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Many problems of the Internet of Things (IoT), such as radio frequency allocation and sensor network, can be regarded as
constraint optimal problems (COPs), which can be formulated as graphical representations. The scale of graph is large, which
is hard to implement, and the information shared by all the variables is unsafe for all the variables running in an agent. On the
other hand, supercomputers are playing a significant and growing role in various fields of large-scale processing tasks. When
countering this scene, the supercomputers can accelerate to complete the task according to the distributed solution, where they
divide the task into sub-tasks and each sub-task is running on an agent, such as a process or a computation node. However,
finding an optimal distributed solution is difficult to minimize the completion time with the optimal computing resources.
Putting the task on too many agents not only wastes resources but also increases the risk of attacks. Conversely, fewer agents
may take too much time, which is unacceptable for users. Determining the number of agents needs to strike a balance between
communication and computation. In this paper, we propose a new framework GVPNN for predicting the optimal numbers of
agents for COPs and further provide the allocation from variable to agent. Experimental result shows the framework can learn
the structure of the corresponding graphical representation well, and the 1-distant accuracy rate and the top 3 accuracy rate of
GVPNN reach 74% and 70%, respectively.

1. Introduction

Constraint optimal problems (COPs) is to maximize its
aggregated utility or minimize its cost. It has a wide range
of applications, such as meeting scheduling, resource allo-
cation, smart homes, sensor networks [1], and many IoT
problems [2, 3], which has attracted the attention of many
researchers. The distributed constraint optimization prob-
lems (DCOPs) [4, 5] is a distributed implementation for
COP, which is a general model to govern the agent’s
autonomous behavior in a cooperative multi-agent system
(MAS). COPs and DCOPs can be often represented graph-
ically using one of the following representations: constraint
graphs, factor graphs, or pseudo-trees [6]. In this paper,
we call them as graphical representations. In all of these
graphical representations, nodes in these graphs (i.e., vari-

ables and/or factors) are held by the agents which are par-
ticipating in the optimization process.

For many applications in COPs, large-scale graphical
representations are hard to implement with all the variables
running in an agent, or even cannot be handled. In addition,
it is unsafe to run all the variables in an agent sharing the
information. Supercomputers can provide a good platform.
To speed up the calculation on the supercomputer, an
appropriate suggestion is important to provide for users with
the number of computing resources (agents) and the alloca-
tion from variables to agents after learning the graphical rep-
resentation. Therefore, users can adopt suggestions before
submitting the task and purchase computing resources on
supercomputers at reasonable prices. For the supercom-
puter, the resource can be efficiently utilized, and the tasks
can be completed in the shortest possible time. How to find
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the optimal variable partition is very difficult because exces-
sive agents are not only a waste resource but also increase
the risk of being attacked. Otherwise, fewer agents may take
too much time which is unacceptable for users.

In other words, the division of DCOPs is a plan that fig-
ures out the number of agents and the allocation from the
variables to agents and have few work on the filed [7–10].
In the existing articles, many works focus on the DCOP
algorithm and simply assigned one variable to an agent,
which is negative for the large-scale DCOP. In ref [11],
assume that the mapping of variables to agents is part of
the model description, which means that variables that
belong to each agent are given as an input. This assumption
is reasonable in many applications where there are obvious
and intuitive mappings. Take the smart home scheduling
problem as an example; agents correspond to the different
smart homes, and variables correspond to the different
smart devices within each home. Under this scenario, it is
reasonable for the agent to control all the variables, which
are the devices in its home.

However, there are few scenarios like smart homes, and
there may be more flexibility in other applications, which
makes it hard to find the mapping from variables to agents.
For example, imagine an application in which a group of
unmanned robots needs to coordinate with each other to
effectively survey an area. In this application, the agents cor-
respond to robots, and the variables correspond to the differ-
ent regions of the region to be solved. The domain for each
variable may correspond to the different types of sensors to
be used at different times to survey the region. Since a robot
can survey any region, there are multiple possible assign-
ments of regions to robots. That is, there are multiple possi-
ble mappings of variables to agents.

However, a good mapping is important as it has a signif-
icant impact on the completion time of an algorithm for the
flexible scenarios. Choosing an optimal mapping may be
prohibitively time-consuming as it is a NP-hard problem,
as shown by Rust, Picard, and Ramparany [12]. To solve this
problem, literature [13] proposed a time-efficient heuristic
mapping algorithm (named MNA) based on the node’s
degree of the graphical representations. But this algorithm
gives the agent number in advance and is only effective for
messages passing algorithms such as Action-GDL, Max-
Sum, or Bounded Max-Sum.

All the work discussed above focuses on the variable par-
tition when the agent number is given. However, in many
practical scenarios of large-scale distributed computing
operations, different numbers of agents may lead to great
differences in completion time, and the performance is not
directly proportional to the number of agents. Therefore, it
is very important to find the optimal number of agents for
large-scale distributed computing operations, which can
allocate computing resources of the supercomputers to users
reasonably. In addition, compared with other DCOPs algo-
rithms such as distributed random algorithm (DSA) [14]
and distributed upper confidence tree algorithm (DUCT)
[15], MNA has no advantage, and it is only effective when
the distribution of the node degree in the graphical represen-
tations is casual. When the divergence of the node degree is

unclear, the advantages of the algorithm cannot be
highlighted.

In this paper, we commit to find the agent number when
the DCOP algorithm is given and propose a new end-to-end
variable partition framework. This framework employs
graph neural networks (GNNs) to learn the structure of
the corresponding graphical representation and then pre-
dicts the optimal number of agents and further provides
the mapping from variables to agents.

The structure of the rest of this paper is as follows: Sec-
tion 2 introduces the background and the definitions of the
optimal number of agents, Section 3 describes the proposed
framework and details the framework, Section 4 explains
and analyzes the experimental results, and we conclude in
Section 5.

2. Preliminaries

In this section, we introduce the background information of
DCOPs and the objective of the paper.

2.1. Constraint Optimization Problem. A COP is a tuple <
X, D, F > . X is a discrete and finite set of variables fx1, x2
,⋯, xng. D is a set of domains fD1,D2,⋯,Dng. Each
domain Di contains a discrete and finite set of values that
can be assigned to variable xi. We denote an assignment of
value dij ∈Di to xi by an ordered pair <xi, dij > . F is a set
of relations (constraints). Each constraint f j ∈ F defines a
non-negative cost (or aggregated utility) for every possible
value combination of a set of variables and is of the form
f j : di1 × di2 ×⋯× dik ⟶ F + ∪f0g.
2.2. Distributed Constraint Optimization Problem. A DCOP
is a distributed implementation for COPs, which is a tuple
<X,D, F, A, μ > . X,D, F is the same as COPs. A is a finite
set of agents fa1, a2,⋯, akg. μ : X⟶A is mapping from
a set of nodes in the corresponding graphical representation
to agents.

An optimal solution for COPs and DCOPs is an assign-
ment with minimized cost or maximal utility. To be consis-
tent with the literature, the aim for COPs and DCOPs in this
paper default to minimize the cost, which is

X∗ = argminX 〠
n

i=1
f i xið Þ, ð1Þ

2.3. Variable Partition. Given an agent number k, where k
> 1, an arbitrary mapping manages a subgraph Gj of the
graphical representations G, and k agents hold all the nodes
which no nodes hold for different agents. The partition can
be described as follows:

Uk
j=1Gj =G

Gj ∩Gj′=∅ ∀j′ ≠ j
:

8<
: ð2Þ

Given an arbitrary partition algorithm, the divergence of
completion time may be huge for different number of agents.
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Here, we give an example of a graph coloring problem (a
special COP) on different agent numbers with partition by
Girvan-Newman algorithm [16], in which an agent is asyn-
chronous execution DSA algorithm on a process. The result
can be shown in Figure 1. From the figure, we find that the
optimal number is 3 (is computed by Formula (4)) and the
mean completion time (is computed by Formula (3)) with
9 agents is more than 4 times slower than the mean comple-
tion time on the optimal number—3 agents.

2.4. The Optimal Agent Number. In this paper, the goal is to
find the optimal number of agents and the mapping for an
arbitrary COP. In this section, we first define the optimal
number of agents and then verify the necessity of finding
the optimal number of agents with an example.

To solve a COP with a large-scale graphical representa-
tion, an approximation algorithm can be the best choice.
The completion time of the two experiments is different,
and the variance is tiny from the expected value shown in
the experimental result. Thus, we aim to find out the
expected number of agents which are mostly performed
the best. In this paper, the definition for the number of
exceptional agents is given.

Given a COP problem p and the number of agent num-
ber k, it is defined that the valid completion time of each
round i is the time tki when the cost of the DCOP algorithm
reaches 0 for the first time. In this paper, we supposed that
each instance for DCOPs can be solved so that the cost
can arrive at 0 and the total number for the round is n.

Since the Law of Large Numbers (LLN) describes the
result of performing the same experiment many times, the
average value of the results obtained from many experiments
should be close to the expected value, and the average value
will become closer as more experiments are performed in
probability theory. In this paper, the expected completion
time of agent number k is tk, which is approximately defined

as the average running time:

tk =
∑n

i=1tki
n

, ð3Þ

where tki is the completion time time of the i round with k
agent number and n the total number of rounds.

Then, we define the optimal number of agents with the
minimum expected completion time as follows:

pban = argmin t1, t2,⋯, tk,⋯, tNð Þ, ð4Þ

where N is the total number of agents that can run on the
supercomputer.

Finding the optimal agent number, the most immediate
idea is searching for the number with a maximum module
as most of the graphical representations for COPs are sparse
and have the community structure. Girvan-Newman [16]
proposes a module—Q value—which is an indicator to mea-
sure the quantity of clustering:

Q =〠
i

eii + a2i
� �

, ð5Þ

where i is the i_th community, eii is the ratio of the edges of
community i to all the edges of the original network, and ai
represents the ratio of all the edges connected with the ver-
tices in the community i to the total number of edges.

From Formula (5), we find that the higher Q value, the
better the corresponding community division results, and
the best community division is the one with the largest Q
value.

However, we find that the number of the optimal mod-
ule may take more time than the agents of the other number.
From Figure 2, we can find that there is no direct relation-
ship between the minimum completion time and the
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Figure 1: The completion time with different numbers of agents for a graph coloring problem, in which the graphical representation has 2
communities. For each partition solution, asynchronous execution DSA algorithm 10 rounds compute the mean time by formula (3), which
is shown in the red bar. The min time (blue bar) and the max time (green bar) are minimal and maximal completion time in the 10 rounds.
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module—Q value—in which the maximum q value is located
on the agent number equal to 5, but the corresponding agent
number of the minimum completion time is 8.

Therefore, this paper proposes a GVPNN framework to
learn the characteristics of the graphical representations
and find the best mapping for variables and agents, includ-
ing the number of agents and specific mappings for each
agent. In the next section, we will give more detail about
the framework.

3. Graph Variable Partition Neural
Network Framework

In this section, we first roughly introduce our Graph Vari-
able Partition Neural Network Framework—GVPNN fra-
mework—which is based on graph neural networks
[17–20]. When any COP arrives, this framework can
abstract the COP to a graphical representation and then
import the graphical representation into the graph neural
networks to find the optimal number of agents, as shown
in Figure 3. Finding the optimal number of agents is a graph
classification problem in the domain of graph neural net-
works, which means that it predicts the label of an entire
graph by learning a graph representation vector when given
a group of graphs and their corrpending labels.

For an arbitrary node, it updates the representation vec-
tor by recursively aggregating and transforming feature vec-
tors of its neighboring nodes in aggregate and combine
stages. In GVPNN framework, we employ the GIN [21]
and GraphSNN [22], which aggregate the feature of neigh-
bor by multiset and aggregate the neighbor’s feature and
the overlap structure by the structural coefficients defined
in Formula (8). After all the nodes are updated, the GVPNN
obtained the feature of the whole graph. In the readout stage,
all node features of the graph are converted into graph fea-
tures, and then the optimal number of agents is predicted.
Further, catch the optimal variable partition by Girvan-
Newman algorithm.

3.1. Node Representation. The vector of a node representa-
tion is updated by recursively aggregating and transforming
feature vectors of its neighboring nodes in the aggregate
stage and combine stage. After t + 1 aggregation iterations,
we can capture the structure information of the neighbor-

hood of the node’s ðt + 1Þ-hop network. Formally, the node
representation in the ðt + 1Þ_th layer can be represented as

a t+1ð Þ = AGGREGATE t+1ð Þ h tð Þ : u ∈N vð Þ
� �

,

h t+1ð Þ = COMBINE t+1ð Þ h tð Þ, a t+1ð Þ
� �

:
ð6Þ

where NðvÞ is a set of nodes adjacent to v.
In our paper, we employ two GNNs—GIN [21] and

GraphSNN [22]—to update the node representation in our
framework, as shown in Figure 4, which are all based on
the Weisfeiler-Lehman test. The Weisfeiler-Lehman test is
a test of graph isomorphism, which is an effective and com-
putationally efficient test to verify whether two graphs are
topologically identical in most cases. Node representation
of u for the Weisfeiler-Lehman [23] test after t + 1 iterate
is the sub-tree structure of height t + 1 rooted at the node
u , which is updated by a hash function, which models injec-
tion multi-set functions of the neighbor aggregation.

Node representation for GIN is similar to 1- WL, in
which the neighbor aggregation is also injected. Only when
two nodes have the same sub-tree structure and have the
same characteristics on the corresponding nodes, GIN will
map these two nodes to the same location, where the sub-
tree structures are recursively defined by the neighborhoods
of the node. Representing a neighborhood as a multiset of
feature vectors and treating the neighborhood aggregation
as an aggregation function over multisets. To ensure injec-
tivity, GIN sets the aggregate function to sum and the com-
bination function as ð1 + ϵðt+1ÞÞ. The node representation is
updated as

h t+1ð Þ
v =MLP kð Þ 1 + ϵ kð Þ

� �
h tð Þ
v + 〠

u∈N vð Þ
h tð Þ
u

 !
: ð7Þ

GraphSNN injects local structure into an aggregation
scheme, considering not only the neighbor’s feature but
also the overlap subgraphs, which is more expressive than
1-WL. This GraphSNN define the structural coefficients ω
ðSv , SuvÞ for each vertex v and its local neighborhood,
i.e., ω : S × S∗ ⟶ R such that Avu = ωðSv , SuvÞ, which sat-
isfies the properties of local closeness, local denseness,
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Figure 2: Q value and the mean completion time for a graph coloring problem with karate data.
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and isomorphic invariant:

ω Sv, Suvð Þ = Evuj j
Vvuj j∙ Vvu − 1j j Vvuj jλ, ð8Þ

where ωðSv, SuvÞ is a structural coefficient for vertex v and
its neighbors. Sv is the neighborhood subgraph for vertex v
, and Suv is the set of overlap subgraphs for vertex v and
λ > 0.

GraphSNN also define a weighted adjacency matrix ~A
= ð~AvuÞv,u∈V , where ~Avu is a normalized value of Avu and
~Avu = Avu/∑u∈N ðvÞAvu. The node feature vector of v is

updated by

m tð Þ
a = AGGREGATEN ~Avu, h tð Þ

u

� �
u ∈Nj vð Þ

n on o� �
m tð Þ

v = AGGREGATEI ~Avu

��u ∈N vð Þ
n on o� �

h tð Þ
v h t+1ð Þ

v = COMBINE m tð Þ
v ,m tð Þ

a

� �
:

ð9Þ

AGGREGATENð·Þ and AGGREGATEIð·Þ are two possi-

bly different parameterized functions. Here, mðtÞ
a is a mes-

sage aggregated from the neighbors of v and their

structural coefficients, and mðtÞ
v is an “adjusted” message
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from v after performing an element-wise multiplication
between AGGREGATEIð·Þ.

Specifically, GraphSNN details the AGGREGATENð·Þ,
AGGREGATEIð·Þ, and COMBINEð·Þ: Thus, for each vertex
v∈V , the feature vector at the t + 1 th layer is generated by

h t+1ð Þ
v =MLPθ γ tð Þ 〠

u∈N vð Þ
~Avu + 1

 !
h tð Þ
v + 〠

u∈N vð Þ
~Avu + 1

!
h tð Þ
u

 !
:

ð10Þ

where γðtÞ is a learnable scalar parameter. Since N ðvÞ refers
to one-hop neighbors of v, one can stack multiple layers to
handle more than the one-hop neighborhood. To ensure
the injectivity in the feature aggregation,the graphSNN adds
1 into the first and aecond terms in the formula (10).

3.2. Graph Representation. For the graph classification prob-
lem, it is necessary to transform all the node features in the
graph into graph features, and the representation of the
entire graph is hG:

hG = READOUT h t+1ð Þ
���v ∈G� �

, ð11Þ

where hG is graph G representation vector and READOUT
represents a permutation invariant function and can also
be a graph-level pooling function. This READOUT function
of the two GNNs is injective.

To consider all the structure information, the GVPNN
framework utilizes the information from all iterations of
the models and adopts an architecture like Jumping Knowl-
edge Networks. The graph representations are concatenated
across all the iterations/layers, and the READOUT function
is summing all node features from the same iterations:

hG = CONCAT SUM h t+1ð Þ
v v ∈ Gj

n o� �� �
k = 0, 1,⋯, Kj Þ:

ð12Þ

4. Experiment

All the experiments were executed on a server equipped by
an Intel Xeon CPU 4110 with 20 cores of 2.20 GHz. The sys-
tem is Linux 3.10.0, and all DCOP is implemented in the
PyDCOP library.

4.1. Graph Coloring Benchmark. In the experiment, the
graph coloring problem is used to benchmark coordination
algorithms for our COP problem. In this work, in distributed
graph coloring problems, variables in the graph must select
their color (i.e., the state) from a set of possible colors (i.e.,
xi ∈ 1,⋯, c) and avoid conflicts (i.e., choosing the same
color) with other variables. Thus, the cost is expressed as

Um xmð Þ = γm xmð Þ − 〠
iϵN mð Þ\m

xi ⊗ xj ð13Þ

where,

xi ⊗ xj =
10, ifxi = xj

0, otherwise

(
, ð14Þ

and γmðxmÞ < <1 reflects the preference for any color in
the absence of conflicts. As before, the goal is to find the state
of each variable such that the total number of conflicts is
minimized. In this work, we set γmðxmÞ = 0 for the variable
and set the conflict cost xi ⊗ xj =10 if two variable select
the same coloring.

4.2. Dataset. In this paper, we choose three kinds of random
graph datasets generated by networks to accomplish the
graph coloring problem, and these graphs are undirected,
unweighted, and connected:

(1) 991 instances of the 11-color random graph in the
first dataset are generated by Stochastic Block model
in which the number of communities is ranged from
2 to 6. The intra-block and cross-block probabilities
are set to 0.001-0.002 and 0.1-0.3, respectively, and
the size jvj of each graph was 200. Figure 5(a) give
an example for a graph with 4 communities that
the intra-block is 0.2 and cross-block probabilities
is set to 0.001

(2) 454 instances of the 11-color random graph in the
second dataset are generated by Erdős–Rényi model,
which 307 with 200 nodes and 200-400 edges gener-
ated by gnm function and 147 instances of the 11-
color random graph with excepted nodes of 200,
and the probability between two nodes is 0.001 to
0.0025 generated by the gnp function. Figure 5(b)
gives an example for a graph with 200 nodes and
350 edges

(3) 489 instances of the 11-color random graph with 200
nodes in the third dataset generated by the Barabasi
Albert model. Figure 5(c) gives an example for a
graph with 200 nodes

4.3. Labeling. For training in the framework GVPNN, we
should first give a label for all the graphical representations.
The labeling process includes the variable division, DCOP
algorithm selection, and the optimal agent number
calculation.

As the object is to find the optimal agent number with
the minimum completion time, the initial allocation should
be robust, and each part after being divided should not over-
lap. Many graphical representations are sparse and have a
structure of communities. So in his work, the Girvan-
Newman algorithm is adopt to divide each instance graph
into k classes, k in [1,n], in which k= 1 means all the nodes
in the same partition and each node is a apartition when
k=N.

The Girvan-Newman algorithm [16] is proposed for
graph partitioning in parallel computing, which minimizes
the number of edges that run between processors. Giran-
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Newman method is a hierarchical method, which detects
communities by gradually removing edges from the original
network, and the remaining connected networks are the
communities, which ensure the non-overlap among com-
munities. The algorithm deletes the edges that are most
likely “between” communities, an edge as the number of
shortest paths between pairs of nodes that run along with
it, which is named “edge betweenness.” After removing the
edge with the highest score betweenness, the Girvan-
Newman algorithm recalculates betweenness for all remain-
ing edges, which are robust for the whole graph partition.

For algorithms, the field of classical DCOPs is mature,
and lots of different solution algorithms have been proposed.
According to whether the DCOP algorithm can guarantee
the optimal solution, or whether it can trade optimality for
shorter execution times, to generate the near-optimal solu-
tions, the algorithms can be divided into complete algo-
rithms and incomplete algorithms. For incomplete
algorithms, there are three categories, such as search-based
algorithms such as distributed random algorithm (DSA),
maximum gain message (MGM), a reasoning-based algo-
rithm such as max-sum algorithm, and sampling-based

algorithm such as distributed upper confidence tree (DUCT)
algorithm and distributed Gibbs (D-Gibbs) algorithm [24].

Because DSA is a good robust benchmark, and it tends to
find high-quality solutions in practice, we choose to imple-
ment the DSA algorithm. Asynchronous actions may
improve the performance of a DSA algorithm. So, this paper
uses asynchronous DSA to get the completion time.

DSA requires an activation probability p before choosing
new assignments, so we adopted p = 0:7 as reported in [14].
In addition, we used DSA version B because such a decision
process is known to be more aggressive than other ver-
sions [14].

After picking the variable partition method and DCOP
algorithm, we start to label the graphical representation of
each instance of COPs. Specifically, we run the DSA algo-
rithm for 10 rounds, in which each agent manages a parti-
tion on a process in the PyDCOP Library, and the optimal
number of agents is calculated by the Formulas (3) and (4).

Because it is an approximate algorithm to run the
DCOPs algorithm to find the best number for agents, we
need to ensure the stability and effectiveness of the labeled
result at first. To prove that the average time is stable and
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(c)

Figure 5: Random graphs generated by various models.
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Figure 6: The relationship between the expected completion time and the variance.
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effective, we analyze the relationship between the expected
completion time of the distribution solution and the result
variance, as shown in Figure 6.

From Figure 6, we found that the variance of the fitting
curve coefficient was low, about 1/5 times the average value.
The expected time can be considered the label of the graph-
ical representations.

For the label distribution, we expect that it can be any
value in the scope of supporting resources, not just the first
three. Therefore, before marking the graph, we test various
random graphs and make statistics on their distribution.

Here, we give an example of optimal agent number distribu-
tion under different graph densities, as shown in Figure 7.

As shown in Figure 7, we find that the distribution of the
optimal number of agents is diverse when analyzing graphs,
which can meet the application of supercomputers. With the
increase of edge, the number of agents may be limited to 3
agents.

5. Results

We train the GVPNN framework with GIN and GraphSNN
on the graph coloring problem and compute the accuracies
of the GNNs. As an agent is implemented in a process, the
accuracy comes from existing documents:

Accuracy =
NUMpred

NUMtotle
, ð15Þ

where NUMpred is the number preds = vopt .
What’s more, we also use 1-distant accuracy and top 3

accuracy as the measurement standard. For the supercom-
puter, providing more or less than 1 process than the opti-
mal process to COPs is also reasonable. So, 1-distant
accuracy is set as follows:

Accuracy1dist =
NUMpred s

NUMtotle
, ð16Þ

where NUMpred s is the number preds ∈ fvopt − 1, vopt ,
vopt + 1g.

Meanwhile, the completing time of the top 3 is always
proximity. For the user, the prediction of the optimal agent
number to a set with the top 3 for COPs works well. Thus,
this paper shows the top 3 accuracy setting as follows:

Accuracytop3 =
NUMpred top3
NUMtotle

ð17Þ

where NUMpred top3 is the number preds ∈ fvtop1, vtop2,
vtop3g.

Table 1 lists the results for GIN and GraphSNN. From
the results, we found that the GVPNN can learn the struc-
ture of the graphical representations well. In terms of accu-
racy, GraphSNN network can reach 54:69% ± 6:59% for
the random graph with communities and improved 36%
by GIN. For the random graph and the total graph dataset,
the accuracy of GraphSNN and GIN is relatively close,
which means that the overlap structure features in random
graphs are not obvious.

For the supercomputer, the 1-distant precision
GraphSNN can be improved more than GIN on three data-
sets, which is 48.5% for the random graph with communi-
ties, 65.1% for the random graph, and 31.2% for general
graphs. For the user, the improvement of the accuracy of
the top three GraphSNN is 23.4% for the random graph with
communities, 12.5% for the random graph, and 4.9% for the
total graph.
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Figure 7: The best process distribution for random graphs.
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The result shows that GraphSNN can learn the structure
of the graphical representations better than GIN and the
predicted distribution of DCOPs’ new graph is reasonable.

6. Conclusion

This paper presents an efficient framework for variable par-
tition for DCOPs which is a pre-processing for DCOPs.
COPs generates the labeled dataset by running the DCOPs
algorithm based on the distribution during the Girvan-
Newman algorithm. When a new COP arrives, GVPNN
learns the graphical representation structure and further
predicts the distribution. Experiments show that the frame-
work can learn the architecture of graphical representations
well, and the 1-distant accuracy of GraphSNN can reach
74.5%, and the top 3 accuracy can reach 70.6%. However,
this framework only worked for Girvan-Neman community
detection and DSA algorithm. In the following research, we
will keep working to find the optimal variable partition with
hybrid graph partition and DCOP algorithm.
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