate indicator to quantify innovation performance.
By doing so, government agencies can allocate resources
more reasonably and formulate relevant policies to facilitate
innovation outcomes.
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Although existing performance research in the high-tech
field is booming, most of them regard the high-tech sector as
an integral (e.g., [4, 6, 7]). Few studies consider the inner
structure to further analyze the inefficiency source of the
high-tech sector by identifying the efficiency level of subin-
dustries. In practice, the high-tech sector includes many sub-
industries, such as the manufacture of medical and
pharmaceutical products (MPP), electronic equipment and
communication equipment (EECE), computer and office
equipment (COE), and medical equipment and measuring
instrument (MEMI). However, unbalanced development
exists in the high-tech subindustries in China [8], which
results in an uneven industrial structure. For example, EECE
is the largest subindustry with the greatest profit (i.e., 46.8%
of the entire industry) in 2016. In addition, the development
of the industry is unbalanced across different regions in
China [4]. Different regions and different subindustries
may have various innovation efficiencies. Consequently, to
close the aforementioned knowledge gap, this paper
attempts to investigate innovation performance from the
perspective of subindustries and regions.

The contributions of this study are twofold. First, this
paper develops a novel theoretical approach to estimate
the innovation efficiency and identify the inefficiency
source caused by subindustries on the strength of the data
envelopment analysis (DEA) approach. The proposed par-
allel slack-based measure (SBM) DEA model can decom-
pose innovation productions of the high-tech industry
into four subindustries via taking each subindustry as a
parallel subunit. Second, this study conducts the empirical
application in China and investigates the regional disparity
of innovation inefficiency, which provides some policy
implications for ameliorating the innovation performance
in the high-tech sector and balancing regional
development.

The remaining parts of this study are structured as fol-
lows. Relevant literature is reviewed in the following Section
2. Next, the methodology for measuring innovation effi-
ciency is illustrated in Section 3. Then, Section 4 shows the
application of the proposed approach in China’s high-tech
sector. Finally, Section 5 summarizes the conclusions.

2. Literature Review

There are several works on innovation efficiency evaluation
in the high-tech field [9–11], in which DEA is a widely
applied approach [4]. DEA was created by Charnes et al.
[12], and it is aimed at quantifying the relative efficiency
among decision-making units (DMUs) via constructing an
optimal production frontier. Due to the complexity of an
innovation system, a multifactor measurement should be
selected in the evaluation of innovation efficiency. DEA con-
siders multiple inputs and outputs, so it is widely confirmed
as a suitable tool to measure innovation efficiency [5, 13].

Based on the DEA method, the existing applications of
the innovation efficiency evaluation of high-tech sector can
be summarized into two strands: evaluations with one-
stage DEA and evaluations with two-stage DEA. One strand
estimates efficiency by one-stage DEA in the high-tech

industry at various levels, such as enterprise, industry, and
region. For example, Lu et al. [14] use the DEA method to
assess the R&D efficiency of 194 Taiwanese high-tech enter-
prises and explore the influence factors of the efficiency.
Similarly, Chen et al. [15] apply the Malmquist index
approach to assess the technological innovation efficiency
of six Taiwanese science and technology parks from 1991
to 1999. Raab and Kotamraju [16] investigate the technical
efficiency in the high-tech sector across America’s 50 states
in 2002 from the perspective of regional disparity. Li et al.
[7] develop a metafrontier dynamic DEA to investigate the
efficiency of the Chinese regional high-tech sector. In this
research direction, Han et al. [17] evaluate the R&D effi-
ciency in the Chinese high-tech sector and investigate the
effect of investment on efficiency. The above studies provide
various efficiency evaluation approaches of high-tech inno-
vation systems from different perspectives, while they fail
to consider the inefficiency derived from subindustries.

The other strand of efficiency estimations deposes the inno-
vation production process into two-stage systems to assess each
stage’s efficiency. For instance, Guan and Chen [6] introduce a
measurement approach to investigate the performance of the
entire process and internal subprocesses for China’s high-tech
innovations. This work divides the innovation process into
R&D process and commercialization process. Zhang et al.
[13] construct a Russell multiactivity network DEA model to
investigate the innovation performance of R&D process and
commercialization process in the Chinese high-tech sector
between 2009 and 2013 and provide some specific management
implications. Similarly, Wang et al. [18] propose a DEA model
to explore the operation efficiency, R&D efficiency, andmarket-
ability efficiency of 65 Taiwanese high-technology enterprises
during 2006-2007. From the point of innovation value chain,
Chen et al. [4] construct a comprehensive evaluation model
using the DEA method to investigate the efficiency of China’s
29 regional high-tech sectors between 2010 and 2011. Echoing
the former studies, Chen et al. [4] also develop the model with
sharing inputs and accessional intermediate inputs to reveal
the performance of R&D stage and commercialization stage.
These studies focus mainly on the high-tech industry in an inte-
grated manner but do not distinguish the internal subindustries
and explore their performance.

Notably, the abovementioned one-stage analyses con-
sider the innovation process as a “black box,” while neglect-
ing the multistage characteristic of the high-tech innovation
[4]. Several researchers decompose the “black box” into the
two-stage process: upstream process and downstream pro-
cess, which can be seen as a serial structure. Moreover, the
upstream process and the downstream process are interre-
lated with each other. Nevertheless, this type of performance
evaluation without considering the internal independent
subunits may not achieve a solid measurement for the unit
[19, 20]. The Chinese high-tech industry contains several
subindustries, which are independent of each other. The
innovative activities in subindustries are conducted in paral-
lel. Therefore, these subindustries can be deemed as a paral-
lel structure. Each subindustry utilizes resources to acquire
outputs in the actual innovation process, which leads to per-
formance diversity across subindustries. From this
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perspective, the existing technique for estimating the inno-
vation performance in the high-tech sector might be not
solid without taking performance differences in parallel sub-
industries into account, which may provide insufficient evi-
dence for policymakers. Thus, it is quite essential to
estimate the innovation performance of the subindustries
under the high-tech industry. However, to date, this issue
has not been explored in the literature.

To address the abovementioned issue, a parallel DEAmodel
may be adopted as it is suitable to evaluate innovation efficiency
within a parallel system [21]. The concept of the parallel DEA

model was proposed by Kao [22], which was designed for the
measurement of the efficiency within a system with multiple
individual components. The system structure can be considered
as a parallel structure when eachDMUhas the same production
process. Following Kao [22], this study regards the high-tech
sector as a parallel structure. That is to say, each subindustry
is a parallel subsystem. With this decomposition, the ineffi-
ciency sources hidden in the subindustries could be detected.
Therefore, the efficiency evaluation considering subindustry
conditions is an emerging research topic that should be paid
more attention to.

Table 1: Notation definition.

Symbol Description

XL R&D personnel

XC R&D capital

XE R&D expenditure

YP Patents in force

YR Sales revenue of new products

XLh R&D personnel of MPP, EECE, COE, and MEMI (hereinafter referred to as four subindustries), respectively

XCh R&D capital of four subindustries, respectively

XEh R&D expenditure of four subindustries, respectively

YPh Patents in force of four subindustries, respectively

YRh Sales revenue of new products of four subindustries, respectively

h The specific subindustry h (h = 1, 2, 3, 4)
j The jth decision-making unit

θi Innovation efficiency for DMU i in model (1)

s−l Slack variable for R&D personnel

s−c Slack variable for R&D capital

s−e Slack variable for R&D expenditure

s+p Slack variable for patents in force

s−r Slack variable for sales revenue of new products

λj The participation intensity of each evaluated DMU in constructing the production frontier

ρi Innovation efficiency for DMU i in model (2)

sh−l Slack variable for R&D personnel of four subindustries, respectively

sh−c Slack variable for R&D capital of four subindustries, respectively

sh−e Slack variable for R&D expenditure of four subindustries, respectively

sh+p Slack variable for patents in force of four subindustries, respectively

sh−r Slack variable for sales revenue of new products of four subindustries, respectively

ωh The weights of four subindustries, respectively

λhj
The participation intensity of each evaluated DMU in constructing the production frontier corresponding to four subindustries,

respectively

ρi1 Innovation efficiency of MPP for DMU i in model (2)

ρi2 Innovation efficiency of EECE for DMU i in model (2)

ρi3 Innovation efficiency of COE for DMU i in model (2)

ρi4 Innovation efficiency of MEMI for DMU i in model (2)

3Wireless Communications and Mobile Computing



Overall, some studies have provided evidence on the per-
formance assessment in the high-tech sector with one-stage
or two-stage DEA methods, while most researchers ignored
the internal independent subindustries. Related investigation
on the innovation performance of the high-tech subindus-
tries to explore regional disparities is still not sufficient.
Therefore, the innovation performance measurement and
inefficiency source identification of the high-tech sector need
to be discussed further.

3. Methodology

To assess the innovation efficiency in the high-tech sector, a
parallel SBM-DEA model is proposed with consideration of
internal subindustry structure. In this section, the concep-
tual structure, related variables, and the developed parallel
SBM-DEA model are illustrated. To show the model clearly,
relevant notations are listed in Table 1.

3.1. Structure and Variable. The high-tech industry is com-
posed of four subindustries (i.e., MPP, EECE, COE, and
MEMI) in this study. The revenue from principal business
of these four subindustries accounts for 95.53% of that of
the industry in China in 2016, and they together contribute
most of the innovation activities. Therefore, the high-tech
industry is subdivided into four parallel subindustries. The
industry structure is displayed in Figure 1.

Prior studies have proposed various input and output vari-
ables to measure innovation efficiency. Wang and Huang [23]
argue that investments in innovation activity mainly include
physical resources and human resources, which can be repre-
sented by R&D expenditures and R&D personnel. The two var-
iables are widely applied in existing research (e.g., [11, 24]). To
better quantify the inputs in the innovation process, Chen et al.
[4] adopt R&D capital as another input variable. Accordingly,
R&D personnel, R&D expenditure, and R&D capital are
selected as innovation inputs in this paper. As for the innova-
tion outputs, the granted patent is the most appropriate substi-
tute [25, 26]. Regarding the economic benefit, the commercial
value of innovation activities is regarded as an output variable

[27]. Following the common practices [4, 28], the sales revenue
of new products, recording the final economic output obtained
from innovation activities, is another output in this research.
Consequently, five input and output variables are adopted to
describe the innovation process of the high-tech sector.

The innovation inputs include XL (i.e., R&D personnel),
XC (i.e., R&D capital), and XE (i.e., R&D expenditure). Two
outputs include YP (i.e., patents in force) and YR (i.e., sales
revenue of new products). Each subindustry consumes XL,
XC, and XE to produce some amount of YP and YR. XLh,
XCh, XEh, YPh, and YRh (h = 1, 2, 3, 4) represent the R&D
personnel, R&D capital, R&D expenditure, patents in force
output, and sales revenue of new products of MPP, EECE,
COE, and MEMI, respectively. h expresses the specific sub-
industry. Note that the sum amount of input/output of four
subindustries is equivalent to that of the entire high-tech
industry, i.e., XL =∑4

h=1XL
h, XC =∑4

h=1XC
h, XE =∑4

h=1XE
h

, YP =∑4
h=1YP

h, and YR =∑4
h=1YR

h.

3.2. Innovation Efficiency Estimation Model

3.2.1. Innovation Efficiency Estimation in an SBM-DEA
Model. To estimate innovation efficiency, a province’s high-
tech sector is regarded as a DMU, represented as DMUj

(j = 1, 2,⋯, n). In the practical innovation process, all DMUs
tend to obtain desirable outputs as much as possible with inputs
as little as possible. The SBMmodel can distinguish inefficiency
sources effectively in the measurement based on the “input
excess” or “output shortfall” of each variable [29, 30]. Because
of this advantage, the SBM model has been broadly used in
the literature (e.g., [20, 31]). Consequently, this study employs
the SBM model to evaluate innovation efficiency.

Firstly, an innovation efficiency estimation model is pro-
posed for the whole high-tech industry, which does not con-
sider internal subindustries. The measure model is as
follows:

θi =min 1 − 1/3 s−l /XLi + s−c /XCi + s−e /XEið Þ
1 + 1/2 s+p /YPi + s+r /YRi

� � ,

s:t:〠
n

j=1
λjXLj + s−l = XLi,

〠
n

j=1
λjXCj + s−c = XCi,

〠
n

j=1
λjXEj + s−e = XEi,

〠
n

j=1
λjYPj − s+p = YPi,

〠
n

j=1
λjYRj − s+r = YRi,

〠
n

j=1
λj = 1,

λ j, s−l , s−c , s−e , s+p , s+r ≥ 0,
j = 1, 2,⋯, n,

ð1Þ

of which s−l , s
−
c , s

−
e , s

+
p , and s+r are the slack variables for
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Figure 1: The high-tech industry in China with four parallel
subindustries.
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R&D personnel, R&D capital, R&D expenditure, patents in
force, and sales revenue of new products in the whole
high-tech sector, respectively. The slack variable expresses
the evaluated DMU’s “input excess” and “output shortfall”
by taking the efficient DMU as the benchmark. i represents
the specific DMU; λj represents the participation intensity of
each evaluated DMU in constructing the production fron-
tier. θi denotes the innovation efficiency value, being in the
range of (0, 1]. If θ∗i = 1 and all slack variables are 0, the
innovation efficiency of DMU i would be regarded as effi-
cient. If not, it would be regarded as inefficient. If one
DMU shows a greater efficiency value than others, it is con-
sidered that this DMU operates better than others in the
innovative production process.

3.2.2. Innovation Efficiency Estimation in a Parallel SBM-
DEA Model. In this study, the high-tech industry is taken
as a parallel innovation system including four subindustries.
Referring to Kao [22] and Kao and Hwang [32], the innova-
tion efficiency of the high-tech industry with the consider-
ation of parallel subindustries could be measured through
the following formula:

ρi =min ∑4
h=1ωh 1 − 1/3 sh−l /XLhi + sh−c /XCh

i + sh−e /XEh
i

� �� �

∑4
h=1ωh 1 + 1/2 sh+p /YPh

i + sh+r /YRh
i

� �� �h i ,

s:t:〠
n

j=1
λ1j XL

1
j + s1−l = XL1i , 〠

n

j=1
λ1j XC

1
j + s1−c = XC1

i , 〠
n

j=1
λ1j XE

1
j + s1−e = XE1

i ,

〠
n

j=1
λ1j YP

1
j − s1+p = YP1

i , 〠
n

j=1
λ1j YR

1
j − s1+r = YR1

i ,

〠
n

j=1
λ2j XL

2
j + s2−l = XL2i , 〠

n

j=1
λ2j XC

2
j + s2−c = XC2

i , 〠
n

j=1
λ2j XE

2
j + s2−e = XE2

i ,

〠
n

j=1
λ2j YP

2
j − s2+p = YP2

i , 〠
n

j=1
λ2j YR

2
j − s2+r = YR2

i ,

〠
n

j=1
λ3j XL

3
j + s3−l = XL3i , 〠

n

j=1
λ3j XC

3
j + s3−c = XC3

i , 〠
n

j=1
λ3j XE

3
j + s3−e = XE3

i ,

〠
n

j=1
λ3j YP

3
j − s3+p = YP3

i , 〠
n

j=1
λ3j YR

3
j − s3+r = YR3

i ,

〠
n

j=1
λ4j XL

4
j + s4−l = XL4i , 〠

n

j=1
λ4j XC

4
j + s4−c = XC4

i , 〠
n

j=1
λ4j XE

4
j + s4−e = XE4

i ,

〠
n

j=1
λ4j YP

4
j − s4+p = YP4

i , 〠
n

j=1
λ4j YR

4
j − s4+r = YR4

i ,

〠
n

j=1
λhj = 1, h = 1, 2, 3, 4,

sh−l , sh−c , sh−e , sh+p , sh+r ≥ 0,

λhj ≥ 0,
j = 1, 2,⋯, n:

ð2Þ

Similarly, ρi expresses the innovation efficiency in the
high-tech industry for DMU i, also being in the range of
(0, 1]. si−l , s

i−
c , s

i−
e , s

i+
p , and si+r are slack variables attached to

R&D personnel, R&D capital, R&D expenditure, patents in
force, and sales revenue of new products for four subindus-
tries, respectively. ωh (h = 1, 2, 3, 4) denotes the exogenous
weights of four subindustries, meeting the constraint: ∑4

h=1
ωh = 1; λij (h = 1, 2, 3, 4) represents the participation inten-
sity of each evaluated DMU for constituting the production
frontier.

Note that the optimal solutions obtained under model
(2) for measuring innovation efficiency can be used to calcu-
late the efficiencies of four subindustries further, i.e., ρi1, ρi2,
ρi3, and ρi4, respectively. Specifically, the slack variables for
MPP, EECE, COE, and MEMI are optimized to get the over-
all innovation efficiency in model (2). By solving model (2),
the efficiencies of four subindustries can be calculated by the
corresponding formulas.

ρi1 = min 1 − 1/3 s1−l /XL1i + s1−c /XC1
i + s1−e /XE1

i

� �

1 + 1/2 s1+p /YP1
i + s1+r /YR1

i

� � , ð3Þ

ρi2 = min 1 − 1/3 s2−l /XL2i + s2−c /XC2
i + s2−e /XE2

i

� �

1 + 1/2 s2+p /YP2
i + s2+r /YR2

i

� � , ð4Þ

ρi3 = min 1 − 1/3 s3−l /XL3i + s3−c /XC3
i + s3−e /XE3

i

� �

1 + 1/2 s3+p /YP3
i + s3+r /YR3

i

� � , ð5Þ

ρi4 = min 1 − 1/3 s4−l /XL4i + s4−c /XC4
i + s4−e /XE4

i

� �

1 + 1/2 s4+p /YP4
i + s4+r /YR4

i

� � : ð6Þ

Based on model (2) and equations (3)–(6), the overall
innovation efficiency and subindustries’ efficiencies can be
both obtained. In addition, we can derive a conclusion that
the high-tech industry is overall efficient if and only if all
subindustries are efficient.

4. Empirical Study

The above parallel SBM-DEA model is utilized to evaluate
the innovation performance in China’s high-tech sector.
This section first illustrates the data source. Then, the results
of regional innovation efficiency are presented and
discussed.

4.1. Data Source. The Chinese mainland has 31 province-
level regions, while due to data lacking, some regions are
not included in this study. Our samples include 17 regions
in China. Following Hu and Wang [33], these regions are
further classified into three major areas. Beijing, Shanghai,
Tianjin, Liaoning, Hebei, Zhejiang, Shandong, Guangdong,
Fujian, and Jiangsu belong to the east area. The center area
includes Henan, Hunan, Jiangxi, Hubei, and Anhui. Shaanxi
and Sichuan are in the west area.

As mentioned above, five variables, including inputs and
outputs, are used for quantifying innovation efficiency. In
this study, R&D personnel adopts the sum of research
employees, including designers, engineers, and relevant staff
who are crucial participants in R&D activities. R&D
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expenditure is the total expenses on internal R&D activities
of enterprises per year. R&D capital refers to the accumu-
lated resource stock in enterprises, providing basic support
for innovation activities. Nevertheless, there are no official
statistical data on the R&D capital for China’s high-tech sec-
tor. Hence, following Chen et al. [4], the perpetual inventory
method is also utilized to assess R&D capital. The year 2000
is regarded as the base period. The depreciation rate is set as
8%. This study also takes the data of the year 2000 divided
by 10% as the base level. For the introduction to the perpet-
ual inventory method, see Hall and Jones [34]. Patents in
force refer to the total valid patents that can be used in enter-
prises [35]. Sales revenue of new products is the total sale
returns of new products.

The annual data of inputs and outputs from 2011 to
2016 are acquired from China Statistical Yearbook on the
High Technology Industry. Furthermore, in prior literature,
the time lag effect between innovation activities and com-
mercial operation is a significant consideration for the inno-
vation performance analysis. Referring to Guan and Chen
[6] and Hong et al. [36], this paper also sets a 1-year lag
for the patents in force after R&D inputs and then another
1-year lag for the sales revenue. Additionally, all currency
data are transformed at the 2011 price for removing the
inflation impact. Table 2 displays five variables’ descriptive
statistics in 2011.

4.2. Innovation Efficiency Analysis. To calculate innovation
efficiency by the proposed model, the weights for four subin-
dustries need to be determined first. In the literature, the
industry structure proportion (ISP) is an appropriate indica-
tor to measure subindustries’ weights [31, 37–40]. The high-
tech industry structure proportion (HISP) refers to the pro-
portion of the main business income of a subindustry to that
of the entire industry in this study. The average HISP values
of MPP, EECE, COE, and MEMI during the period of 2013
to 2016 are 0.1839, 0.5369, 0.1715, and 0.0763, respectively.
Hence, the weights of four subindustries can be determined
according to the corresponding average HISP values (i.e.,
ω1 = 0:1839/ð0:1839 + 0:5369 + 0:1715 + 0:0763Þ = 0:1899,
ω2 = 0:5543, ω3 = 0:1771, and ω4 = 0:0788).

4.2.1. Analysis from an Overall Perspective. The efficiency
results under model (2) are listed in Table 3. It can be seen
that the innovation efficiencies of the high-tech sector
between 2011 and 2014 are in the range of [0.5, 0.6]. The
overall innovation efficiency rises slightly while still at a
lower level [41, 42]. This implies that there exists much
improvement room for the innovation performance in
China’s high-tech sector.

Moreover, distinct differences in subindustry efficiencies
are observed. Specifically, the average efficiency values of
MPP, EECE, COE, and MEMI subindustries during 2011-
2014 are 0.746, 0.516, 0.497, and 0.660, respectively. The
average innovation efficiency value of MPP is the largest,
followed by MEMI and EECE, while COE performs the
worst [43, 44]. The efficiency gap between MPP and COE
is 0.249. This indicates that the unbalanced development
among subindustries should be concerned. The resource

investment into each subindustry needs to be comprehen-
sively considered. In addition, in 2011 and 2012, COE is
observed with the lowest efficiency value among four subin-
dustries (i.e., 0.451 and 0.480), while in 2013 and 2014,
EECE has the lowest efficiency value (i.e., 0.528 and 0.483).
It indicates that the inefficiencies in the high-tech sector
are primarily derived from the poor performances of EECE
and COE. Therefore, EECE and COE should be given prior-
ity over MPP and MEMI for their lower performances.

Furthermore, Figure 2 displays the results of the high-
tech industry’s innovation efficiency among 17 regions. As
shown, the disparities among regions are observed distinctly.
Beijing and Guangdong have higher innovation efficiencies
(more than 0.8) during the observed period. Specifically,
only Beijing performs efficiently during 2011-2013, while it
performs inefficiently in 2014 (i.e., 0.847). The innovation
efficiencies of most regions (e.g., Henan, Hunan, Tianjin,
Jiangsu, Shanghai, and Shandong) are in the range of [0.4,
08], whereas Hebei has the lowest innovation efficiency
value from 2011 to 2014 (i.e., 0.227, 0.279, 0.308, and
0.273, respectively). This suggests that there exists a great
potential to improve innovation performance in Hebei.

4.2.2. Analysis from a Subindustry Perspective. To further
analyze the subindustry disparities in innovation efficiencies,
the mean innovation efficiencies in regions and areas from
2011 to 2014 are shown in Table 4.

For MPP, it can be observed that Beijing, Tianjin, and
Hunan perform efficiently. The innovation efficiency values
of Shanghai, Jiangsu, Zhejiang, Anhui, Shandong, and
Sichuan (i.e., 0.852, 0.834, 0.870, 0.903, 0.948, and 0.796,
respectively) are higher than the overall average (i.e.,
0.746). Particularly, the innovation efficiency values of Liao-
ning and Henan (i.e., 0.401 and 0.353) are the lowest two.
This indicates that the innovation activities of MPP are
undeveloped in Liaoning and Henan. Hence, the local gov-
ernments should take more measures to stimulate pharma-
ceutical enterprises to launch R&D activities and improve
innovation outcomes.

In terms of EECE, only Henan and Guangdong are rated
as efficient. The efficiency values of Beijing, Zhejiang, Shang-
hai, and Sichuan are observed higher than the overall aver-
age (i.e., 0.516). Furthermore, the differences in the
efficiency of EECE across the three areas are small. The
probable reason may be that there exist few differences in
technical innovation among the EECE enterprises in China.
Accordingly, it indicates that the regional disparities in
EECE have been largely eliminated or abated.

Concerning COE, only Beijing and Jiangsu are observed
efficient innovation performance. The innovation efficiency
values of Tianjin, Anhui, Shandong, Guangdong, Sichuan,
and Shaanxi are above the overall average (i.e., 0.497). Inter-
estingly, the west area (i.e., 0.723) performs better than the
east area (i.e., 0.538) and the center area (i.e., 0.322) on aver-
age. This indicates that innovation resources have been uti-
lized more effectively in COE in the western regions. It
also implies that the inefficiencies of some central and east-
ern provinces are mainly derived from the poor innovation
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efficiencies in COE (e.g., Hebei, Hubei, Henan, and
Liaoning).

Regarding MEMI, four provinces (i.e., Beijing, Hunan,
Zhejiang, and Guangdong) are rated as efficient. The effi-
ciency values of Tianjin, Jiangsu, Shanghai, and Sichuan
are larger than the overall average (i.e., 0.660). China’s east
area (i.e., 0.723) operates better than the center area (i.e.,
0.570) and the west area (i.e., 0.570). The performance gap
between the central and western provinces and the eastern
provinces should be narrowed, especially for Jiangxi and
Shaanxi. In addition, it is worth noting that some eastern
regions also should improve innovation efficiencies urgently,
such as Hebei (i.e., 0.336), Fujian (i.e., 0.450), and Shandong
(i.e., 0.544), whose efficiency values are lower than the over-
all average.

The inefficiency sources of regional innovation are also
identified. For some regions, such as Hebei and Hubei, the
innovation efficiency values of EECE and COE are found
to be lower. This indicates the innovation inefficiencies of
these regions are attributed to the low efficiency of EECE
and COE. Significant disparities of innovation efficiency
are found in four subindustries at the areal level. The east
area remains ahead in MPP, EECE, and MEMI, while the
west area has the highest innovation efficiency value in
COE. Additionally, the west area also shows a better innova-
tion level in EECE, COE, and MEMI than the center area.
Notably, the phenomenon of higher innovation efficiency
seems to be more likely to exist in more developed regions.
It can be explained as more investments accelerate the tech-
nological innovation and management improvement of
high-tech enterprises in economically developed regions,
thus motivating more innovation outputs effectively. Con-
sidering the areal disparity, the balanced development of
subindustries in the provinces should be concerned.

Table 2: Descriptive statistics of the dataset in 2011.

Industries Statistics
R&D personnel

(person)
R&D capital (108

CNY1)
R&D expenditure

(108 CNY)
Patents in force

(piece)
Sales revenue of new products

(108 CNY)

MPP

Maximum 14729.00 790.14 40.48 1916.00 617.55

Minimum 1230.00 57.84 1.61 158.00 29.39

Mean 5851.94 325.28 13.22 743.53 177.25

Std. Dev. 4333.60 207.50 12.80 552.45 153.02

EECE

Maximum 155018.00 3969.29 409.05 48352.00 6878.03

Minimum 1389.00 249.70 2.08 68.00 48.58

Mean 18695.18 750.34 47.90 4187.76 1083.52

Std. Dev. 35676.92 918.49 93.52 11144.37 1585.93

COE

Maximum 21669.00 628.34 52.01 9553.00 2314.44

Minimum 37.00 4.03 0.02 1.00 0.34

Mean 3319.06 125.93 9.43 953.18 321.60

Std. Dev. 5496.66 180.08 14.26 2287.69 688.86

MEMI

Maximum 21625.00 1093.67 39.94 2666.00 545.84

Minimum 16.00 22.68 0.03 38.00 9.13

Mean 4355.53 156.24 7.80 594.35 93.88

Std. Dev. 5303.95 240.88 9.57 734.46 135.67
1CNY represents China Yuan.

Table 3: Efficiency results under model (2).

Year ρ ρ1 ρ2 ρ3 ρ4
2011 0.546 0.683 0.513 0.451 0.662

2012 0.582 0.747 0.542 0.480 0.702

2013 0.589 0.780 0.528 0.556 0.635

2014 0.553 0.773 0.483 0.499 0.641

Mean 0.568 0.746 0.516 0.497 0.660

Beijing
Tianjin
Hebei
Liaoning
Shanghai
Jiangsu

Zhejiang
Anhui
Fujian
Jiangxi
Shandong
Henan

Hubei
Hunan
Guangdong
Sichuan

2014201320122011
0

0.2

0.4

0.6

0.8

1

Figure 2: Innovation efficiencies in regions.
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4.2.3. Analysis from Temporal and Areal Perspectives. The
changing trend of areal innovation efficiency value during
2011-2014 is displayed in Figure 3. As shown, the overall
innovation performance of the high-tech sector rises slightly
during the observed time. The dynamic trends in the east
area and the center area are close to the overall one, while
the one in the west area shows great fluctuation. There are
two possible reasons. For one thing, the development of
most subindustries in the west area may be immature and
relatively backward, which is more susceptible to internal
and external factors. For another, the west area only includes
two provinces, and the small sample size may lead to this
fluctuation phenomenon.

The areal innovation efficiencies of four subindustries
are also presented in Figure 4. Overall, the efficiency of
MECE shows an increasing trend from 2011 to 2014, which
is consistent with the high-tech industry. Besides, the effi-
ciency gap between the three regions has been narrowed
slightly, whereas those of MPP, COE, and MEMI show a
declining trend. It can be found that the east area always
takes the leading position in MPP and MEMI from 2012 to
2014. It suggests that the eastern developed regions invest
more R&D resources in technological innovation in the
medical industry, which have contributed to advanced tech-
nology and market advantages, resulting in higher innova-
tion efficiency. Notably, the west area has the highest
average efficiency in COE than the other two areas since
2012. It might be related to the technical input and industrial
transfer of COE in the western provinces. It indicates that
the western regions probably may utilize resources more effi-
ciently and promote the prosperity and development of

COE. Additionally, higher volatility is observed in the west
area in four subindustries. This also indirectly accounts for
the performance fluctuation at the industry level in the west
area.

4.3. Result Comparison. As mentioned above, model (1) is
constructed to evaluate innovation efficiency without con-
sidering parallel subindustries, and model (2) is proposed
to estimate innovation efficiency considering subindustries.
To examine the effectiveness of the proposed method, this
paper makes a comparative analysis between the results
under two models. Table 5 presents the efficiency results.

Under model (1), only Henan and Guangdong stay effi-
cient from 2011 to 2014. Beijing and Tianjin perform effi-
ciently from 2011 to 2013, while both of them perform
inefficiently in 2014 (i.e., 0.759 and 0.764). Additionally,
Sichuan is observed as efficient in 2012, while Hebei has
the lowest average innovation efficiency value from 2011 to
2014.

There exist differences in innovation efficiency results
obtained from the two models. Here, the result of the year
2011 is taken as an example. As shown in Table 5, Beijing,
Tianjin, Henan, and Guangdong are rated as efficient in
model (1) in 2011, while only Beijing is observed as efficient
in model (2). This is because the efficiency values of Beijing’s
four subindustries are 1.000. In contrast, Tianjin (i.e., 0.637),
Henan (i.e., 0.741), and Guangdong (i.e., 0.895) are regarded
as inefficient in model (2) because of the inefficiencies of
subindustries (i.e., 1.000, 0.525, 0.470, and 0.931; 0.429,
1.000, 0.313, and 0.638; and 0.449, 1.000, 1.000, and 1.000,
respectively). This result reveals that the innovation ineffi-
ciency of the industry is connected with the performances
of the subindustries. Namely, the inefficiency may stem from
one subindustry or multiple subindustries. Therefore, we can
identify the inefficiency sources from subindustries in model
(2). For instance, the high-tech industry of Hebei is deemed
inefficient in two models (i.e., 0.275 and 0.227). It can be rea-
sonably inferred that the inefficiency of Hebei is primarily
derived from EECE and COE for their low efficiencies in
model (2), which cannot be identified in model (1). The pro-
posed evaluation model may offer more implications on
innovation performance, which not only focuses on the
high-tech industry’s innovation efficiency but also considers
which subindustries make it effective (or ineffective).

Table 4: Mean innovation efficiency results in regions under model
(2).

Region ρ ρ1 ρ2 ρ3 ρ4
Beijing 0.962 1.000 0.931 1.000 1.000

Tianjin 0.668 1.000 0.498 0.731 0.916

Hebei 0.272 0.519 0.219 0.144 0.336

Liaoning 0.393 0.401 0.415 0.229 0.591

Shanghai 0.593 0.852 0.586 0.286 0.708

Jiangsu 0.587 0.834 0.357 1.000 0.684

Zhejiang 0.599 0.870 0.557 0.259 1.000

Anhui 0.582 0.903 0.475 0.578 0.569

Fujian 0.417 0.536 0.382 0.386 0.450

Jiangxi 0.360 0.646 0.259 0.394 0.307

Shandong 0.500 0.948 0.294 0.646 0.544

Henan 0.695 0.353 1.000 0.219 0.439

Hubei 0.397 0.684 0.355 0.161 0.534

Hunan 0.555 1.000 0.434 0.262 1.000

Guangdong 0.897 0.733 1.000 0.702 1.000

Sichuan 0.691 0.796 0.625 0.779 0.707

Shaanxi 0.484 0.602 0.393 0.668 0.433

East 0.589 0.769 0.524 0.538 0.723

Center 0.518 0.717 0.504 0.322 0.570

West 0.588 0.699 0.509 0.723 0.570

2014201320122011
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0.4
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0.8

1

Overall
East

Center
West

Figure 3: Innovation efficiency in areas.
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4.4. Discussion and Implications. The proposed model and
empirical results offer a new horizon of the innovation per-
formance in China’s high-tech sector. Discussion and impli-
cations are also provided in this subsection.

At the industry level, the overall innovation performance
rises slightly, yet still at a lower level. This finding is consis-
tent with prior research conclusions (e.g., [6, 7]) that there
exists a great improvement potential for the innovation per-
formance in China’s high-tech sector. Moreover, in compar-
ison with prior research, the proposed evaluation model
provides a tool to identify the inefficiency source of the over-
all high-tech industry. Besides, at the subindustry level,
innovation performance is significantly unbalanced. Specifi-
cally, EECE and COE should be given priority over MPP and
MEMI owing to their lower performances. Therefore, the
improvement of innovation performance should consider
not only the high-tech industry’s conditions but also the
subindustries’ conditions.

The findings also provide empirical evidence for stimu-
lating the development of the high-tech sector in China.
The lower efficiency of one or multiple subindustries leads
to lower regional innovation efficiency. Therefore, the ineffi-
ciencies of particular subindustries should be emphasized
and improved. For example, Hebei should focus on increas-
ing COE’s efficiency (i.e., 0.144) first and then EECE’s effi-
ciency (i.e., 0.219), MEMI’s efficiency (i.e., 0.336), and
MPP’s efficiency (i.e., 0.519). Moreover, significant regional
disparities in innovation efficiencies are also identified. The
finding that higher innovation efficiencies are more possibly

existed in more developed regions echoes the prior studies of
Chen et al. [4] and Zhang et al. [13]. This is because more
resource input stimulates technological innovation in eco-
nomically developed regions, thus increasing more innova-
tion outputs.

Based on the empirical findings, some implications are
provided to improve industrial innovation efficiency as fol-
lows. First, the balanced development of subindustries
should be drawn more attention. The government should
provide more support (e.g., tax reduction and subsidies)
for the subindustries with lower efficiency (e.g., EECE and
COE). The targeted supports for subindustries that innova-
tion inefficient may help to strengthen the performance
more effectively. Second, regional collaboration should be
encouraged by the government in the high-tech sector. Spe-
cifically, policymakers in backward regions can learn inno-
vation management experiences from advanced ones. The
government can also build a platform to promote cross-
regional collaboration, which may facilitate R&D resource
sharing, enterprise communication, and cross-industry
innovation. These collaborations may help underdeveloped
enterprises to learn innovative managerial experiences from
high performed enterprises and narrow the gaps in innova-
tion among areas. Third, local governments should develop
industry innovation policies according to the specific condi-
tions of local subindustries. More resources and policy sup-
ports should be offered for subindustries with lower
performance as their innovation development has severely
hindered the overall industry performance. Inappropriate

Overall
East

Center
West

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0
20142013

COE
20122011 20142013

MEMI
20122011

20142013
MECE

2012201120142013
MP

20122011

Figure 4: Average innovation efficiencies in four subindustries.
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or unbalanced resource allocation may induce resource
waste and achieve unsatisfactory innovation outputs. For
example, Tianjin, Jiangsu, and Shandong should enhance
the efficiency of EECE; Hubei should strengthen the effi-
ciency of EECE and COE, while Hebei should make efforts
to improve the efficiencies of four subindustries.

5. Conclusion

This study establishes a parallel SBM-DEA model to assess
the innovation performance of the high-tech sector with
the consideration of internal subindustries. Different from
prior research on innovation efficiency evaluations, this
study provides a novel theoretical approach to identify the
inefficiency sources from internal subindustries. Moreover,
the proposed approach is utilized to calculate the innovation
efficiencies in China’s regional high-tech industries and four
subindustries between 2011 and 2014.

Overall, the findings can be summarized as follows. First,
although the innovation efficiency of China’s high-tech sec-
tor is still at a low level, it slightly increased with the fluctu-
ation during the study period. That is to say, the immense
potential exists for enhancing the utilization efficiency of
innovation resources. Second, the inefficiency of the Chinese
high-tech sector probably stems from the inefficient perfor-
mances in EECE and COE. That being said, these two subin-
dustries may be considered as key factors to improve
innovation performance, so their development should
obtain more concerns and supports from the government.
Third, the regional differences and industrial differences
are significant in the innovation efficiency of four subindus-
tries. In terms of MPP, EECE, and MEMI, the innovation
efficiency averages of eastern China perform better than
those of central China and western China. In addition,
COE in the west area is observed a higher efficiency average
than that in the east area and center area. This finding sug-
gests that policymakers should consider the importance of
regional disparities and industrial disparities for better
resource allocation to support innovation activities.

This study is also not free from limitations. First, this
paper does not take the subprocess into account in innova-
tion efficiency evaluation, such as the R&D process and
commercialization process. In this sense, the studies can
consider these specific subprocesses to show a deeper vision
of innovation performance evaluation. Moreover, this inves-
tigation uses the dataset from 2011 to 2014. New implica-
tions about increasing innovation performance might be
acquired by using long-term data in the future.
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