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This paper combines the regularized Perona and Malik model with the time parareal algorithm to denoise the real image which
has the characteristics of typical Gaussian noise. This method can remove the noise stably and effectively and has high calculation
efficiency. For the real color image of 6000 × 4000 pixels, the time cost can be shortened from one minute in serial computing to a
few seconds based on our combination method if we do not care about the requirement of computing hardware. This provides
some reference for practical engineering application.

1. Introduction

Image denoising is a process of reducing noise in digital
image. Digital image is often contaminated by noise from
imaging equipment and external environment in the process
of digitization and transmission, which makes an image have
a variety of noises in practical applications. These noises
cause a lot of detrimental effects on the analysis and applica-
tion of image. In addition, the process of image regeneration
will be inevitably be polluted by noise, which also damages
the quality of the image. These noises not only influence
people’s visual effect but also lead to some difficulty for the
subsequent analysis of the image. Therefore, it is necessary
to denoise the image in order to improve signal to noise ratio
(SNR).

Traditional image denoising methods include the follow-
ing [1–3]: mean filter (MF), geometric mean filter (GMF),
inverse harmonic mean filter (IHMF), Wiener filter (WF),
median filter (MF), morphological noise filter (MNF), wave-
let denoising (WD), variational filtering (VF), and differen-
tial equation filtering (DEF). The MF uses the
neighborhood average method, which is suitable for remov-
ing the particle noise in the scanned image. GMF can

achieve the same smoothness as MF, but more image details
will be lost in the process of filtering. The IHMF is suitable
for dealing with impulse noise and has good effect on “salt”
noise, but it needs to know in advance whether the noise is
dark noise or bright noise; in other words, selecting on
appropriate filter order is necessary. If the order symbol
selected is inappropriate, it may cause very bad conse-
quences. AWF can adjust the output of the noisy image
according to the local variance of the image. The larger the
local variance is, the stronger the smoothing effect of the fil-
ter is. The filtering effect of this method is better than that of
the MF, and it is useful to retain the edge of the image and
other high-frequency parts, but the calculation is also large.
MF is a commonly used nonlinear smoothing filter. Its basic
idea is to replace the value of a point in a digital image or
digital sequence with the median value of each point in a
field of that point, so that isolated noise points can be elim-
inated. Therefore, MF is very effective for filtering salt and
pepper noise in an image. However, if an image has many
details, especially for those with many points, lines, and
spires, median filtering is not suitable for image noise reduc-
tion. Morphological noise filter combines open operation
and close operation to filter noise. The applicable image type
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of this method is that the object size in the image is relatively
large, and there is no small details.

General speaking, according to the characteristics of
high frequency noise, neighborhood average method can
effectively suppress the noise, but it can also cause the fuzzy
phenomenon. The fuzzy degree is usually proportional to
the domain radius [2, 4, 5].

In addition, wavelet denoising, total variation denoising
model, such as TV model, deep learning-based denoising
methods, such as NL means method, etc., are good at dealing
with some problems at present [6–9], but the noise process-
ing of real image with large size is still of inefficiency. They
all inevitably face the same problem: although the CPU’s
or GPU’s performance has been improved by hundreds of
times, it is far from meeting the real-time computing needs,
which largely limits the use of these algorithms because peo-
ple cannot bear to wait for several minutes to process a sin-
gle photograph. Therefore, there is still a distance between
these denoising methods and the practical application.

The real image noise is usually signal related, but there is
no clear distribution to simulate, which brings great difficul-
ties to the practical application. Generally speaking, the
global distribution of noise image is not Gaussian distribu-
tion, but the noise of different channels of all local image
blocks can be approximately regarded as the Gaussian distri-
bution with different variance [11, 12], which provides a
good theoretical support for deducing the actual image
noise.

PDE method, a kind of image processing method which
rises in recent years, has achieved good results in image pro-
cessing [13–15]. This kind of method has the characteristics
of anisotropy. In image denoising, it can depress the noise
and keep the edge well, especially for Gaussian type noise.
Recently, the research of image processing method based
on PDE is a hot research direction of image denoising and
has achieved some theoretical and practical application
results. The basic idea of denoising method based on differ-
ential equation is to establish an initial condition of noise
image as a certain nonlinear PDE (i.e., filtering results),
using the diffusion characteristics of differential equation
to continuously reduce the high-frequency part, solving the
diffusion PDE, and getting the solution at different times.
The solution of PDE mainly adopts the time iteration
method, which makes the image approach to the desired
mode gradually through the iteration. The typical represen-
tative of this algorithm is Perona and Malik’s equation as
well as the subsequent improvement [16]. This method has
a large selection in determining the diffusion coefficient
and has the function of backward diffusion as well as for-
ward diffusion. Therefore, it has the ability of smoothing
the image and sharpening the edge. Besides, a large number
of experiments show that this kind of method has a good
effect in removing Gaussian noise [11, 12].

It is also worth noting that although PDE method as
mentioned above has achieved good results in image pro-
cessing with low noise density, the denoising effect is not
good in image processing with high noise variance, and the
processing time is significantly higher than low density.
Time parallel-based algorithm is a fast algorithm to solve

time-related problems, which can effectively improve the
efficiency of calculation [17–19]. It is a desirable method in
the situation of high demand for calculation time. It should
be noted that although large-scale parallel computing
devices do not seem to be available frequently, with the rapid
development of cloud computing and edge computing, the
computing environment supported by hardware will be
greatly improved, thus providing more possibilities and
opportunities for image parallel computing [10].

Perona and Malik proposed a PDE filter-based nonlinear
diffusion model (P-M model) [16]. P-M is a nonlinear aniso-
tropic method, which aims to overcome the shortcomings of
fuzzy edge and edge position moving in linear filtering
method. The basic idea is to reduce the diffusion coefficient
where the image features are strong and enhance the diffu-
sion coefficient where the image features are weak. The
anisotropic denoising model determines the diffusion speed
according to the gradient value of the image, so that it can
meet the requirements of both noise depression and edge
preservation. These models, represented by P-M equation,
have been widely used in image enhancement, image seg-
mentation, edge detection, and other fields and achieved
good results. The below part gives a brief introduction to
the P-M model.

Perona and Malik first proposed a nonlinear P-M model
that can maintain the boundary. The primary P-M model is:

∂I x, y, tð Þ
∂ t

= div g ∇Ij jð Þ ⋅ ∇Ið Þð ,

I x, y, 0ð Þ = I0,

8<
: ð1Þ

where I0is the original image, Iðx, y, tÞ is the diffusion image
of the original image at time t, ∇ is the gradient operator, div
is the gðrÞ = 1 divergence operator, and gðrÞ is the diffusion
coefficient. The ideal diffusion coefficient gðrÞ should make
the anisotropic diffusion fast in the region where the gray
level changes gently and low-speed diffusion or even non-
proliferation function in the position where the gray level
changes sharply (i.e., the image feature), so gðrÞ > 0 is a non-
increasing function. If the model degenerates into heat con-
duction equation, Perona and Malik give two diffusion
coefficients:

g rð Þ = e− r/Kð Þ2 , ð2Þ

where the constant K is related to the variance of noise. P-M
model is an improved partial differential equation of heat
conduction, which can adaptively control the diffusion
velocity by the function gðrÞ. The P-M model makes use of
the function gðrÞ to control the diffusion speed, that is to
say, the method increases the smoothing intensity inside
the region while decreases the smoothing intensity at the
edge. In the P-M model, the diffusion size is determined by
the absolute value of the gradient of the pixel. If the absolute
value of the gradient of a point in the image is greater than
the K value, the gradient value will slowly decrease with
the increase of the number of iterations in the process of
iteration, playing the role of maintaining the edge. However,
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if the absolute value of the gradient of the point is less than
the K value, the gradient value will soon tend to 0 in the pro-
cess of iteration, playing a smooth effect. In the P-M model,
the edge is identified by the gradient differential operator.

It should be noted that P-M Equation (1) can bring good
results in suppressing noise and preserving important fea-
tures of image, but it is ill-conditioned and unstable. In order
to eliminate the “ill-condition” of the P-M equation and
maintain the well posed property, the image is presmoothed
by using the original Gaussian convoluting image. Catte
introduces a regular P-M model in [20]:

It = div g ∇Iσj jð Þ∇Ið Þ, ð3Þ

where Iσðx, y, tÞ =Gσ ∗ Iðx, y, tÞ. Here, Gσ is the Gaussian
function with variance σ, and ∗ is convolution. The regular-
ized P-M model can eliminate the noise better than the
mean value method and can overcome the ill-pose of the ini-
tial value of the P-M model. This model (3) is a regulariza-
tion model in space domain, which overcomes the sensitive
∇Irelation to noise. We can prove that the solution of the
regularization model is unique, and the solution is stably
depended on initial value continuously [20, 21]. This paper
is aimed at developing the numerical solution of the second
order nonlinear diffusion Equation (3) efficiently.

2. Numerical Method of the P-M Model

For the P-M equation, the classical finite difference time-
space total discretization mainly has two kinds of schemes:
explicit and implicit. The explicit method does not need to
solve large discrete linear equations and can directly com-
pute large images. However, this method is very strict to
the time step and the space step, which results in that the
image dimension discretized directly can be very large and
costs much iteration time actually. On the other hand, the
implicit method has no limitation on the time discretization,
but it needs to solve a set of equations repeatedly. If the
implicit method is used to do with the large image, because
the dimension of discrete equations is very huge and the sin-
gularity is very serious, it inevitably brings the low computa-
tional efficiency.

Aiming at P-M model, this paper combines explicit
method, implicit method, and time parareal algorithm to
construct a new time parallel iterative format. This algo-
rithm adopts explicit computing in relatively fine time grids
and implicit computing in rough time grids and accelerates
the iteration by time parareal method. It can deal with large
image directly and save more time in denoising.

For ease of discretization, the two-dimensional regular-
ized P-M equation can be rewritten in the following form
(for detailed introduction, please refer to literature [16, 20]):

∂It = ∂x g ∇Iσj jð Þ ⋅ ∂Ix½ � + ∂y g ∇Iσj jð Þ ⋅ ∂Iy
� �

: ð4Þ

Let Nmax x, Nmax y, and Nmax t represent the maximum
iteration steps in the X direction, Y direction, and time
direction, respectively. For the sake of simplicity, we take
the equal steps in the x direction and y direction, that is, Δ

x = Δy = h, and Δt = τ is the time step, the grid coordinate
is ðxi, yi, tnn = ðih, jh, nτÞ, 0 < i ≤Nmax x, 0 < j ≤Nmax y, 0 <
n ≤Nt =Nmax t , I

n
i,j is the approximate value of Iðih, jh, nτÞ,

and let gi,j = gððj∇IσjÞi,j.
The time explicit difference format is introduced first. In

reference [13], Perona and Malik give the following explicit
difference scheme to solve Equation (4):

In+1i,j = Ini,j + λ ⋅ gnN ⋅ ∇n
NI + gsS ⋅ ∇

n
SI + gnE ⋅ ∇

n
EI + gwW ⋅ ∇n

WIð Þ:
ð5Þ

In the above explicit scheme (5), N, S, E, and W present
North, South, East, and West, respectively, and λ = τ/h.
Because the region normalized h is generally small, for
example, h = 0:001, the stability of numerical solution for
the explicit relation (5) needs theoretically the time step is
λ = 1000τ, λ < 0:25, namely, τ < 0:00025 is required. If the
symbol ∇in formula (5), difference quotient, is used, the spe-
cific discrete form is follows:

∇NIi,j = Ii,j+1 − Ii,j, ⋅ ∇EIi,j = Ii+1,j − Ii,j,
∇SIi,j = Ii,j−1 − Ii,j, ⋅ ∇wIi,j = Ii−1,j − Ii,j:

ð6Þ

Let us see the time semi-implicit difference scheme. The
right side of Equation (3) can be written as:

div g∇Ið Þ = ∂
∂x

g
∂I
∂x

� �
+ ∂
∂y

g
∂I
∂y

� �
: ð7Þ

In practical application, a divergence discretization for-
mat called “half point” discretization [13, 23] is often used.
The main idea includes the following steps.

First, calculate the value of gIx at “half point” in the
“East, West” direction and “half point” in the “South, North”
direction, respectively, and then, the implicit format is
obtained as follows:

In+1i, j = Ini,j + τ ⋅
gn
i−1,j + gn

i,j
2 ⋅ In+1i−1, j − In+1i,j

� �
+
gn
i+1,j + gn

i,j
2 ⋅ In+1i+1,j − In+1i,j

� ��

+
gn
i,j−1 + gn

i,j
2 ⋅ In+1i,j−1 − In+1i,j

� �
+
gni,j+1 + gn

i,j
2 ⋅ In+1i,j+1 − In+1i,j

� ��
:

ð8Þ

In the above formula (8), the value of g ðrÞ at “half point”
is approximated by the average of two adjacent whole points,
that is,

gi,j+ 1/2ð Þ ≈
gi,j+1 + gi,j

� �
2,⋯gi,j− 1/2ð Þ

≈
gi,j−1 + gi,j

� �
2 ,

gi+ 1/2ð Þ,j ≈
gi+1,j + gi,j

� �
2,⋯gi− 1/2ð Þ,j

≈
gi−1,j + gi,j

� �
2 :

ð9Þ

Thus, by using semi-implicit scheme, a system of linear
equations is obtained, which is represented by matrix as
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follows:

In+1 = In + τ ⋅An ⋅ In+1n , ð10Þ

where Ini,j and In+1i,j present the approximate image for the nth
time step and next time step, respectively. Equation (10) is
an implicit format, and τis a time step. The above formula
can be written as follows:

In+1 = 1 − τ ⋅Anð Þ−1In: ð11Þ

If In+1 or In is a matrix of M ×N , then matrix A is a
dimensional sparse matrix, but not a tridiagonal matrix.
Because the coefficient matrix is very large and the solution
efficiency is not high, Weickert and Scharr proposed the
additive operator splitting (AOS) algorithm in [22]:

1 − 2τ ⋅An
xð ÞIn+11 = In,

1 − 2τ ⋅An
y

� �
In+12 = In:

8<
: ð12Þ

Then, the mean value of the two terms is calculated as a
complete iterative process:

In+1 = 1
2 In+11 + In+12
� 	

: ð13Þ

Note: it is worthy of note that AOS algorithm is abso-
lutely stable. It can choose a large time step to improve the
efficiency of calculation and satisfy the invariance of digital
rotation.

The time parallel computing method is described below.
P-M equation is time-dependent. Due to the irreversibility of
time evolution, time-dependent equation can only be solved
by strict time iteration algorithms. Until 2001, Lions and
others proposed a real-time parallel algorithm based on time
decomposition for solving time-depended problems (para-
real algorithm) [13, 24, 25]. From this method was firstly
proposed to today, it has been widely studied and applied
in a few years. The algorithm decomposes the unsteady
phase of Eulerian time differential system and solves the
problem iteratively on the rough and fine grids of different
scales, respectively.

Here is a brief introduction to the parareal algorithm
[13], including some improvements to make it suitable for
the problems we need to calculate. Suppose the following
time-dependent equations are generally considered:

∂u
∂t

=Du, t ∈ t0, t1½ �,
u t0ð Þ = u 0ð Þ:

8<
: ð14Þ

For the above differential system, D is a differential oper-
ator independent of time differential, either linear or nonlin-
ear. For example, for the two-dimensional heat conduction
equation, the linear operator D = a ðuxx + uyyÞ, where a is a
constant greater than 0.

For the above model Equation (14), the basic idea of
time parareal is to divide the whole calculation time into sev-
eral subintervals and then calculate in each subinterval at the
same time. The basic algorithm is as follows:

(i) Step 1: given precision ε > 0, with the idea of domain
decomposition, the time interval ½t0, t1� is divided
into the following equidistant subintervals (rough
time grids):

Γ = t0 = T0 < T1⋯<Tn < Tn+1⋯<TNt−1 < TNt
= t1


 �
, ð15Þ

For convenience, let ΔT = Tn+1 − Tn. For the whole time
interval ½t0, t1�, the solution defined in the whole interval can
be transformed into N subproblems defined in each subin-
terval ½Tn, Tn+1�, n = 1, 2,⋯Nt

(ii) Step 2: based on the rough time grids Γ, take the
explicit or implicit serial methods to calculate the
sketchy approximate of the whole time points uðTn

Þ: u1, u2,⋯, un,⋯, uNt−1, uNt
. For the convenience

of the discussion, the calculation format on Γ can
be written as follows:

un+1 = CΔt unð Þ, n = 1 2 ⋯ Nt,, ð16Þ

where CΔt is a numerical calculation format, for exam-
ple, implicit or explicit.

(iii) Step 3: subdivide each subinterval ½Tn, Tn+1� into
fine intercells:

Tn = T0
n < T1

n ⋯ Ti
n < Ti+1

n ⋯ < Ts
n = Tn+1, ð17Þ

where s is number of the points in every subinterval ½Tn,
Tn+1�.

(iv) Set the time interval length after subdivision is δt
= Ti+1

n − Ti
n. Assign the value fung, n = 1, 2,⋯,Nt

obtained in the second step to n subintervals as the
initial condition of each interval. Solve parallelly
Equation (14) in each intercells f½Tn−1, Tn�g, n = 1,
2,⋯,Nt :

u1n, u2n,⋯, uin, ui+1n ,⋯usn, n = 1, 2,⋯,Nt: ð18Þ

We can write the calculation format as follows:

ui+1n = Fδt uin
� 	

, i = 1 2 ⋯ s: ð19Þ

(v) Step 4: correct the solution fuing on the rough grids
by combining the solution obtained on the fine grids
and then finish one-time iterative solution:
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u k+1ð Þ
n+1 = CΔt u k+1ð Þ

n

� �
+ Fδt u kð Þ

n

� �
− CΔt u kð Þ

n

� �
, k = 0, 1, 2,⋯,M,

ð20Þ

where the superscripts ðk + 1Þ and ðkÞ are the number of
iterative correction, and M is maxim correction steps.

(vi) Step 5: if the error meets the accuracy, kuðk+1Þ −
uðkÞk < ε, the iteration will be stopped; otherwise,
the iteration will go to the second step to continue
the iteration

Note: in order to realize parallel computing quickly,
rough and fine time grids are divided before each iteration.
In each iteration, the results calculated in the last iteration
need to be transmitted to the corresponding computing cells.

This paper combines AOS algorithm based on P-M
model with time parareal method to denoise image. First
of all, AOS is used to solve the approximate value on the
rough time steps, since the fine intercell length is generally
small after subinterval is subdivided, which can meet the
requirements of the explicit method. Thus, explicit format
can be used for parallel calculation on each subinterval, to
increase the calculation accuracy and speed. The main dis-
crete formats of our algorithm on denoising are listed below.

First, the implicit difference dispersion of Equation (3) is
obtained

In+1i,j = Ini,j + τ ⋅
gni−1,j + gni,j

2 ⋅ In+1i−1,j − In+1i, j

� �
+
gni+1,j + gni,j

2 ⋅ In+1i+1,j − In+1i,j

� ��

+
gni,j−1 + gni, j

2 ⋅ In+1i,j−1 − In+1i,j

� �
+
gni,j+1 + gni,j

2 ⋅ In+1i, j+1 − In+1i,j

� ��
:

ð21Þ

The AOS methods (12) and (13) are used to solve the
above discrete scheme (21). The initial guess values obtained
on the rough time grids are set as the initial value of intercell
parallel computing.

Next, on the fine grids, use the following explicit scheme
for calculation:

In+1i,j = Ini,j + λ ⋅ gn
N ⋅ ∇n

NI + gsS ⋅ ∇
n
S I + gnE ⋅ ∇

n
EI + gwW ⋅ ∇n

WIð Þ:
ð22Þ

Furthermore, use the formula to correct the previous two
calculations:

u k+1ð Þ
n+1 = CΔt u k+1ð Þ

n

� �
+ Fδt u kð Þ

n

� �
− CΔt u kð Þ

n

� �
: ð23Þ

Take the corrected results as the initial value of the next
iteration. Computing in this way, we continue to iterate until
reach the ideal degree of accuracy.

Note: parareal algorithm is very efficient for time-
dependent equation(s). Compared with traditional domain
parallel methods, the remarkable feature of this algorithm
is its time parallel. Many test examples show that the algo-
rithm has fast convergence, high efficiency, and easy to pro-

gram. It is also worth noting that if one can consider the
time variable as a special spatial variable, he can use the
domain decomposition algorithm based on spatial variables
to calculate the change of time dimension. Therefore, in this
sense, time parareal algorithm is also a domain decomposi-
tion algorithm, which is just a nonoverlapping domain
decomposition algorithm.

3. Results and Discussion

In order to test the denoising effect of the above-mentioned
parallel algorithm based on iteration, the time explicit
method, the implicit method, and the time parareal comput-
ing technique of P-M equation are used to denoise the noisy
image. In order to evaluate the denoising effect, we introduce
the mean squared error (MSE) to assess the approximation
degree to original clear image and choose termination index
of the denoising. The mean square deviation measure of
image is given by the following formula:

MSE =∑M
i=1∑

N
j=1

I i, jð Þ − Î i, jð Þ�2
Mx ⋅Ny

"
ð24Þ

In the above formula (24), I ðx, yÞ is the noisy image,
Îðx, yÞ is the denoised image, Mx,Ny are the number of
pixels in the x, y direction of the image. Based on the above
definition, the smaller the mean square deviation measure is,
the closer the denoised image is to the original image, the
better of the denoising effect is.

For the sake of simplicity, firstly, we choose a gray image
to illustrate the effect of denoising based on time parareal
and P-M model. Since the noise of the actual image can be
approximated by Gaussian noise, here, we add some Gauss-
ian noise to the original image to get the noisy image. The
first part (part a) in Figure 1 is the selected actual image of
6000 × 4000 pixels. The b part is a noisy image-attached nor-
mal Gaussian noise with standard deviation of 15. Part c in
Figure 1 is the result of denoising image based on the time
parareal method and P-M model.

Figure 2 shows the different distribution in strong con-
trast and low contrast area of Gaussian noise image with var-
iance of 15. Since the variance of noise is 15, it is relatively
small compared with the maximum value 255 of gray image,
so there is obvious noise pollution in the light part of image.
In the light and dark part of the two small images on the
right, the influence of noise can also be seen clearly. This
kind of influence is similar to the image we take in the dark
scene or high ISO light sensitive situation, so this kind of
experiment has a good representativeness in real image cap-
ture and processing.

The following Figure 3 is the MSE change curve
depended on time of the above-mentioned landscape
denoising using the explicit, implicit, and time parareal algo-
rithm. The abscissa is the time, and the ordinate represents
the value of MSE. The top curve represented by a circle in
the figure comes from the time parareal algorithm, the mid-
dle curve represented by a plus sign comes from the implicit
serial algorithm, and the next curve with a small rectangle
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comes from the time serial algorithm. In order to ensure the
accuracy and convergence of denoising, the time step of
explicit scheme is 0.0005, and maxim iteration step is 4000;
the time step of implicit scheme is 0.05 times, and the result
of 400 iterations is adopted; the parareal calculation scheme
is divided the interval ½t0, t1� into 100 subintervals and
adopts implicit scheme, each subinterval is divided into

120 small intercells, and 3 rounds of parallel iteration is
finished.

Note: the denoising method based on PDE generally
achieves a better denoising effect after appropriate number
of time iteration, but the curve of time parareal algorithm is
not a simple curve changing with time, because the time para-
real algorithm is paralleled between regions and the
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Figure 1: Original image, noisy image, and denoising image.
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converging to the original equation is a whole process, and
does not simply come from the sample data after the parallel
algorithm converges with time. So, the solution here is to select
a parallel computing result after global convergence as the rep-
resentative of the solution in different time steps and then
make these computing results evenly distributed on the com-
puting time axis. So, the time axis here is the last round of par-
allel iteration, that is, the change of MSE with time in the third
round (see the circle-solid curve in the following Figure 2).
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Figure 2: Different distribution of Gaussian noise image (σ = 15).
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Figure 3: MSE comparison of time parareal method and explicit and implicit method.

Table 1: Efficiency comparison for different methods.

Min (MSE) Time (s) Iterations

Explicit method 0.306647 57.44969 3794

Implicit method 0.478135 16.06848 359

Parareal method 0.624097 5.051357 —
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It can be seen from Figure 2 that, in general, the algo-
rithm based on time parareal can save computing time effec-
tively when the computing hardware resources (100
computing cells/processes) are ignored. The implicit format
takes a relatively large time step. Although each iteration
needs to solve two tridiagonal equations, the overall time
spent is relatively small. However, the explicit serial comput-
ing is relatively simple; since a relatively small step is taken
here, the time spent is actually the longest one and not dom-
inant among the three methods. The following table shows
the minimal MSE value and corresponding the cost time
and iterations of explicit format, implicit format, and time
parareal format.

From Table 1, we can get intuitively, the smaller the
MSE, the closer the denoised image is to the original image,
the better the denoising effect. Besides, because the explicit
method requires a strict time step and there are many itera-
tions needed, the iteration takes a lot of time. It takes about 1
minute to reach the minimum value, but the MSE values are
generally smaller, and the MSE minimum computed is also
the smallest one. Although the implicit method can take a
larger step size, in order to ensure the effect of denoising,
the step size should not be too large, which requires less time
than the explicit method and is relatively stable. For the
parareal algorithm, in theory, if the number of iterations is
enough, the convergence of the calculation is determined
by the step size of the fine grids. However, because the num-
ber of iterations is relatively small (only 3 turns), the MSE
value is also affected by the step size of the rough grids. In
this way, the MSE is the largest of the three, but the time is
really saved.

Figure 4 is a denoised image based on the time parareal
method. The effect is better in the distribution of strong con-
trast and low contrast than the local mean method men-
tioned in the introduction. Although the time parareal

MSE is larger than the explicit and implicit schemes, the
L2 norm represents the macrodistribution level of noise, so
there is little difference in the macroperformance of the
image after denoising. In fact, for small-scale images, for
the same scale of noise level, the explicit, implicit, and time
parareal method cost the same time to denoise, they can also
achieve the same noise level. Furthermore, if we choose dif-
ferent steps to calculate, the difference is not conspicuous.

In addition, the three discrete methods, in general,
smoothen the image features in different degrees while
smoothing the noise, but pay attention to the twigs on the
rock, based on P-M method; the processing effect is rela-
tively good at the noise level of variance 15.

Here are also three points worth noting: first, large-scale
parallel computing devices do not seem to be often available,
but the development of cloud computing and edge comput-
ing provides more possibilities for image parallel computing.
Secondly, generally speaking, the convergence of time para-
real algorithm is related to the governing equation. If the
equation is highly nonlinear, the time step should be rela-
tively small, or a more stable method should be used, such
as implicit method or multistep method. Finally, because
the calculation range of time is usually uncertain, we cannot
deal with time parallelism completely according to the spa-
tial parallel algorithm, which is also different from spatial
parallelism.

4. Conclusions

Based the above discussion of the classical nonlinear diffu-
sion equation, P-M model, a fast denoising method is
obtained by combining the unconditionally stable explicit
and implicit schemes with the time parareal computing.
Experimental results show that the parallel algorithm can
effectively remove the noise while maintaining the image
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Figure 4: Denoising effect of Gaussian noise overlay (σ = 15).
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edge information. Compared with the traditional explicit
method, the effect of noise removal is not as good as that
of implicit method, and the running time is far less than that
of implicit method. It is about a few percent of the implicit
scheme. Therefore, the image denoising algorithm based
on time parareal and P-M model is an efficient and feasible
numerical scheme, which can be applied to large-scale image
denoising and has a good application prospect.
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