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Simulink is a well-known block diagram-based tool for modular design and multidomain simulation of Cyber-Physical Systems
(CPS). However, the simulation by Simulink cannot completely cover the state space or behavior of a target system, which
would not ensure the correctness of the developed block diagrams in Simulink. In this work, we present a contract-based
method, which supports compositional reasoning and refinement, for proving the correctness of Simulink block diagrams with
discrete-time and continuous-time dynamic behavior. We use the assume-guarantee contract as a specification language. The
Simulink block diagrams are correct in the sense that if the block diagrams satisfy the formal specifications of the system being
modeled. To prove the correctness of a block diagram, we first define semantics for Simulink block diagrams. We study three
composition operators, i.e., serial, parallel, and algebraic loop-free feedback with multistep delays. We present a satisfaction
relation between the block diagram and contract and present a refinement relation between the contracts. We prove that if the
Simulink block diagram satisfies the composition contract and the composition contract refines the system specifications, the
block diagram is correct relative to the system specifications. Furthermore, we demonstrate the effectiveness of our method via
a real-world case study originating from the control system of a reservoir. Our method can also provide an idea to verify
whether the designed CPS is planted with a logic bomb by attackers.

1. Introduction

Cyber-Physical Systems (CPS) are engineering systems
where functionalities emerge from the network interaction
of physical and computational processes [1]. Designing
CPS correctly and efficiently is a critical challenge for com-
puter science and industry. Model-based design (MBD) [2]
provides virtual system integration and a visual approach
to develop models for CPS. Bugs in the model can be identi-
fied and corrected at an early stage of the design process
when no hardware is available. Such a method is considered
as an effective solution to design CPS correctly.

Simulink [3] is a graphical modeling language for model-
based design (MBD). Currently, Simulink greatly appeals to
CPS engineers since it captures the dynamic behavior of the
modeled system. A Simulink block diagram consists of
blocks connected via wires. The blocks (from Simulink
library, a set of predefined blocks that can assemble block
diagrams of systems with drag-and-drop mouse operations)

represent different parts of a system being modeled, and
wires indicate the communication between the blocks. The
blocks have input and output ports that receive the input
signals and send the output signals. The signals are the func-
tions of time that can be continuous-time or discrete-time.
Hence, the Simulink block diagrams can be classified based
on the time: contain only discrete-time blocks, continuous-
time blocks, or a mixture of discrete-time and continuous-
time blocks. Our work focuses on the Simulink block dia-
grams containing only discrete-time blocks and continuous-
time blocks, which we call discrete-time Simulink block dia-
grams or continuous-time Simulink block diagrams.

Simulink supports the design, modeling, simulation, and
test of CPS. The test for Simulink block diagrams is based on
numerical simulation. One of the drawbacks of numerical
simulation is that it does not completely cover a target sys-
tem’s state space or behavior. In addition, a logic bomb [4]
maliciously inserted into Simulink by attackers can persis-
tently change the behavior. In safety-critical systems, an
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error could lead to incorrect analysis results and thus result
in property damage, even significant injury or death. Formal
methods can rigorously prove that all possible behaviors sat-
isfy a specific formal specification, thus ensuring correctness.
By “correctness,” we mean that all possible behaviors of the
Simulink block diagram satisfy the given formal specifica-
tion of a system to be modeled.

A number of methods have been reported in the litera-
ture. To the best of our knowledge, some existing solutions
only focus on Simulink block diagrams with discrete-time
behaviors, e.g. [5–11]. A common approach for tackling con-
tinuous-time Simulink block diagrams is to discretize the
continuous-time dynamical behavior [12, 13]. However, the
discretization of continuous systems reduces the accuracy
of the verification of continuous dynamics. The contract
supports compositional reasoning and refinement, enabling
hierarchical design and verification of complex systems by
decomposed system-level specification into the block-level
specification to provide implementations correctly. Based
on this advantage, we employ contract as formal specifica-
tion to specify the observable trajectory of discrete-time
and continuous-time blocks and present a contract-based
refinement technique for proving Simulink block diagrams’
correctness.

To prove the correctness of Simulink block diagrams, we
first define formal semantics for Simulink block diagrams.
We consider the blocks in the library to be units and call
them elementary blocks. The elementary block expresses
the time-dependent (continuous-time or discrete-time) rela-
tionships between the inputs, internal states, and outputs.
Thus, we define the elementary block as a dynamic system
that can model both continuous-time and discrete-time
blocks. Based on this definition, we define the observable tra-
jectory for the blocks, i.e., the evolution of the value of input-
output variables over time. We formulate the wire as unilat-
eral connection (i.e., the relations of output and input
between connected blocks) for communication. Then, to
construct the Simulink block diagrams, we define three basic
composition operators, namely, serial, parallel, and algebraic
loop-free feedback composition. Moreover, we study the
algebraic loop-free feedback composition containing multi-
step delays. Similar works [13, 14] only considered the ones
with unit delay.

We then present a contract-based refinement technique
to prove the correctness of the Simulink block diagrams, as
shown in Figure 1. Our purpose is to prove that the block
diagram satisfies the system specification. To this end, we
introduce a mid-level called composition contract (i.e., the
composition of contracts corresponding to the blocks that
construct the Simulink block diagrams) between low-level
block diagrams and high-level system specifications for com-
position. The approach is divided into two stages. Firstly, we
define the satisfaction relation that relates block to contract
and verify that the satisfaction relation is preserved by com-
position, i.e., if blocks satisfy their contract, respectively,
their composition satisfies the contract composition. Sec-
ondly, we define the refinement relation between contracts
and prove that the composition of contracts refines the sys-
tem specifications. The block diagram is correct as long as

we prove that the block diagram satisfies the composition
contract and the composition contract refines the system
specification to imply that the block diagram satisfies the
system specification.

1.1. Contributions. Contributions of this paper are summa-
rized as follows:

(i) We define the formal semantics for Simulink block
diagrams from the viewpoint of dynamic systems
to precisely express the trajectory of the Simulink
block diagrams with discrete-time and continuous-
time

(ii) Under the semantics, we propose a contract-based
refinement technique mentioned above for proving
the correctness of the Simulink block diagrams with
discrete-time and continuous-time blocks

(iii) We demonstrate the effectiveness of our method
through a case study of the control system of a res-
ervoir that is modelled with Simulink block
diagrams

1.2. Organization. The remainder of this paper is organized
as follows. Section 2 reviews the related works. Section 3
introduces the notations and notions used in our work. Sec-
tion 4 presents the semantics of the Simulink block dia-
grams. Section 5 proposes the contract-based refinement
method for proving the correctness of Simulink diagram
blocks. Section 6 demonstrates the effectiveness of our
method with a case study. Section 7 concludes the paper
and proposes future works.

2. Related Works

In recent years, there are a range of methods to analyze and
verify Simulink.

There exist some works that translate Simulink into
other formal modeling languages. For example, Tripakis
et al. [5] translated the Simulink block diagrams to a syn-
chronous dataflow language, Lustre. Since the Lustre has a
discrete-time semantics, the work [5] only handled discrete-
time Simulink block diagrams. In [6], Cavalcanti et al. pre-
sented a semantics for discrete-time Simulink blocks dia-
grams called Circus. The work [6] was based on existing
tools that generate CSP and Z specifications from discrete-
time block diagrams. It only translated discrete-time Simu-
link blocks diagrams, Simulink block diagrams with contin-
uous-time were not considered.

Chen and Dong [15, 16] presented the method to auto-
matically transformed Simulink diagrams with discrete-time
and continuous-time into Timed Interval Calculus (TIC)
models. This method applied the Prototype Verification Sys-
tem (PVS) to validate that TIC fulfils requirements. These
works were the first attempt to model Simulink block dia-
grams with continuous-time. The work [17] presented an
operational semantics for Simulink’s simulation engine that
formally defines the numerical simulation result, including
discrete-time and continuous-time. Zou et al. [18]

2 Wireless Communications and Mobile Computing



automatically translated Simulink block diagrams into
Hybrid Communicating Sequential Processes (HCSP) and
showed how the translated HCSP models are verified using
the Hybrid Hoare Logic Verifier. In [19], it showed how dif-
ferent Simulink blocks can be expressed in the synchronous
language Ze′lus, which extends a language Lustre with
ODEs and zero-crossing events. The main difference
between the articles [15–19] and our work is intentions.
Our main goal here is not to translate the Simulink block
diagrams to other formalisms, nor to define the semantics
of Simulink’s engine, but to directly define the trajectory of
the Simulink block diagrams from the point of view of
dynamic systems and provide a compositional and refine-
ment technology to prove the correctness of Simulink block
diagrams with discrete-time and continuous-time. On the
other hand, we have three basic composition operators, i.e.,
serial, parallel, and algebraic loop-free feedback composition
with multistep delays, which more facilitate the composition
in construction. However, the work [18] could verify hybrid
system, which is not considered in our work.

The contract-based approaches for verifying the correct-
ness of Simulink block diagrams were also widely studied in
the literature. Bostro et al. [7] showed definitions of contract
and refinement using the action systems for Simulink
models, while refinement provides a framework for reason-
ing about implementation correctness. However, this work
only focuses on discrete-time Simulink block diagrams. Ye
et al. [10, 11] defined a theoretical reasoning framework
for Simulink block diagrams using Unifying Theories of Pro-
gramming (UTP). The main idea of these papers is to trans-

late each block or subsystem to a design, and the hierarchical
connections of blocks are mapped to a variety of composi-
tions of designs, and verify some properties. However, these
papers only handled discrete-time Simulink block diagrams.
In our work, we provide a compositional and refinement
technology to prove the correctness of Simulink block dia-
grams with discrete-time and continuous-time. Dragomir
et al. [13] recently presented a Refinement Calculus of Reac-
tive Systems (RCRS) toolset for compositional formal
modeling and reasoning about discrete and continuous reac-
tion systems. RCRS is a discrete-time framework. The con-
tinuous systems can be modeled by discretizing time.
However, the discretization of continuous systems reduces
the accuracy of the verification of continuous dynamics.
Our approach differs because we can directly represent and
theoretically verify the correctness of discrete-time and con-
tinuous-time Simulink block diagrams. Moreover, we study
the algebraic loop-free feedback composition with multistep
delays.

3. Preliminary

In this section, we introduce some notations and notions
that will be used in our work. We denote the set of natural
numbers by N , i.e., f0, 1, 2,⋯g, the set of positive integers
by N +, i.e., f1, 2,⋯g, the set of positive real numbers R+,
and the set of nonnegative real numbers by R+

0 . We denote
the set of integers between 1 and n by ½n� = f1,⋯,ng ⊂N +.
We denote vectors by bold fonts, and their components are

System requirement

Formulation
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Figure 1: An overview of contract-based correctness proof methods for Simulink block diagrams, where the dashed line and ⊨: satisfaction;
≼: refinement; ⊗ : composition.
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indexed from 1 to n; for example, x = ðx1,⋯,xnÞ, and xi is the
i‐th component of x, i ∈ ½n�.

Following the definitions of vector addition and scalar
multiplication in vector spaces, for two vectors x = ðx1, x2Þ
and y = ðy1, y2Þ, the vector addition can be expressed as x
+ y = ðx1 + y1, x2 + y2Þ and the scalar multiplication can be
expressed as kðx1, x2Þ = ðkx1, kx2Þ, where k ∈ F and F is a
field.

We fix a time axis R+
0 . The continuous-time domain Tc

is a subset of R+
0 with a left endpoint equal to 0. The right

endpoint may be open or closed. For any τ ∈R+, the dis-
crete-time domain is a set Tτ = ftkjtk = kτ, k ∈N g, where
the time instant tk is called sample time point, t0 = 0 is the
initial time, and tk keeps increasing at every iteration, i.e.,
∀k ∈N , tk < tk+1.

We denote the n-dimensional real-valued vector space
by Rn, where n ∈N +. A signal is a function from a time-
domain T to Z ⊆Rn, i.e., zð·Þ: T ↦ Z (or z for short). We
use ZT to denote a set of all signals z. A continuous-time sig-
nal is a signal defined over a continuous-time domain Tc. A
discrete-time signal is a signal that is defined at the discrete-
time domain Tτ. The values of the discrete-time signal
update at each tk and remain constant in the intervals dkτ,
ðk + 1ÞτÞ, k ∈N .

4. Simulink Block Diagrams and Semantics

In this section, we present the semantics of Simulink block
diagrams. We will start by giving a brief introduction to
Simulink block diagrams, and we highlight the features rele-
vant to our work. For more details, we refer the reader to [3].

4.1. Introduction of Simulink Block Diagrams. A Simulink
block diagram is a graphical representation of a dynamic
system. The Simulink block diagrams are composed of
blocks and wires. The blocks can be either elementary blocks
provided by the Simulink library or composition blocks
made up of elementary blocks or other composition blocks.
An example that implements the relationship between the
vehicle’s power, resistance, and speed is shown in Figure 2.
It consists of Constant, Subsystem, and Scope, where Con-
stant and Scope are elementary blocks, and the composition
block Subsystem comprises four elementary blocks Gain1,
Subtract, Integrator, and Gain2.

In its most general form, the elementary block has Input-
ports and Outputports that receive the input signals and send
the output signals. For some special blocks, the absence of
Inputports or Outputports is also allowed. We will explain
the details later. An elementary block is either stateful or
stateless. We say a block is stateful if the output of this block
depends on its inputs and internal states (i.e., memory). We
say a block is stateless if the output depends only on its
inputs. Wires transmit signals in the direction indicated by
the arrow. It must transmit signals from Outputports of
one block to Inputports of another block in terms of its sam-
ple times. An exception to this is that one wire can be drawn
from another. This sends the original signal to two (or more)
target blocks. Wire communication is instant. That is, when

a block outputs the value to a wire, all blocks connected to
that wire will see the new value simultaneously.

To improve the modeling capabilities of Simulink, each
elementary block contains some user-tunable parameters.
One of the significant parameters is sample time that indi-
cates the rate at which the block executes in simulation.
According to the sample time, the blocks are divided into
two main categories: continuous and discrete blocks. The
sample time comprises two parameters: sample time period
τ and initial time offset θ. For the continuous blocks, the
sample time period τ = 0. For the discrete blocks, the sample
time period τ is always greater than zero and less than the
simulation end time and θ less than or equal to τ. Since
the default value of the initial offset is 0, unless otherwise
mentioned, we let the initial offset θ be 0. As an example,
suppose that the time unit is seconds, let the sample time
period of a block be 0.02 s, and then the block updates
methods (update, derivative or output) each 0.02 s. The
Simulink block diagrams can be single rate where all blocks
run with the same period or multirate where blocks run on
different periods. This work considers single rate discrete-
time Simulink block diagrams and continuous-time Simulink
block diagrams with τ = 0.

There are three basic composition operators in Simulink:
(i) Serial composition is the composition that the output of
the source block is connected to the input of the target block.
(ii) Parallel composition is that two blocks are “stacked on
top of each other” without any wires between the two blocks.
(iii) Feedback composition is that the output of a block con-
nects to one of its inputs. Other forms of composition can be
assembled from these three basic composition operations
and wires.

4.2. The Semantics of Simulink Block Diagrams. In this sub-
section, we formally define the semantics for Simulink block
diagrams. We focus on the semantics of elementary block,
composition semantics for composition operators, and the
semantics of communication between blocks.

Constant
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ScopeSubsystem

u(t)
+ m1
–

mv(t) v(t) v(t)

Subtract Gain 1 Integrator

Gain2

Out

Subsystem

b

In S
1

Figure 2: A Simulink block diagram.
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As introduced in 4.1, an elementary block has Inputports
which receive the input signals, internal state, and Output-
ports that send the output signals. It describes a mathemati-
cal relationship between inputs, outputs, and internal states
to capture dynamic behavior. We define an elementary block
as a dynamical system.

Definition 1 (An elementary block). An elementary block B is
a tuple ðx, s, y, φ, f Þ, where

(i) x : T ↦ X is an input signal, xðtÞ ∈ X ⊆Rn, xðt0Þ is
the initial value of the input signal

(ii) y : T ↦ Y is an output signal, yðtÞ ∈ Y ⊆Rm, yðt0Þ
is the initial value of the output signal

(iii) s : T ↦ S is an internal state signal, sðtÞ ∈ S ⊆Rp, s
ðt0Þ is the initial value of the internal state signal

(iv) φ is the transition function of internal state

(v) f is the output function, i.e., yðtÞ = f ðxðtÞ, sðtÞÞ

The above definition can express both discrete-time
blocks and continuous-time blocks. We say that a block is
continuous if it operates on continuous-time signals. We
say a block is discrete if it operates on discrete-time signals.
Every block must define its output function and may define
initialize, update, or derivative function to realize the corre-
sponding function. For the discrete-time blocks, we denote
φ = φu, i.e., sðtk+1Þ = φuðxðtkÞ, sðtkÞÞ, which refers to the
update function of internal state. For the continuous-time
blocks, we denote φ = φd , i.e., _sðtÞ = φdðxðtÞ, sðtÞÞ, which
refers to the derivative function of internal state. The input
or internal state of a block can be empty, respectively. In that
case, we denote the input or internal state by x = 0 or s = 0
and use a symbol “-” to denote the transition function of
the internal state. If a block has no internal state, we say
the block is stateless.

Some elementary blocks mentioned in our article are
shown in Table 1 Three simple examples are shown below.

Example 1 (Unitdelay). An example of a stateful discrete-
time elementary block is the Unitdelay block. The Unitdelay
expresses that the current output value of this block is equal
to the value of the current internal state, and the value of the
next internal state is equal to the current input value. It can
be represented as Bu = ðxu, su, yu, suðtk+1Þ = xuðtkÞ, yuðtkÞ =
suðtkÞÞ, where tk ∈ Tτ.

Example 2 (Multistep delays). A block with multistep delays
is denoted as B = ðx, s, y, φ, f Þ, where yðtn·kÞ = sðtn·kÞ, and s
ðtn·ðk+1ÞÞ = xðtn·kÞ, where n means that the block outputs
the input of this block after n sample periods, n ∈N +, k ∈
N .

Example 3 (Integrator). An example of a stateful continuous-
time elementary block is the Integrator. The block models
the relations, _sðtÞ = xðtÞ with yðtÞ = sðtÞ. The Integrator can

be represented as BI = ðxI , sI , yI , _sIðtÞ = xIðtÞ, yIðtÞ = sIðtÞÞ,
where t ∈R+

0 .
We use the observable trajectory to model the evolution

of the input-output variables.

Definition 2 (The observable trajectory of the discrete-time
elementary block). Let B = ðx, s, y, φu, f Þ be a discrete-time
elementary block. An observable trajectory Tr of B is a set
fðx, yÞ: Tτ ↦ X × Y j∃syðtkÞ = f ðsðtkÞ, xðtkÞÞ∧sðtk+1Þ = φuðx
ðtkÞ, sðtkÞÞ, k ∈N g , where x : Tτ ↦ X ⊆Rn is the input tra-
jectory and y : Tτ ↦ Y ⊆Rm is the output trajectory.

Definition 3 (The observable trajectory of the continuous-
time elementary block). Let B = ðx, s, y, φd , f Þ be a continu-
ous-time elementary block. An observable trajectory Tr of
B is a set fðx, yÞ: Tc ↦ X × Y j∃syðtÞ = f ðsðtÞ, xðtÞÞ∧_sðtÞ =
φdðxðtÞ, sðtÞÞg, where x : Tc ↦ X ⊆Rn is the input trajec-
tory and y : Tc ↦ Y ⊆Rm is the output trajectory.

The wires connect some Outputports of a block to some
Inputports of other block for communicating. For any
blocks, B1 = ðx1, s1, y1, φ1, f1Þ and B2 = ðx2, s2, y2, φ2, f2Þ,
where x1 = ðx1,1,⋯,x1,nÞ, y1 = ðy1,1,⋯,y1,mÞ, x2 = ðx2,1,⋯,x2,n
Þ, and y2 = ðy2,1,⋯,y2,mÞ. We model the wires between B1
and B2 as a relation, called unilateral connection. A unilat-
eral connection is a set of variables pair ðy1,j, x2,iÞ, for j ∈ ½
m� and i ∈ ½n�, where the former of each pair is the output
variable that comes from B1, the latter of each pair is the
input variable that comes from B2. We define the unilateral
connection as follows:

Definition 4 (Unilateral connection). Given two blocks B1
= ðx1, s1, y1, φ1, f1Þ and B2 = ðx2, s2, y2, φ2, f2Þ, we define a
unilateral connection from B1 to B2 (and vice versa) as a
relation ρ = fðy1,j, x2,iÞjj ∈ ½m�, i ∈ ½n�g satisfying that:

(i) y1,j is the j‐th component of y1, for all j ∈ ½m�
(ii) x2,i is the i‐th component of x2, for all i ∈ ½n�
(iii) y1,jðtÞ = x2,iðtÞ, for all t ∈ T

Note that not all the blocks can be connected. Given a
source block B1 = ðx1, s1, y1, φ1, f1Þ and a target block B2 =
ðx2, s2, y2, φ2, f2Þ, if we connect the output variables of the
source block with input variables of the target block, variable
names and their types (the sets of values that a variable can
take) impose some constraints: First, the names of the input
and output variables should not conflict. Second, the types
should match and Y1 ⊆ X2, where Y1 is the type of y1 and
X2 is the type of x2. Third, one output port can connect to
many input ports, but an input port can connect to at most
one output ports.

For readability, we use fρ1,⋯,ρng ⊆ ρ to denote a set of
specific unilateral connection (determined by a relation as
defined in Definition 4). Note that, since ρ = fðy1,j, x2,iÞjj ∈
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½m�, i ∈ ½n�g is a relation, we can also have ρðy1,jÞ = fx2,ijð
y1,j, x2,iÞ ∈ ρ, j ∈ ½m�, i ∈ ½n�g.

4.3. Composition. A Simulink block diagram is a composi-
tion block constructed by elementary blocks according to
composition operators. We will define the semantics of three
basic composition operators in the following, namely, serial,
parallel, and algebraic loop-free feedback composition with
multistep delays. We first consider the serial composition.

We can compose blocks B1 and B2 to form a serial com-
position when there is a unilateral connection between B1
and B2 and the unilateral connection satisfies the connection
rules, as shown in Figure 3(a).

Definition 5 (Serial composition). Given blocks B1 = ðx1, s1,
y1, φ1, f1Þ and B2 = ðx2, s2, y2, φ2, f2Þ, a serial composition
B1 ; B2 of B1 and B2 is defined as a block ðx, s, y, f , φÞ if there

exists a unilateral connection and

x≔ x1,
s≔ s1, s2ð Þ,
y ≔ y2,
φ≔ φ1 x1, s1ð Þ, φ2 x2, s2ð Þð Þ,
f ≔ f1 ; ρ ; f2ð Þ x, sð Þ = f2 ρ f1 x1, s1ð Þð Þ, s2ð Þ:

The definition of the serial composition of elementary
blocks coincides with the definition of an elementary block
(i.e., Definition 1), and therefore a composition can be con-
sidered a block.

Example 4 (Serial composition). In Figure 3(b), the stateless
block Gain takes input x1, computes k ∈R times of x1, and
returns y1 as output, where x1 : R↦R and y1 : R↦R.

Table 1: The representation of some elementary blocks and their semantics.

Library Description Elementary block Semantics

Source
Constant

Constant value
>yC B = 0, 0, y,−,y tð Þ = cð Þ

Sinks
Display

System output
x> B = x, 0, y,−,y tð Þ = x tð Þð Þ

Signal routing
Switch

Conditional statement
>y0>

x1>
x2>
x3>

B = x, 0, y,−,fð Þ
y tð Þ =

x1 tð Þ x2 tð Þ > 0,
x3 tð Þ x2 tð Þ ≤ 0

(

Discrete
Unitdelay

Discrete-time delay
>yx> 1

Z

B = x, s, y, φ, fð Þ
φ : s tk+1ð Þ = x tkð Þ
f : y tkð Þ = s tkð Þ

Discrete/continuous
Sine wave

Discrete-time
>yx> B = x, 0, y,−,y tkð Þ = sin x tkð Þð Þ

Math operations
Gain

Math operation
3 >yx> B = x, 0, y,−,y tð Þ = 3x tð Þð Þ

Continuous
Integrator

Continuous-time
>yx> 1

S
B = x, s, y, φ, fð Þ

φ : _s tð Þ = x tð Þ, f : y tð Þ = s tð Þ

Math operations
Sum

Math operation
>y

+

+

x1>

x2>
B = x, 0, y,−,fð Þ, x = x1, x2ð Þ

y tð Þ = x1 tð Þ + x2 tð ÞÞ

Math operations
Subtraction

Math operation
>y

+

–

x1>

x2>
B = x, 0, y,−,fð Þ, x = x1, x2ð Þ, y tð Þ = x1 tð Þ − x2 tð ÞÞ

Math operations
Divide

Math operation
Divide

>yx> ÷
B = x, 0, y,−,y tð Þ = 1

x tð Þ
� �
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Another stateless block Sum has the input x2 = ðx2,1, x2,2Þ and
output y2ðtÞ = x2,1ðtÞ + x2,2ðtÞ, where x2 : R↦R ×R and
y2 : R↦R, ∀t ∈R . Let ρ be the unilateral connection
between Gain and Sum. Then, we can express these blocks as
follows:

Gain≔ x1, 0, y1,−,y1 tð Þ = gain x1 tð Þ, 0ð Þð Þ,
ρ≔ y1, x2,1ð Þ, y1, x2,2ð Þ� �

,
Sum≔ x2, 0, y2,−,y2 tð Þ = add x2 tð Þ, 0ð Þð Þ,

where y2ðtÞ = addðx2ðtÞ, 0Þ = x2,1ðtÞ + x2,2ðtÞ, y1ðtÞ = gainðx1
ðtÞ, 0Þ = k · x1ðtÞ, y1ðtÞ = x2,1ðtÞ, y1ðtÞ = x2,2ðtÞ. According to
Definition 5, we compute the output function of the serial com-
position as follows:

f x1 tð Þ, 0ð Þ≔ add ρ gain x1 tð Þ, 0ð Þð Þð Þ
= add ρ y1 tð Þð Þ, 0ð Þ = add x2 tð Þ, 0ð Þ
= x2,1 tð Þ + x2,2 tð Þ = 2k · x1 tð Þ:

Therefore, we have Gain ; Adder≔ ðx1, 0, y2,−,y2ðtÞ = 2k
· x1ðtÞÞ.

The serial composition of blocks satisfies associative
laws.

Lemma 6 (Associativity). Given blocks B1, B2, and B3, we
have ðB1 ; B2Þ ; B3 = B1 ; ðB2 ; B3Þ.

Proof. It is easy to verify using Definition 5. Thus, if we com-
pose multiple blocks in serial, we can first compose two
blocks, compose the result with a third one, ⋯, and rearran-
ging the brackets in the expression does not change the
result as long as the block’s position remains the same.

Parallel composition is a particular case of composition
with connection, where the unilateral connection between
B1 and B2 is an empty set. We define parallel composition
as follows.

Definition 7 (Parallel composition). Given blocks B1 = ðx1,
s1, y1, φ1, f1Þ and B2 = ðx2, s2, y2, φ2, f2Þ, we define the paral-
lel composition B1kB2 of B1 and B2 as a block ðx, s, y, f , φÞ,

where

x≔ x1, x2ð Þ,
s≔ s1, s2ð Þ,
y ≔ y1, y2ð Þ,
φ≔ φ1 φ2kð Þ x1, s1ð Þ, x2, s2ð Þð Þ
= φ1 x1, s1ð Þ, φ2 x2, s2ð Þð Þ,

f ≔ f1 f2kð Þ x1, s1ð Þ, x2, s2ð Þð Þ
= f1 x1, s1ð Þ, f2 x2, s2ð Þð Þ:

Example 5 (Parallel composition). Consider the parallel
composition shown in Figure 4(a). The block Divide models
the relation y1ðtÞ = 1/x1ðtÞ, where x1 is the input signal and
requires x1ðtÞ ≠ 0, y1 is the output signal, and t represents
time. The Sine Wave block models the relation y2ðtÞ = x2ðt
Þ, where x2 is the input variable and y2 is the output variable.
Therefore, the Divide and Sine Wave can be represented as

Divide≔ x1, 0, y1,−,y1 tð Þ = 1
x1 tð Þ

� �
,

SineWave≔ x2, 0, y2,−,y2 tð Þ = x2 tð Þð Þ:

Following Definition 7, we write the parallel composition
as follows:

DividekSineWave≔ x1, x2ð Þ, 0, y1, y2ð Þ,−, y1 tð Þ = 1
x1 tð Þ , y2 tð Þ = x2 tð Þ

� �� �
:

Note that Definition 5 defines the case that all the Out-
putports of B1 match the Inputports of B2. However, not all
Outputports of B1 match the Inputports of B2 and not all
Outputports of B1 are connected to all the Inputports of B2.
As an example, we consider Figure 4(b). To handle this com-
position, we introduce a particular elementary block Id rep-
resenting its output is identical to its input. We model the
wires that connect the y1,1 and x2,2 as Id1 and Id2, respec-
tively. We then denote the composition by B = ððB1kId1Þ ;
ρ ; ðB1kId2ÞÞ, where ρ = fðy1,1, xId2Þ, ðy1,2, x2,1Þ, ðyId1 , x2,2Þg.

y1x1 B1
y2x2 B2

y1 y2x1
B1 B2

x2

𝜌

(a)

Gain Sum

+
+y1 y2x1

x2,1

x2,2

𝜌1

𝜌2

(b)

Figure 3: (a) Graphical representation of the serial composition of blocks, where ρ = fðy1, x2Þg is a unilateral connection between B1 and B2,
the dashed box indicates a composition of blocks. (b) Graphical representation of an example of serial composition, where ρ = fðy1, x2,1Þ
, ðy1, x2,2Þg is a unilateral connection between Gain and Sum.
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The parallel composition of blocks satisfies commutative
law and associative law.

Lemma 8. Given blocks B1, B2 and B3, we have

(i) B1kB2 = B2kB1

(ii) ðB1kB2ÞkB3 = B1kðB2kB3Þ

Proof. Straightforward from the Definition 7.

Wewill next define the algebraic loop-free feedback compo-
sition with multistep delays. Before defining that, we first intro-
duce the algebraic loop feedback to aid this definition. In
Simulink, an algebraic loop occurs when an input port of a
direct feedthrough block is driven by the output of the same
block in the same time step. The direct feedthrough means that
a stateless block computes its output only depending on the
input value at the current time. In mathematics, an algebraic
loop can be expressed as the algebraic equation f ðx, yÞ = 0,
where x is the input variable and y is the algebraic variable.
Simulink solves the algebraic equation for y at each time instant.

A simple example of an algebraic loop is the feedback that
represents in Figure 5(a). The feedback is a Subtraction block
with input x = ðx1,1, x1,2Þ and an output y. The first element
x1,1 of input is used to communicate with the environment.
The second element x1,2 is used for feedback. The output y is
split into two equal signals: one is for output, and another is
to feed the output back into input x1,2. Then, this loop implies
that the output of the Subtraction block is an algebraic variable
y that is constrained to equal the first input x1,1 minus x1,2, i.e.,
x1,1ðtÞ − x1,2ðtÞ = yðtÞ. Let x1,2ðtÞ = yðtÞ and x1,1ðtÞ = uðtÞ, we
have uðtÞ − yðtÞ = yðtÞ, and then the solution of this loop is y
ðtÞ = uðtÞ/2.

However, the algebraic loop has inherent difficulties in solv-
ing: (1) while Simulink solver solves the algebraic loop, the sim-
ulation can execute slowly. (2) Some algebraic loops have no
solution (an example shown in Figure 5(b), the expression of

this loop is uðtÞ + yðtÞ = yðtÞ, etc. These problems lead to
algebraic loops that are undesirable. To remove the algebraic
loop, according to Simulink, we connect y to x1,2 by stateful
blocks (such as Delay, Memory, or Integrator) in this feedback
to break the algebraic loop. We refer to this kind of acyclic
structure as algebraic loop-free feedback, as shown in
Figure 6. The work [14] defined the feedback with Unitdelay.
We will handle the case of multistep delays.

Definition 9 (Algebraic loop-free feedback composition with
multistep delays). Let blocks B1 = ðx1, s1, y1, φ1, f1Þ be feed-
back with an algebraic loop and B2 = ðx2, s2, y2, φ2, f2Þ be a
multistep delays block. Let ρ1 = ðy2, x1,2Þ and ρ2 = ðy, x2Þ be
the unilateral connections between B1 and B2. We denote by
B1 ⊗ f B2 the algebraic loop-free feedback composition of B1
and B2 with multistep delays and define B1 ⊗ f B2 = ðx, s, y, φ,
f Þ, where

x≔ x1,1,

s = s1, s2ð Þ,
y = y1,

φ≔ φ1 φ2kð Þ x1, s1ð Þ, x2, s2ð Þð Þ
= φ1 x1, s1ð Þ, φ2 x2, s2ð Þð Þ,

f ≔
y t0ð Þ t = t0,
y tn·kð Þ t = tn·k, n, k ∈N +:

(

In the definition above, the calculation process starts with
the multistep delays block. When t = t0, let the initial state sð
t0Þ = ð0, s2ðt0ÞÞ. The output’s initial value of this algebraic
loop-free feedback yðt0Þ = f1ððx1,1ðt0Þ, x1,2ðt0ÞÞ, sðt0ÞÞ. There
exists ρ1, s.t. x1,2ðt0Þ = ρ1ðy2ðt0ÞÞ, when y2ðt0Þ = f2ðx2ðt0Þ, s2ð
t0ÞÞ. Given a delay step n ∈N +, when t = tn·k, where k ∈N ,
the output yðtn·kÞ = f1ððx1,1ðtn·kÞ, x1,2ðtn·kÞÞ, sðtn·kÞÞ, where
the internal state sðtn·kÞ = ð0, s2ðtn·kÞÞ, and x1,2ðtn·kÞ = ρ1ðy2ð

Divide

x1 x2y1

x1 y1

y2÷

÷

x2 y2

Sine wave

Divide

Sine wave

(a)

x1

yId2

xId1

xId2

yId2

y1,1

x2,1

x2,2

y1,2 y2B2

B1

Id1

Id2

(b)

Figure 4: (a) Graphical representation of parallel composition, where the dashed box indicates a composition of blocks. (b) Graphical
representation of a composition with serial and parallel, where the dashed box indicates a composition of blocks.
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tn·kÞÞ, where y2ðtn·kÞ = f2ðx2ðtn·kÞ, s2ðtn·kÞÞ is the output of B2.
There exists ρ2, s:t:x2ðtn·kÞ = ρ2ðyðtn·ðk−1ÞÞÞ is the input of B2,
and s2ðtn·kÞ = φ2ðx2ðtn·ðk−1ÞÞ, s2ðtn·ðk−1ÞÞÞ.

We next give an example to illustrate removing an alge-
braic loop by introducing Unitdelay, i.e., let the delay step
n = 1.

Example 6 (An algebraic loop-free feedback composition
with Unitdelay). In Figure 6(a), the Sum block Sum = ððx1,1
, x1,2Þ, 0, y1,−,y1ðtÞ = x1,1ðtÞ + x1,2ðtÞÞ is feedback with an
algebraic loop. We connect y to x1,2 in this feedback by the
Unitdelay to break the algebraic loop. The Unitdelay block
Bu = ðxu, su, yu, suðtk+1Þ = xuðtkÞ, yuðtkÞ = suðtkÞÞ, where tk ∈
Tτ. Let ρ1 = ðyu, x1,2Þ and ρ2 = ðy, xuÞ, the ρ1 and ρ2 satisfy
the connection rules, and then an algebraic loop-free feed-
back composition with Unitdelay is a block B1 ⊗ f B2 = ðx, s
, y, φ, f Þ, where x = x1,1, s = ð0, suÞ, y = y, and the output
function

y tð Þ =
y t0ð Þ t = t0,
y tkð Þ t = tk, k ∈N +:

(

When t = t0, let suðt0Þ be the initial value of the internal
state of the Unitdelay. We have yuðt0Þ = suðt0Þ and x1,2ðt0Þ

= yuðt0Þ. Hence, we get the initial output value of this com-
position yðt0Þ = x1,1ðt0Þ + suðt0Þ.

When t = tk, k ∈N +, we first consider Unitdelay.
Because of xuðtkÞ = yðtkÞ, suðtk+1Þ = xuðtkÞ, yuðtkÞ = suðtkÞ,
and x1,2ðtkÞ = yuðtkÞ, we have yðtkÞ = x1,1ðtkÞ + yðtk−1Þ.

Next, we give an example about algebraic loop-free feed-
back composition with Integrator.

Example 7 (An algebraic loop-free feedback composition
with Integrator). An example of continuous time algebraic
loop-free feedback composition with Integrator is shown in
Figure 6(b). As previously mentioned, the Sum block Sum
= ððx1,1, x1,2Þ, 0, y1,−,y1ðtÞ = x1,1ðtÞ + x1,2ðtÞÞ is feedback
with an algebraic loop. The Integrator can be represented
as BI = ðxI , sI , yI , _sIðtÞ = xIðtÞ, yIðtÞ = sIðtÞÞ, where t ∈R+

0 .
In this composition, there exist unilateral connections ρ1 =
ðyI , x1,2Þ and ρ2 = ðy, xIÞ, and the unilateral connections sat-
isfy the connection rules, and then an algebraic loop-free
feedback composition with Integrator is a block B1 ⊗ f B2 =
ðx, s, y, φ, f Þ, where x = x1,1, s = ð0, sIÞ. Let sIð0Þ be the initial
value of the internal state of the Integrator. We have yIð0Þ
= sIð0Þ, and there is a ρ1, s.t. x1,2ð0Þ = yIð0Þ. Hence, we get
yð0Þ = x1,1ð0Þ + x1,2ð0Þ = x1,1ð0Þ + yIð0Þ.

When t ∈R+, similarly, we first consider Integrator.
Because there is a ρ2, s.t. xIðtÞ = yðtÞ, and _sIðtÞ = xIðtÞ, yIðtÞ

+
–

x1,1

x1,2

Subtraction

y

(a)

x1,1

x1,2
+
+

Sum

y

(b)

Figure 5: Graphical representation of feedback.

+
+

y

y xu

xu

yu

yu

𝜌1 𝜌2

x1,1

x1,2

x1,1

x1,2

Unitdelay

Sum

+

+

Sum Unitdelay

1
Z

1
Z

(a)

Sum

+

+

+
+

Sum Integrator

x1,1

x1,1 y

Integrator

1
S

y x1

x1

y1

y1

𝜌1 𝜌2

x1,2

x1,2

1
S

(b)

Figure 6: (a) Graphical representation of algebraic loop-free feedback composition with Unitdelay. (b) Graphical representation of algebraic
loop-free feedback composition with Integrator.
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= sIðtÞ. There exists ρ1, s.t. x1,2ðtÞ = yIðtÞ, we get

y tð Þ = x1,1 tð Þ + x1,2 tð Þ = x1,1 tð Þ + yI 0ð Þ +
ðt
0
xI δð Þdδ

� �

5. A Contract-Based Refinement Approach

The correctness refers to the trajectories of Simulink block
diagrams that should satisfy the requirement specifications
of the system. Since contracts are centered around trajecto-
ries, they are expressive and versatile enough to specify dis-
crete-time and continuous-time blocks. We use the contract
as a specification language to formalize and prove system
requirements and specify the trajectories of blocks. In this
section, we present a generic contract-based method for
proving the correctness of Simulink block diagrams with dis-
crete-time and continuous-time blocks.

Because the requirement specifications of a system are
informal, we first formalize system requirement specifica-
tions into system contract specifications. We construct the
Simulink block diagram according to the contract specifica-
tion. We aim to prove that the Simulink block diagrams sat-
isfy the system contract specification. To this end, the
approach is divided into two steps. First, we modularly verify
that Simulink block diagrams satisfy the composition con-
tract (i.e., the composition of contracts corresponding to
the blocks that construct the Simulink block diagrams).
We associate a contract for every elementary block as a spec-
ification. After that, we define the satisfaction relation that
relates block to contract and verify that the satisfaction rela-
tion is preserved by composition. That is, if blocks satisfy
their contract, respectively, then the composition of blocks
satisfies the composition of contracts. Second, we define
the refinement relation between contracts and verify that
the composition of contracts refines the system contract
specifications. If the block diagram satisfies the composition
contracts and the composition contracts refine the system
specification, then the block diagram also satisfies the system
specification. Hence, the Simulink block diagram is correct
with respect to the system specification.

We further elaborate on the concepts and properties
mentioned above in the following. We first define the con-
tract specification for the block.

Definition 10 (Contract). A contract is a tuple C = ðx, y, ϕa,
ϕgÞ, where

(i) x, y are the input vectors and output vectors,
respectively

(ii) ϕa ⊆ XT represents the assumption for the input tra-
jectories of the block, where X ⊆Rn

(iii) ϕg ⊆ ðX × YÞT represents the guarantee for the
input-output trajectories of the block, where Y ⊆
Rm

The contract specifies the expected trajectory for each
elementary block. An example of a contract for a block Gain
is shown below.

Example 8 (Contract for Gain). As an example, we consider
the Gain block that represented in Example 4. A contract
specification for Gain is a tuple: C = ðx, y, ϕa, ϕgÞ, where

ϕa ≔ x ∈RT ∀t ∈ Tj , x tð Þ ∈R� �
,

ϕg ≔ x, yð Þ ∈ R ×Rð ÞT ∀t ∈ Tj , y tð Þ = k · x tð Þ
n o

:

Next, we will define the satisfaction relation, which
relates a block to a contract by determining when a given
block’s trajectories satisfy the specified specification. To
define satisfaction relation, we first define a projection that
expresses the input trajectory to aid that definition. A pro-
jection of a set Tr ⊆ ðX × YÞT into X ⊆ XT is defined as the
set Tr↓X = fx ∈Xj∃yðx, yÞ ∈ Trg, where T can be either
the discrete-time domain or the continuous-time domain.
We are now in a position to define satisfaction relation.

Definition 11 (Satisfaction). Let B = ðx, s, y, φ, f Þ be a block
and C = ðx, y, ϕa, ϕgÞ be a contract. We say B satisfies C,
denoted by B⊨C, if Tr↓X ⊆ ϕa and Tr ⊆ ϕg.

We say that B is a correct implementation of C if B⊨C.
We have defined the notion of contract and satisfaction rela-
tion. The primary task of the proof method is to state that
the satisfaction relation is preserved by composition. In the
following, we study the composition operators of contracts
according to the composition operators of blocks, i.e., serial,
parallel, and algebraic loop-free feedback with multistep
delays. We first define the serial composition of contracts.

Definition 12 (The serial composition of contracts). Let Ci

= ðxi, yi, ϕia, ϕigÞ be contracts for i = 1, 2. The serial composi-
tion of C1 and C2, written C1 ; C2, is a contract ðx, y, ϕa, ϕgÞ,
where

x = x1,

y = y2,

ϕa ≔ x1 ∈ XT x1 ∈ ϕ1a
�� ∧ ∃y1ð Þ x1, y1ð Þ ∈ ϕ1g∧ϕρ ⟶ y1 ∈ ϕ2a

� �� �n o
,

ϕg ≔ x1, y2ð Þ ∈ X × YÞT ∃y1∃x2ð Þ x1, y1ð Þ ∈ ϕ1g∧ϕρ∧ x2, y2ð Þ ∈ ϕ2g
� ����� on

,

ϕρ ≔ ∧
y1, j ,x2,ið Þ∈ρ

y1,j tð Þ = x2,i tð Þ,∀t ∈ T:

The serial composition preserves the satisfaction rela-
tion. That is, if blocks satisfy their contracts, respectively,
then the composition of blocks satisfies the composition of
contracts.
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Theorem 13 (Serial composition preserves satisfaction).
IfB1⊨C1 and B2⊨C2, then B1 ; B2⊨C1 ; C2.

Proof. We show a proof here for blocks with continuous-time
trajectories, and the proof for blocks with discrete-time trajecto-
ries is similar. Let B1 = ðx1, s1, y1, φ1, f1Þ and B2 = ðx2, s2, y2,
φ2, f2Þ be continuous-time blocks. The observable trajectories
of B1 and B2 are denoted as Tr1 = fðx1, y1Þ: T ↦ X1 × Y1j∃
s1y1 = f ðx1, s1Þ∧_s1 = φd1ðx1, s1Þg and Tr2 = fðx2, y2Þ: T ↦
X2 × Y2j∃s2y2 = f ðs2, x2Þ∧_s2 = φd2ðx2, s2Þg, respectively,
where X1, X2 ⊆Rn, Y1, Y2 ⊆Rm, n,m ∈N +. The projection
of Tr1 intoX1 is Tr1↓X1

= fx1j∃y1ðx1, y1Þ ∈ Tr1g. The projec-
tion of Tr2 into X2 is Tr2↓X2

= fx2j∃y2ðx2, y2Þ ∈ Tr2g.
According to Definition 5, we write B1 ; B2 = ðx1, y2, s, f ,

φÞ. We denote the observable trajectories of B1 ; B2 by Tr.
ThenTr = fðx1, y2Þj∃sy2 = f2ðρð f1ðx1, s1Þ, s2ÞÞ∧_s = φdðx, sÞg.
The projection of Tr into X1
isTr↓X1

= fx1j∃y1∃x2∃y2ðx1, y1Þ ∈ Tr1∧ðy1, x2Þ ∈ ρ∧ðx2, y2Þ ∈ Tr2g
. So, Tr↓X1

⊆ Tr1↓X1
.

Given two contracts C1 = ðx1, y1, ϕ1a, ϕ1gÞ and C2 = ðx2, y2
, ϕ2a, ϕ2gÞ, by Definition 12, we have C1 ; C2 = ðx1, y2, ϕa, ϕgÞ,
where ϕa = fx1 ∈ XT jx1 ∈ ϕ1a∧ðð∃y1Þððx1, y1Þ ∈ ϕ1g∧ϕρ ⟶ y1
∈ ϕ2aÞÞg and ϕg = fðx1, y2Þ ∈ ðX × YÞT jð∃y1∃x2Þððx1, y1Þ ∈
ϕ1g∧ϕρ∧ðx2, y2Þ ∈ ϕ2gÞg.

In order to proof B1 ; B2⊨C1 ; C2, according to Definition
11, we only need to show that: if Tr↓X1

⊆ ϕa implies Tr ⊆ ϕg.
We first prove that Tr↓X1

⊆ ϕa.

Since B1⊨C1, according to Definition 11, we have Tr1↓X1

⊆ ϕ1a implies Tr1 ⊆ ϕ1g. That is, for all x1 ∈ Tr↓X1
⊆ Tr1↓X1

⊆
ϕ1a, then ðx1, y1Þ ∈ ϕ1g. Since B2⊨C2, according to Definition

11, we have for all x2 ∈ Tr2↓X2
⊆ ϕ2a, thenTr2 ⊆ ϕ2g. There exists

a connection ρ = ðy1, x2Þ, according to Definition 4, we have
y1ðtÞ = x2ðtÞ. Then, y1 ∈ ϕ2a, and by the expression of ϕa, we
have x1 ∈ ϕa. Thus, Tr↓X1

⊆ ϕa. For all ðx1, y2Þ ∈ Tr, we have
ðx1, y1Þ ∈ ϕ1g, y1 = x2, and ðx2, y2Þ ∈ ϕ2g. According to the
expression of ϕg, we have ðx1, y2Þ ∈ ϕg. Thus, Tr ⊆ ϕg. Hence,
B1 ; B2⊨C1 ; C2.

We now define the parallel composition of contracts.

Definition 14 (The parallel composition of contracts). Given
contracts C1 = ðx1, y1, ϕ1a, ϕ1gÞ and C2 = ðx2, y2, ϕ2a, ϕ2gÞ, we
define the parallel composition of contracts as C1kC2 = ðx,
y, ϕa, ϕgÞ, where x = ðx1, x2Þ, y = ðy1, y2Þ, and

ϕa ≔ x ∈ XT x1 ∈ ϕ
1
a∧x2 ∈ ϕ

2
a

��� �
,

ϕg ≔ x, yð Þ ∈ X × Yð ÞT x1, y1ð Þj ∈ ϕ1g∧ x2, y2ð Þ ∈ ϕ2g
n o

:

The parallel composition also preserves the satisfaction
relation. That is, if blocks satisfy their contracts, respectively,
then the parallel composition of blocks satisfies the parallel
composition of contracts.

Theorem 15 (Parallel composition preserves satisfaction).
IfB1⊨C1 and B2⊨C2, then B1kB2⊨C1kC2.

Proof. We show here a proof for blocks with continuous-time
trajectories, and the proof for blocks with discrete-time trajecto-
ries is similar. Let B1 = ðx1, s1, y1, φ1, f1Þ and B2 = ðx2, s2, y2,
φ2, f2Þ be blocks with continuous-time trajectories. The observ-
able trajectories of B1 and B2 are denoted as Tr1 = fðx1, y1Þ:
T ↦ X1 × Y1j∃s1y1 = f1ðx1, s1Þ∧_s1 = φd1ðx1, s1Þg and Tr2 =
fðx2, y2Þ: T ↦ X2 × Y2j∃s2y2 = f2ðs2, x2Þ∧_s2 = φd2ðx2, s2Þg,
respectively, X1, X2 ⊆Rn, Y1, Y2 ⊆Rm, n,m ∈N +. The pro-
jection of Tr1 into X1 is Tr1↓X1

= fx1j∃y1ðx1, y1Þ ∈ Tr1g.
The projection of Tr2 into X2 is the set Tr2↓X2

= fx2j∃y2ðx2
, y2Þ ∈ Tr2g. Following Definition 7, we write B1kB2 = ðx, y, s
, f , φÞ. We denote the observable trajectories of B1kB2 by Tr.
Then Tr = fðx, yÞj∃s = ðs1, s2Þy1 = f1ðx1, s1Þ∧_s1 = φd1ðx1, s1Þ
∧y2 = f2ðx2, s2Þ∧_s2 = φd2ðx2, s2Þg. The projection of Tr into
X is Tr↓X = fxj∃y1y2ðx1, y1Þ ∈ Tr1∧ðx2, y2Þ ∈ Tr2g, where
X ⊆ ðX1 × X2ÞT .

Let C1 = ðx1, y1, ϕ1a, ϕ1gÞ and C2 = ðx2, y2, ϕ2a, ϕ2gÞ be con-
tracts. By Definition 14, we write C1kC2 = ðx, y, ϕa, ϕgÞ,
where x = ðx1, x2Þ, y = ðy1, y2Þ, and

ϕa ≔ x ∈ XT x1 ∈ ϕ1a∧x2 ∈ ϕ2a
��� �

,

ϕg ≔ x, yð Þ ∈ X × Yð ÞT x1, y1ð Þj ∈ ϕ1g∧ x2, y2ð Þ ∈ ϕ2g
n o

:
ð1Þ

To proof B1kB2⊨C1kC2, according to Definition 11, we
only need to show that if ðTr↓XÞ ⊆ ϕa implies Tr ⊆ ϕg. We
first prove that Tr↓X ⊆ ϕa. Since B1⊨C1, according to Defini-
tion 11, we have if ðTr1↓X1

Þ ⊆ ϕ1a implies Tr1 ⊆ ϕ1g. That is

for all x1 ∈ ðTr1↓X1
Þ ∈ ϕ1a, for all ðx1, y1Þ ∈ Tr1, ðx1, y1Þ ∈ ϕ1g.

Since B2⊨C2, we have ðTr2↓X2
Þ ⊆ ϕ2a implies Tr2 ⊆ ϕ2g. That

is, for all x2 ∈ ðTr2↓X2
Þ, then x2 ∈ ϕ

2
a, for all ðx2, y2Þ ∈ Tr2,

then ðx2, y2Þ ∈ ϕ2g. Hence, by (1), we have x = ðx1, x2Þ ∈ ϕa,
ðx, yÞ ∈ ϕg. Hence, B1kB2⊨C1kC2.

The parallel composition of contract is also associative
and commutative.

Lemma 16 (Associativity, commutativity). Let C1, C2, and
C3 be contracts. Then

(i) C1kC2 = C2kC1

(ii) ðC1kC2ÞkC3 = C1kðC2kC3Þ

Proof. Immediately follows from the Definition 14.

We now define the algebraic loop-free feedback compo-
sition of contracts.

Definition 17 (The algebraic loop-free feedback composition
of contracts). Let C1 = ðx1, y1, ϕ1a, ϕ1gÞ and C2 = ðx2, y2, ϕ2a,
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ϕ2gÞ be the contracts. The algebraic loop-free feedback com- position of C1 and C2 be defined as C1 ⊗ f C2 = ðx, y, ϕa, ϕgÞ,

where x = x1,1, y = y1, and
where ϕρ2 ≔∧ðy1, j ,x2,iÞ∈ρ2y1,jðtÞ = x2,iðtÞ,
ϕρ1 ≔ ∧ðy2, j ,x1,iÞ∈ρ1y2,jðtÞ = x1,iðtÞ, and x1 = ðx1,1, x1,2Þ.

The algebraic loop-free feedback composition also pre-
serves the satisfaction relation.

Theorem 18 (Algebraic loop-free feedback composition pre-
serves satisfaction). Let B1 be the feedback with an algebraic
loop and B2 be a block with multistep delays. Let C1 = ðx1,
y1, ϕ1a, ϕ1gÞ and C2 = ðx2, y2, ϕ2a, ϕ2gÞ be the contracts. If B1⊨
C1 and B2⊨C2, then B1 ⊗ f B2⊨C1 ⊗ f C2.

Proof. It easily follows from Theorem 13 to Theorem 15.

We next turn to the refinement relation between the
contract. We follow a standard notion inspired by [20].

Definition 19 (Refinement of contracts). Let C1 = ðx, y, ϕ1a,
ϕ1gÞ and C2 = ðx, y, ϕ2a, ϕ2gÞ be two contracts. We say C2
refines C1, denoted by C2≼C1, if ϕ

1
a ⊆ ϕ2a and ϕ2g ⊆ ϕ1g.

Refinement relaxes assumptions and reinforces guaran-
tees, therefore, strengthening the contract. Obviously, the
following refinement rule holds.

Lemma 20. Let C1 = ðx, y, ϕ1a, ϕ1gÞ and C2 = ðx, y, ϕ2a, ϕ2gÞ be
two contracts. Then

(i) Ci≼Ci, for i = 1, 2

(ii) If ϕ1a ⊆ ϕ2a and ϕ2g = ϕ1g, then C2≼C1

(iii) If ϕ2g ⊆ ϕ1g and ϕ1a = ϕ2a, then C2≼C1

The refinement implies that every Simulink block dia-
gram satisfies the C2 also satisfies the C1. This gives us the
following property of correctness.

Theorem 21 (Correctness). Let B = ðx, s, y, φ, f Þ be a block.
Let C1 = ðx, y, ϕ1a, ϕ1gÞ and C2 = ðx, y, ϕ2a, ϕ2gÞ be contracts. The
B is said to be correct for C2, if ðB⊨C1∧C1≼C2Þ⇒ B⊨C2.

Proof. Suppose C1≼C2, in terms of Definition 19, then
ϕ2a ⊆ ϕ1a, and ϕ1g ⊆ ϕ2g. Suppose B⊨C1, then, for all x ∈ Tr↓X
⊆ ϕ1a, and Tr ⊆ ϕ1g ⊆ ϕ2g. Hence, if x ∈ Tr↓X ⊆ ϕ2a, then B⊨C2.

Theorem 21 is essential in our contract theory since it
relates the Simulink block diagram (composition block) to
a system contract specification. That is, if a Simulink block
diagram satisfies the composition contract, and the compo-
sition contract refines the system contract, then it also sat-
isfies the system contract. This ensures that the Simulink
block diagram is correct.

6. Case Study

We have discussed the proof approach in the previous sec-
tion, and in this section, the approach that we proposed is
being implemented through a real-world case study.

6.1. Problem Statement. We examine a case, a safety-critical
water level control system of reservoir, to illustrate how to
verify that the controller model of a reservoir originating
from the farmland irrigation satisfy the safety requirements.

This reservoir mainly is used for irrigation and considers
the comprehensive utilization of flood control and aquacul-
ture. An inlet water pipe and a spillway exist on the top and
bottom of the dam, respectively. The maximum dam height
is 40m, the maximum is 30m, and the minimum water level
is 10m. The management facilities of the reservoir are very
backward. There are no special management agencies to
observe and safety check the water level and no timely flood
control.

We will use Simulink to model the water level control
system of the reservoir and simulate the water level trajecto-
ries to monitor the water level control operation. Then we
adopt the method that we presented to verify the Simulink
block diagram’s correctness for ensuring the water level’s
safety according to the reservoir’s actual situation. The water
level controls the opening or closing of the valves. That is,
the water level is neither higher than the highest water level,

ϕa ≔ x1,1 ∈ XT x1,1
�� ∈ ϕ1a∧ ∃y1ð Þ x1, y1ð Þ∈ϕ1g∧ϕρ2 ⟶ y1 ∈ ϕ

2
a

�� �
∧ ∃y2ð Þ x2, y2ð Þ ∈ ϕ2g∧ϕρ1 ⟶ y2 ∈ ϕ1a

�� �n o
,

ϕg ≔ x1,1, y1ð Þ ∈ X × Yð ÞT ∃x1,2∃y2∃x2ð Þ x1, y1ð Þ ∈ ϕ1g∧ϕρ∧ x2, y2ð Þ ∈ ϕ2g
� ����n o

,

ϕρ ≔ ϕρ1∧ϕρ2 :
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which causes the dam to be overloaded, nor can the aquacul-
ture industry and farmland irrigation be affected by the
water level being lower than the lowest water level.

6.2. Architectural Overview of Control System. The control
system of water level consists of the following two major
components: Sensor and Plant.

(i) Sensor. The Sensor is a water level sensor. Inputs
about the water level of the reservoir from its corre-
sponding level sensor, and we suppose that the Sen-
sor works properly

(ii) Plant. The Plant is made up of four principal com-
ponents, as shown in Figure 7(a): Reservoir, Valves,
Controller, and Water inlet and outlet pipe

(a) Reservoir. The Reservoir has parameters giving
the maximum water lever L2, the minimum
water lever L1, and the water level of the reser-
voir h ≥ 0

(b) Water valves. The Reservoir has two water
valves. The inlet valve V2 is at the top of the Res-
ervoir, and the outlet valve V1 is at the bottom.
We suppose that the valves are either fully
opened or fully closed immediately

(c) Controller. The Controller is able to read the cur-
rent water level provided by the sensor, and the

output is the command signal open or closed.
The controller’s target is to keep the water level
between the minimum water lever L1 and the
maximum water lever L2

(d) Water inlet and outlet. The inlet pipe Fin ≥ 0 and
Fout ≥ 0, and Fin ≠ Fout.

As the system is a closed-loop system, the controller
must work with the reservoir. In Figure 8(a), a system
including both controller and plant is given. We only focus
on the controller.

6.3. The Safety Requirements of Water Level. The safety
requirements for water level h in the controller are given
below, and the purpose is to avoid the water empty and fill-
ing of reservoir.

Requirement 1 When the h of reservoir is above L1, the
V1 is opened, and when the h of reservoir is below L1, the
V1 is closed.

Requirement 2 When the h of reservoir is above L2, the
V2 is closed, and when the h of reservoir is below L2, the
V2 is opened.

Driven by requirement, we now refine system-level
requirements into block-level implementations. When the
system is refined, subsystem details are added. We first
decompose the controller into three different controllers:
Decision controller, Controller1 controller, and Controller2

L2 = 30

L1 = 10

Inflow V2

h

1V

Outflow
h

×

×

(a)

Controller-20
yc1

yc0

yc0

yd1

yd2
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1
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h
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Figure 7: (a) An overview of reservoir system. (b) The model of controller.
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>

>

>Water-level

(b)

Figure 8: (a) A Simulink block diagram of reservoir system. (b) The block diagram of controller.
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controller. The block diagrams of these controllers can be
depicted graphically as in Figure 8(b). In the block diagram,
the Decision decides that the water level is high or low. The
Controller1 computes whether the Valve1 should be open,
while the Controller2 computes if the Valve2 should be
open.

For the Decision, if the water level is above L2, it is high.
If the water level is below L1, it is low. For the Valve2, if the
water level is high, then Valve2 should be close(0). Other-
wise, the Valve2 should be open(1). For the Valve1, if the
water level is low, then Valve1 should be close(0). Otherwise,
then Valve1 should be open(1).

We use the contract as a formal specification language.
We suppose L1 = 10m, L2 = 30m, and 0m ≤ hðtÞ ≤ 40m.
The system-level safety requirement specification 1 is
denoted as Creq1 = ðh, yv1 , ϕreq1a , ϕreq1g Þ.

ϕreq1a ≔ h ∈RT ∀t ∈ T , 0 ≤ h tð Þ ≤ 40j� �
,

ϕreq1g ≔ h, yv1
� �

∈ R ×Rð ÞT ∀t ∈ Tj , yv1 =
open 1ð Þ, h tð Þ ≥ 10,
close 0ð Þ, 0 ≤ h tð Þ < 10:

(( )
:

ð2Þ

The system-level safety requirement specification 2 is
denoted as Creq2 = ðh, yv2 , ϕreq2a , ϕreq2g Þ, where

ϕreq2a ≔ h ∈RT ∀t ∈ T , 0 ≤ h tð Þ ≤ 40j� �
,

ϕreq2g ≔ h, yv2
� �

∈ R ×Rð ÞT ∀t ∈ T ,j yv2 =
close 0ð Þ, h tð Þ ≥ 30,
open 1ð Þ, 0 ≤ h tð Þ < 30:

(( )
:

ð3Þ

6.4. Verification of Correctness for the Controller System. We
construct a Simulink block diagram for the control system
according to requirements shown in Figure 7(b). Following

the previous technical route, the verification method applied
in this case consists of two stages.

Stage 1: verifying the Simulink block diagram satisfies
the corresponding composition of contract.

The Decision controller has two controllers: Decision1
and Decision2. The Decision2 determines whether the water
level is higher than the highest water level. The composition
of Simulink block diagrams of Decision2 is denoted as ⊗
Bd2

= ðBc1
kBc0

Þ ; ρ1 ; Bsw1
, where ρ1 = fðyc1 , sw11Þ, ðyc0 , sw13Þ

g. We denote the h by sw12, and then ⊗ Bd2
≔ ðsw12, 0, yd2 ,

−,f d2ðsw12ðtÞ, 0ÞÞ, where,

f d2 sw12, 0ð Þ =
1 highð Þ sw12 tð Þ ≥ 30,
0 ¬highð Þ sw12 tð Þ < 30:

(
ð4Þ

Therefore, the observable trajectories of ⊗ Bd2
are

denoted as Tr2 = fðsw12, yd2Þ: T ↦R ×Rj∀t ∈ T , yd2ðtÞ =
f d2ðsw12ðtÞ, 0Þg , where

yd2 tð Þ =
1 highð Þ sw12 tð Þ ≥ 30,
0 ¬highð Þ sw12 tð Þ < 30:

(
ð5Þ

The main task in the next step is to apply the composi-
tion rules to calculate the composition contract and prove
that the composition of blocks satisfies the composition of
the corresponding contracts. We first specify a contract for
each elementary block following Table 1. Then we apply
the composition rules to calculate the composition contract
and prove that the composition of blocks satisfies the com-
position contracts.

The composition contract of the Decision2 is stated as
⊗ Cd2

= ðsw12, yd2 , ϕ
d2
a , ϕd2g Þ, where

Since

ϕB1
g ≔ 0, yB1

� �
∈ R2 ×R2	 
T ∀t ∈ T , yc1 tð Þ = 1∧yc0 tð Þ = 0

���n o
,

ϕ
Bsw1
g ≔ sw12, yd2

� �
∈ R ×Rð ÞT ∀t ∈ T , yd2 tð Þ = f sw1

sw12 tð Þ, 0ð Þ
���n o

,

ð7Þ

where

yd2 tð Þ =
sw11 sw12 ≥ 30,
sw13 sw12 < 30:

(
ð8Þ

We use quantifier elimination law to simplify the expres-
sion. Therefore, the composition contract ð⊗ Cd2

Þ of the D

ϕd2a ≔ sw12 ∈R
T ∀t ∈ T ,j ∃yB1

� �
: 0, yB1

� �
∈ ϕB1g ∧ϕρ1 ⟶ yB1

∈ ϕ
Bsw1
a

� �n o
,

ϕd2g ≔ 0, yd2
� �

∈ R ×Rð ÞT ∀t ∈ T , 0, yB1

� �
∈ ϕB1

g ∧ϕρ1∧ sw12, yd2
� �

∈ ϕsw1
g

���n o
,

ϕρ1 ≔ yc1 tð Þ = sw11 tð Þ
� �

∧ yc0 tð Þ = sw13 tð Þ
� �

:

ð6Þ

14 Wireless Communications and Mobile Computing



ecision2 controller was written in the following form.

ϕd2a ≔ sw12 ∈R
T ∀t ∈ T , sw12 tð Þ ∈Rj� �

,

ϕd2g ≔ sw12, yd2
� �

∈ R ×Rð ÞT ∀t ∈ T , yd2 tð Þ
��� =

high 1ð Þ sw12 tð Þ ≥ 30,

¬high 0ð Þ sw12 tð Þ < 30:

(( )
:

ð9Þ

Similarly, the Decision1 determines whether the water
level is below the lowest water level. The composition of
Simulink block diagrams of Decision1 is denoted as ⊗ Bd1

= ðBc1
kBc0

Þ ; ρ2 ; Bs′w1
, where ρ2 = fðyc0 , s′w11Þ, ðyc1 , s′w13Þg

. Let B1 = Bc1
kBc0

and yB1 = ðyc0 , yc1Þ. We denote the Simu-
link block diagrams of Decision1 by ⊗ Bd1

≔ ðs′w12, 0, yd1 ,−
,f d1ðs′w12ðtÞ, 0ÞÞ, where

f d1 s′w12 tð Þ, 0
� �

=
0 ¬lowð Þ s′w12 tð Þ ≥ 10,
1 lowð Þ s′w12 tð Þ < 10:

(
ð10Þ

The observable trajectories of ⊗ Bd1
is denoted as Tr1

= fðs′w12, yd1Þ: T ↦R ×Rj∀t ∈ T , yd1ðtÞ = f d1s′w12ðtÞ, 0Þ
g, where

yd1 tð Þ = 0 ¬lowð Þ s′w12 tð Þ ≥ 10,
1 lowð Þ s′w12 tð Þ < 10:

(
ð11Þ

The composition contract of the Decision1 controller for
⊗ Bd1

is stated as ⊗ Cd1
= ðs′w12, yd1 , ϕ

d1
a , ϕd1g Þ, where

ϕd1a ≔ s′w12 ∈R
T ∀t ∈ T , s′w12 tð Þ ∈R��n o

,

ϕd1g ≔ s′w12, yd1
� �

∈ R ×Rð ÞT
���∀t ∈ T , l½ �@l@yd1 tð Þ

n

=
¬low 0ð Þ s′w12 tð Þ ≥ 10,

low 1ð Þ s′w12 tð Þ < 10:

0
@

9=
;:

ð12Þ

Since variables sw12 and s′w12 are used to read the values
of water level, so sw12ðtÞ = hðtÞ and s′w12ðtÞ = hðtÞ. Accord-
ing to Definition 11, ∀t ∈ T , we have fsw12 ∈R

T jsw12ðtÞ ≥
0g ⊆ ϕd2a , Tr2 ⊆ ϕd2g , and fs′w12 ∈R

T js′w12ðtÞ ≥ 0g ⊆ ϕd1a , T

r1 ⊆ ϕd1g . Hence, ⊗ Bd2
⊨⊗ Cd2

and ⊗ Bd1
⊨⊗ Cd1

.
We next turn to research the controller Controller1. It

can be represented as a composition block ⊗ Bv1
= ððBc1

k
Bc0

Þ ; ρ3 ; Bs′w2
Þ, where ρ3 = fðyc1 , s′w23Þ, ðyc0 , s′w21Þg. Let

⊗ Bv1
= ðs′w22, 0, yv1 ,−,yv1ðtÞ = f v1ðs′w22ðtÞ, 0ÞÞ, where

f v1 s′w22 tð Þ, 0
� �

=
0 closeð Þ s′w22 tð Þ > 0,
1 openð Þ s′w22 tð Þ ≤ 0:

(
ð13Þ

Therefore, the observable trajectories of ⊗ Bv1
is denoted

as Tr3 = fðs′w22, yv1Þ: T ↦R ×Rj∀t ∈ T , yv1ðtÞ = f v1ðs′w22
ðtÞ, 0Þg, where

yv1 tð Þ = 0 closeð Þ s′w22 tð Þ > 0,
1 openð Þ s′w22 tð Þ ≤ 0:

(
ð14Þ

The composition contract of Controller1 is stated as ⊗
Cv1

= ðs′w22, yv1 , ϕ
v1
a , ϕv1g Þ, where

ϕv1a ≔ s′w22 ∈R
T ∀t ∈ T , s′w22 tð Þ ∈R��n o

,

ϕv1g ≔ s′w22, yv1
� �

∈ R ×Rð ÞT ∀t ∈ T ′
�� , yv1 s′w22 tð Þ, 0

� �n

=
0 closeð Þ s′w22 tð Þ > 0,

1 openð Þ s′w22 tð Þ ≤ 0:

8<
:

9=
;:

ð15Þ

According to Definition 11, ∀t ∈ T , we have fs′w22 : T
↦Rjs′w22ðtÞ ∈Rg ⊆ ϕv1a , and Tr3 ⊆ ϕv1g . Hence, ⊗ Bv1

⊨⊗
Cv1

.
For requirement 1 Next, we will compose the Decision1

controller and Controller1 controller for verifying require-
ment 1. We denote the composition of Decision1 and Cont
roller1 by ⊗ BIm 1. We denote the h by s′w12. We write ⊗
BIm 1 = ⊗ Bd1

; ⊗ Bv1
= ðs′w12, 0, yv1 ,−,yv1 = f Im 1ðs′w12ðtÞ, 0ÞÞ

, where

f Im 1 s′w12 tð Þ, 0
� �

=
1 openð Þ s′w12 tð Þ ≥ 10,
0 closeð Þ s′w12 tð Þ < 10:

(
ð16Þ

The observable trajectories of ⊗ BIm 1 is denoted as T

rIm 1 = fðs′w12, yv2Þ: T ↦R ×Rj∀t ∈ T , yIm 1ðtÞ = f Im 1ðs′
w12ðtÞ, 0ÞÞg, where

yIm 1 tð Þ = 1 openð Þ s′w12 tð Þ ≥ 10,
0 closeð Þ s′w12 tð Þ < 10:

(
ð17Þ

The composition contract of ⊗ BIm 1 is defined as ⊗
CIm 1 = ðs′w12, yv1 , ϕ

Im 1
a , ϕIm 1

g Þ, and

ϕIm 1
a ≔ s′w12 ∈R

T ∀t ∈ T , s′w12 tð Þ ∈R��n o
,

ϕIm 1
g ≔ s′w12, yv1

� �
∈ R ×Rð ÞT ∀t ∈ Tj , yv1 tð Þ

n

=
1 openð Þ s′w12 tð Þ ≥ 10,

0 closeð Þ s′w12 tð Þ < 10:

8<
:

9=
;:

ð18Þ

∀t ∈ T , we have fs′w12ðtÞ: T ↦Rjs′w12ðtÞ ∈Rg ⊆ ϕIm 1
a

, and TrIm 1 ⊆ ϕIm 1
g . Hence, BIm 1⊨CIm 1.
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Stage 2: correctness verification. Our primary goal in this
step is to verify that the Simulink block diagram ð⊗ Bv1

Þ is
correct for system contract Creq1. In terms of Definition 19,

we get ϕreq1a ⊆ ϕIm 1
a and ϕIm 1

g ⊆ ϕreq1g , then, CIm 1≼Creq1.
According to Theorem 21, we have BIm 1⊨CIm 1∧CIm 1≼
Creq1 ⇒ BIm 1⊨Creq1.

For requirement 2
We next turn to verify the correctness of the Simulink

block diagrams for requirement 2. Similar to the method
above, the Controller2 controller can be represented as a
composition block ⊗ Bv2

= ðBc1
kBc0

Þ ; ρ4 ; Bsw2
, where ρ4 = f

ðyc1 , sw23Þ, ðyc0 , sw21Þg. Then ⊗ Bv2
= ðsw22, 0, yv2 ,−,yv2ðtÞ =

f v2ðsw22ðtÞ, 0ÞÞ, where

yv2 tð Þ =
0 closeð Þ, sw22 tð Þ > 0,
1 openð Þ, sw22 tð Þ ≤ 0:

(
ð19Þ

Therefore, the observable trajectories of the subsystem
⊗ Bv2

is denoted as Tr4 = fðsw22, yv2Þ: T ↦R ×Rj∀t ∈ T ,
yv2ðtÞ = f v2ðsw22ðtÞ, 0Þg, where

yv2 tð Þ =
0 closeð Þ, sw22 tð Þ > 0,
1 openð Þ, sw22 tð Þ ≤ 0:

(
ð20Þ

Stage 1: verifying the Simulink block diagram satisfies
the corresponding composition of contract.

The composition contract of Controller2 is defined as
⊗ Cv2

= ðsw22, yv2 , ϕ
v2
a , ϕv2g Þ, where

ϕv2a ≔ sw22 ∈R
T ∀t ∈ T , sw22 tð Þ ∈Rj� �

,

ϕv2g ≔ sw22, yv2
� �

∈ R ×Rð ÞT ∀t ∈ Tj , yv2 tð Þ =
0 closeð Þ, sw22 tð Þ > 0,

1 openð Þ, sw22 tð Þ ≤ 0:

(( )
:

ð21Þ

According to Definition 11, ∀t ∈ T , we have fsw22ðtÞ ∈
RT jsw22ðtÞ ∈Rg ⊆ ϕv2a , and Tr4 ⊆ ϕv2g . Hence, ⊗ Bv2

⊨⊗ Cv2
.

Next, we will compose the Decision2 and Controller2 to
verify requirement 2. Let ⊗ BIm 2 = ⊗ Bd2

; ⊗ Bv2
= ðsw12, 0,

yv2 ,−,yv2 = f v2ðsw12ðtÞ, 0ÞÞ, where

f Im 2 sw12 tð Þ, 0ð Þ =
0 closeð Þ, sw12 tð Þ ≥ 30,
1 openð Þ, sw12 tð Þ > 30:

(
ð22Þ

The observable trajectories of ⊗ BIm 2 are denoted as T
rIm 2 = fðsw12, yv2Þ: T ↦R ×Rj∀t ∈ T , yIm 2ðtÞ = f Im 2sw12ð
tÞ, 0Þg, where

yIm 2 tð Þ =
0 closeð Þ, sw12 tð Þ ≥ 30,
1 openð Þ, sw12 tð Þ < 30:

(
ð23Þ

The composition contract is defined as ⊗ CIm 2 = ðsw22

, yv2 , ϕ
Im 2
a , ϕIm 2

g Þ, and

ϕIm 2
a ≔ sw12 ∈R

T ∀t ∈ T , sw12 tð Þ ∈Rj� �
,

ϕIm 2
g ≔ sw12, yv2

� �
∈ R ×Rð ÞT ∀t ∈ T ′

�� , yv2 sw12 tð Þ, 0ð Þ
n

=
0 closeð Þ, sw12 tð Þ ≥ 30,

1 openð Þ, sw12 tð Þ < 30:

( )
:

ð24Þ

Stage 2: correctness verification. Our main goal in this
step is to verify that the Simulink block diagram ( ⊗ Bv2

) is
a correct implementation of system contract Creq2. ∀t ∈ T ,
we have fsw12ðtÞ: T ↦Rjsw12ðtÞ ∈Rg ⊆ ϕIm 2

a , and TrIm 2
⊆ ϕIm 2

g . Hence, BIm 2⊨CIm 2. In terms of Definition 19, we

get ϕreq2a ⊆ ϕIm 2
a , ϕIm 2

g ⊆ ϕreq2g . Then, CIm 2≼Creq2. According
to Theorem 21, we have BIm 2⊨CIm 2∧CIm 2≼Creq2 ⇒ BIm 2⊨
Creq2.

In the example above, when an attacker adds a malicious
logic bomb to Simulink, it can maliciously manipulate the
input and output behaviors of any block in the block dia-
grams and the water level values read from the Sensor. This
may lead to the block diagram’s behavior not satisfying the
system’s formal specification. Considering from this per-
spective, our approach can identify and verify whether the
designed CPS is planted with the logic bomb.

7. Conclusion and Future Work

In this paper, we presented a method to prove the correct-
ness of Simulink block diagrams with discrete-time or con-
tinuous-time blocks using contract. This approach
addressed the problem of proving that the system formal
specifications are satisfied by composition and refinement
of trajectories. We showed the usability of our proposals
via a use case (as an example) which models the control sys-
tem of a reservoir. Our method can improve the reliability of
Simulink and reduce the development costs by performing
early safety verification on verification of the target system.

In this work, we made the first step towards the contract-
based verification of cyber-physical models in Simulink.
Future work includes extending the work along several
dimensions. First, this work considers single rate Simulink
block diagrams. We will extend this work to consider the
multiple sample times (multirate systems) diagrams.
Another nontrivial extension involves applying our idea to
prove the correctness of Simulink block diagrams mixture
of discrete-time and continuous-time blocks. More challeng-
ing would be to develop a contract-based refinement
approach to handle Stateflow. Second, this work only con-
siders the blocks whose inputs-outputs can be explicitly rep-
resented through the mathematical relation. It is interesting
to prove the correctness of the Simulink block diagrams,
whose input-output behavior be expressed implicitly by a
mathematical relation. Third, we plan to automatically verify
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the correctness of the Simulink block diagrams based on our
method.
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