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With the rapid development of the Internet of Things (IoT), large amounts of data are collected, which constitute a valuable
business resource. Hence, a suitable IoT data market needs to be established, and the provision of safe and effective trading
services for multiple buyers and sellers is required. This paper introduces an IoT data market framework supported by
blockchain. It focuses on a transaction realization scheme for multiple buyers and sellers. In the scheme, the mechanisms are
designed to determine the corresponding data providers and recipients for the buyers and sellers, respectively, and the
transaction prices of both parties. When the data market runs, an inference attack will raise bid information leakage issues. We
study a transaction scheme that enables differential privacy protection of bids based on an exponential mechanism. This paper
theoretically proves the individual rationality, weak budget balance, and truthfulness of the normal transaction scheme and
differential privacy-based transaction scheme. This paper also theoretically proves the effectiveness of the differential privacy
protection for bids of transaction participants. Furthermore, this paper verifies the performances of the two schemes through
digital simulation experiments. From the experiments, we can also prove that these schemes occupy reasonable social welfare
and computational overhead.

1. Introduction

With the widespread use of the Internet of Things (IoT),
large amounts of data are collected and stored [1]. These
are shared such as with data analysts, IoT service providers,
and artificial intelligence developers, who wish to maximize
their benefits [2], which has given rise to the IoT data market
[3, 4]. This is generally online, allowing buyers and sellers to
enter at any time, and it satisfies properties such as individ-
ual rationality and balanced budgets [5].

Further analysis and decision-making based on the
acquired data are needed to generate benefits for buyers. This
requires the characteristics of data integrity, authenticity, and
security. In addition, IoT data collection is often carried out
by sensors at different locations, and data are stored nearby
on a local edge server or base station. Therefore, distributed data
transactions must conform to the characteristics of IoT data, in

accordance with the characteristics of blockchain technology,
and this has spurred interest in the research of blockchain-
based IoT data market [6–9].

The key problem in the IoT data market is how to
efficiently and reasonably determine transaction prices
[10–12]. Liu et al. [13] studied the price optimization mech-
anism in the data market in the context of blockchain-
enhanced IoT, where the abstract objects are multiple sellers
and one buyer, and a two-stage Stackelberg game is used to
solve the pricing and purchasing problem of the data con-
sumer and market agency. However, there are always multi-
ple sellers and buyers, whose efficient pricing and purchases
are a more general problem, which this paper approaches
with a double auction.

The current blockchain-based data market does not
consider privacy leakage in transactions, which can easily
lead to price information leakage under an inference attack
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[5]. The differential privacy-based method shows promise to
prevent such leakage while ensuring lower computation and
communication overhead and good auction performance.
We adopt differential privacy in auctions to protect the com-
mercial interests of both parties in a transaction.

This paper addresses the above problems from three
aspects:

(1) We describe the framework of a blockchain-
enhanced IoT data market and propose a double-
auction normal transaction method (DANTM) for
multiple sellers and buyers

(2) To protect the price privacy of all parties, we upgrade
DANTM to a double-auction transaction method
based on differential privacy (DADPM). We demon-
strate that our algorithms are individually rational,
weakly budget-balanced, and truthful and prove that
DADPM preserves the price privacy of buyers and
sellers

(3) Simulations show that the proposed pricing schemes
have the desired properties at a low time cost

The remainder of this paper is structured as follows. Sec-
tion 2 reviews related research. Section 3 introduces a
blockchain-enhanced IoT data market framework and a
related data transaction model. Section 4 describes a
double-auction scheme for data transactions in the IoT data
market. Section 5 presents a differential privacy-based
double-auction scheme. In Section 6, we evaluate our pro-
posed schemes. We conclude our work in Section 7.

2. Related Work

With the development of the IoT, more and more data are
collected from various IoT node devices, and these are
important assets. IoT data have the requirements of real
time and privacy, and related research of its market is pro-
ceeding [14, 15]. Blockchain, as an information infrastruc-
ture that provides transaction credibility and distribution,
has been considered [16–19]. However, due to the limited
resources of the IoT, related data markets supporting the
application of blockchain technology are constructed by
coordinating cloud and edge servers [13]. We present a
data market framework and trading process in this
context.

Much effort has been made to develop secure, efficient,
pricing models of low complexity for the IoT data market
[13, 20–22]. Wang et al. [20] presented two pricing models
for data transactions in device-to-device communication
networks: a Stackelberg game based on one buyer and mul-
tiple sellers, and an alternative ascending clock auction based
on one seller and multiple buyers. Liu et al. [13] formulated
a two-stage Stackelberg game to solve the pricing and
purchasing problem of one buyer and multiple sellers, con-
sidered competition between sellers, and proposed a
competition-enhanced pricing scheme. However, there are
no pricing models for multiple sellers and buyers in the
IoT data market, which is the more general case.

An auction market can be run fairly and efficiently via a
trading process. A simple auction has one seller and multiple
buyers, and a double auction has multiple sellers and buyers.
From the perspective of resource trading, there is research on
power and spectrum, adopting the pricing mode of an auction
and sometimes considering the privacy protection of transac-
tion information [5, 23]. Zhu and Shin [23] presented a
differentially private and strategy-proof spectrum auction
mechanism with approximate revenue maximization. Li et al.
[5] proposed a differential privacy-based online double-
auction scheme for energy trading in the smart grid, consisting
of a Laplace-based winner determination rule and exponential-
based allocation rule. There are certain differences between data
and energy, as energy can only be consumed once, and data
multiple times. There is no good or bad energy, but data have
differences in quality. Our differential privacy-based double
auction differs from previous schemes.

3. Framework, Model, and Desired Properties

3.1. Blockchain-Enhanced Data Market Framework for IoT.
Figure 1 displays the system architecture of a blockchain-
enhanced IoT data market, targeting the challenges of security
and efficiency. The components are IoT sensors and an edge
server, base station, cloud server, and data user. IoT sensors
collect original data and upload them to the edge server, which
refines them and uploads them to a nearby base station, where
they are stored for selling. Base stations are always connected
to a cloud server through wired networks. The formal public
data trading platform is set up on the cloud server. Data users
can buy IoT data using a web browser. We set up blockchain
on the base station and cloud server, using consortium block-
chain for efficiency and data protection [24].

In this system, base stations and cloud servers are the core
part of the blockchain, in charge of commercial data storage
and transactions. Base stations act as sellers, and users as
buyers. Data trading rules are predefined in the blockchain
as smart contracts. We design algorithms as data trading rules
and protect the privacy of every participant. The IoT data
market is a distributed system. Data can be sent from a base
station directly to a buyer, which assures efficient trading.
Blockchain records and stores transaction data and maintains
the authenticity of transactions through its consensus mecha-
nism.We adopt the proof-of-work (PoW) consensus protocol.
Data transmission from seller to buyer can be assured by
blockchain’s key mechanisms. The process of blockchain-
enhanced IoT data trading is presented in Figure 2.

We assume the following actions in Figure 2 occur in a
time slot:

(1) Buyers (data users) and sellers (base stations) submit
buying and selling requirements to the data trading
platform (cloud server)

(2) The data trading platform runs data trading algorithms
and decides on a trading scheme

(3) The first winning buyer (data user 1) and its data
providers (base stations 1 and 2) are notified of the
trading result
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(4) The second winning buyer (data user 2) and its data
providers (base stations 2 and 3) are notified of the
trading result

(5) The first winning buyer (data user 1) and its data
providers (base stations 1 and 2) directly implement
data trading

(6) The second winning buyer (data user 2) and its data
providers (base stations 2 and 3) directly implement
data trading

(7) The blockchain network audits the transaction data

3.2. Designed Auction Model. n our data market, multiple
buyers and sellers are involved in data transactions. A double-
auction scheme is adopted to efficiently match the requirements
of buyers and sellers. One trading process is finished in a time
slot.

Buyers and sellers that need data transactions in a time slot
are referred to as active buyers and sellers. A data buyer’s bid
information includes data kind, bid, data quality, and data

Data user

Cloud server

Edge server

Base station

IoT sensor Raw data

Refined data

Stored data

Data trading
platform

Used data

Block chain
Distribution

Figure 1: System architecture of blockchain-enhanced IoT data market.
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Figure 2: Trading process in IoT data market.
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quantity. A data seller’s asking information includes data kind,
asking price, data quality, and data quantity.

We assume below that the data market will match the
data kind through a smart contract in blockchain, allow
buyers and sellers of the same data kind to meet, and start
the process of a double auction. Table 1 lists the key notation
used in our paper.

3.3. Desired Properties of Model

Definition 1. (Seller payoff). The payoff to the winning seller
for time slot t is

U vð Þ
t = �p vð Þ

t − p vð Þ
t

� �
⋅ et: ð1Þ

Table 1: Notation.

Symbol Description

G, V Sets of active buyers (G) and sellers (V) in slot t

g, v An active buyer (g) and seller (v) in slot t

C gð Þ, P vð Þ Sets of bids and asking prices

c gð Þ
i , p vð Þ

i A bid and an asking price

D gð Þ, D vð Þ The sets of data quality which are buyers’ requirements and sellers’ supply

d gð Þ
i , d vð Þ

i Data quality, which is a buyer’s requirement and a seller’s supply

E gð Þ, E vð Þ Sets of data quantity, which are buyers’ requirements and sellers’ supply

e gð Þ, e vð Þ Data quantity, which is a buyer’s requirement and a seller’s supply

S gð Þ, S vð Þ Sets of candidate buyers and sellers

S gð Þ
w , S vð Þ

w Sets of winning buyers and sellers

f xð Þ tð Þ Valid price for buyers (when x = g) and sellers (when x = v) at slot t

B, S Set of refined active buyers and sellers

�g A winning buyer

�p gð Þ
t , �p vð Þ

t Trading price of winning buyer g and winning seller v

DataTradingRecord
Data transaction result, including winning buyer �g, trading price of �g, data providers S vð Þ

w , and whether requirement is
satisfied (“yes” if ∑v∈S vð Þ

w
e vð Þ − e �gð Þ ≥ 0), including winning sellers, trading prices, corresponding buyer, and amount of

data provided

q gð Þ
i , q vð Þ

i
Quality value for candidate buyer i and seller i

Pr q gð Þ
i

� �
, Pr q vð Þ

i

� �
Probability of being a winning buyer and seller

Input: active buyers and sellers ðG, VÞ in slot t, and their bids (price, quality, and quantity) ðPðvÞ, CðgÞ,DðvÞ,DðgÞ, EðgÞ, EðvÞÞ
Output: Data transaction result DataTradingRecord
//Initialization
SðgÞ ⟵∅, SðvÞ ⟵∅, SðgÞw ⟵∅, DataTradingRecord⟵∅
while G − SðgÞw ≠∅do

G⟵G − SðgÞw , SðgÞw ⟵∅
//Call Algorithm 2 to calculate valid price
f xðtÞ = CalcValidPriceðG, V , CðgÞ, PðvÞ,DðgÞ,DðvÞÞ
SðgÞ = fg : cðgÞ ≥ f ðgÞðtÞ,∀g ∈Gg
SðvÞ = fv : pðvÞ ≤ f ðvÞðtÞ,∀v ∈ Vg
SðgÞ ⟵ sort cðgÞ in descending order, g ∈ SðgÞ

SðvÞ ⟵ sort pðvÞ in ascending order, v ∈ SðvÞ
//Call Algorithm 3 (normal method) for data trading
ðDataTradingRecord+,SðgÞw Þ =NormalTradeMethodðSðgÞ, SðvÞ, CðgÞ, PðvÞ, EðgÞ, EðvÞÞ

end

Algorithm 1: Double Auction with Valid Price Mechanism.
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Definition 2. (Buyer payoff). The payoff to the buyer in time
slot t is

U gð Þ
t = c gð Þ

t − �p gð Þ
t

� �
⋅ et : ð2Þ

Definition 3. (Social welfare). Social welfare in time slot t is

U sw
t = 〠

V

v=1
U vð Þ

t + 〠
G

g=1
U gð Þ

t : ð3Þ

Social Welfare Maximization: in double-auction markets,
the goal is to maximize the total social welfare, i.e.,

MaximizeU sw
t ,

subject to : et ≤ e vð Þ
t ,∀v ∈ V ; et ≤ e gð Þ

t ,∀g ∈ G:
ð4Þ

Individual Rationality: each seller and buyer must
receive a nonnegative payoff, i.e.,

U xð Þ
t ≥ 0, where x takes the value v org: ð5Þ

Input: price and data quality of active buyers and sellers ðG, V , CðgÞ, PðxÞ,DðgÞ,DðvÞÞ in slot t
Output: valid price f ðxÞðtÞ with x = v org for data trading in slot t
m = jGj; n = jVj
Sort prices of active buyers: cðgÞ1 > cðgÞ2 >⋯ > cðgÞm

Sort prices of active sellers: pðvÞ1 < pðvÞ2 <⋯ < pðvÞn

if pðvÞn ≤ cðgÞm then
refine active buyers B = f1, 2,⋯; ;mg
refine active sellers S = f1, 2,⋯, ng

else ifcðgÞl ≥ pðvÞk ≥ cðgÞl+1then
refine active buyers B = f1, 2,⋯, lg, with 1 ≤ l ≤m − 1
refine active sellers S = f1, 2,⋯, kg, with 1 ≤ k ≤ n

else if pðvÞk+1 ≥ cðgÞr ≥ pðvÞk then
refine active buyers B = f1, 2,⋯, rg, with 1 ≤ r ≤m
refine active sellers S = f1, 2,⋯, kg, with 1 ≤ k ≤ n − 1

end
//Call function CalcValidPriceViaQuality to decide valid price
f xðtÞ = CalcValidPriceViaQualityðB, S, CðgÞ, PðvÞ,DðgÞ,DðvÞÞ return f ðxÞðtÞ

The function CalcValidPriceViaQuality is as follows.
Function CalcValidPriceViaQuality
Input: price and data quality of refined active buyers and sellers ðB, S, CðgÞ, PðvÞ,DðgÞ,DðvÞÞ in slot t
Output: valid price f ðxÞðtÞ with x = v org for data trading in slot t

Sort quality of refined active buyers in B as dðgÞ1 < dðgÞ2 <⋯ < dðgÞy∗ , y ∗ = jBj
Sort quality of refined active sellers in S as dðvÞ1 > dðvÞ2 >⋯ > dðvÞs∗ , s ∗ = jSj
if dðvÞs∗ ≥ dðgÞy∗ then

f ðxÞðtÞ⟵
min fcðgÞ1 ,⋯, cðgÞy∗ g, x = g

max fpðvÞ1 ,⋯, pðvÞs∗ g, x = v

8<
:

else if dðvÞw∗ ≤ dðgÞj∗ ≤ dðvÞðw−1Þ∗ then

f ðxÞðtÞ⟵
cðgÞj∗ , x = g

pðvÞðw−1Þ∗ , x = v

8<
: with j∗ ∈ f1, 2,⋯, y∗g and w∗ ∈ f2, 3,⋯, s∗g

else if dðgÞl∗ ≤ dðvÞk∗ ≤ dðgÞðl+1Þ∗ then

f ðxÞðtÞ⟵
cðgÞl∗ , x = g

pðvÞk∗ , x = v

8<
: with l∗ ∈ f1, 2,⋯, ðy − 1Þ∗g and k∗ ∈ f1, 2,⋯, s∗g

endreturn f ðxÞðtÞ

Algorithm 2: CalcValidPrice
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Input: candidate buyers and sellers ðSðgÞ, SðvÞÞ, data amounts ðEðgÞ, EðvÞÞ, and prices of candidate buyers and sellers ðCðgÞ, PðvÞÞ in slot
t
Output: data transaction result DataTradingRecord and winning buyer
//Initialization
DataTradingRecord⟵∅,SðvÞw ⟵∅,SðgÞw ⟵∅
//Decide winning buyer
�g⟵ buyer with highest price in SðgÞ

//Decide trading price of winning buyer
if jSðgÞj > 1then

Find second-highest price from CðgÞ as trading price of �g
else

Use price of �g as trading price of �g
end
//Decide winning sellers providing data to winning buyer
while ∑

v∈SðvÞw
eðvÞ < eð�gÞdo

SðvÞw ⟵ SðvÞw ∪ fvg
end
//Decide trading price of winning sellers
if jSðvÞj − jSðvÞw j > 0then

Trading price of sellers in SðvÞw ⟵ Price of first seller in SðvÞ − SðvÞw
else

Trading price of sellers in SðvÞw ⟵ Price of last seller in SðvÞw
end
//Record trading information of winning buyer
if SðvÞw ≠∅then

SðgÞw ⟵ SðgÞw ∪ f�gg
DataTradingRecord + = ð�g, trading price of �g, SðvÞw ,∑

v∈SðvÞw
eðvÞ − eð�gÞÞ

end
//Record trading information of winning sellers
for each v ∈ SðvÞw do

if∑
v∈SðvÞw

eðvÞ − eð�gÞthen

DataTradingRecord + = ðv, trading price of v, �g,∑
v∈SðvÞw

eðvÞ − eð�gÞÞ
exit
else

DataTradingRecord + = ðv, trading price of v, �g, eðvÞÞ
end

end
return ðDataTradingRecord, SðgÞw Þ

Algorithm 3: NormalTradeMethod

Active buyers
Active sellers

Refined active buyers
Refined active sellers

Valid price for buyers
Valid price for sellers

Price match Quality match

Active bidder sorted by price 

Price Buyer Seller

Refined active bidder sorted by quality

Quality Seller Buyer

Figure 3: Interpretive explanation of valid price calculation.
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In other words, a winning seller is not rewarded with less

than its asking price pðvÞt , and a winning buyer must not be

charged more than its bid cðgÞt .
Weak Budget Balance: for the data market in time slot t,

if there exists

〠
g∈G

�p gð Þ
t ⋅ e gð Þ

t − 〠
v∈V

�p vð Þ
t ⋅ e vð Þ

t ≥ 0, ð6Þ

then the auction process satisfies the property of weak bud-
get balance, which ensures that the auctioneer makes a tiny
profit.

Truthfulness: an auction is truthful if and only if

U xð Þ
t χ

xð Þ
t

� �
≥U xð Þ

t χ
! xð Þ
t

� �
, ð7Þ

for each bidder i, whose true and false bids are χðxÞ
t and χ

!ðxÞ
t ,

respectively. This property ensures that bidders obtain their
maximum payoff when and only when their truthful bids are
reported.

4. DANTM

4.1. Double Auction with Valid Price Mechanism. We
present the concept of a valid price.

Definition 4. (Valid Price). A valid price is a threshold value
of a buyer’s bid and a seller’s asking price. It can determine
whether a buyer or seller wins in an auction. A valid price
is determined by bids, asking prices, and data quality of
buyers and sellers.

In a double-auction data market, active buyers G and
sellers V in slot t submit their bidding information to the data
market administrator, which can be realized in a smart contract
in blockchain. The data market administrator assigns each
buyer with seller-provided data through Algorithms 1–3 (see
below). The following information is obtained for buyers: the
winning buyer �g and its trading price, the data providers SðvÞw ,
and whether its requirement is satisfied (i.e., whether ∑

v∈SðvÞw

eðvÞ − eð�gÞ ≥ 0). For sellers, the following information is
obtained: the winning sellers, their trading price, the corre-
sponding buyer, and the amount of data provided. The results
are uniformly described by DataTradingRecord Algorithm 1
(DANTM) describing the auction scheme. We use Algorithm 2
to calculate the valid price for each active buyer and seller and
use this to filter the active buyers G and sellers V to determine
candidate participants SðgÞ and SðvÞ. We sort the candidate
buyers in descending bid order and candidate sellers by ascend-
ing asking prices. We call Algorithm 3 to obtain a winning
buyer �g (stored in SðgÞw ) and the related DataTradingRecord,
delete that buyer from active buyersG, and serve the next active
buyer.

4.2. Valid Price Algorithm. Algorithm 2 is used to calculate a
valid price. We match the prices of active buyers and sellers

in ðCðgÞ, PðvÞÞ to obtain the refined active buyers and sellers
ðB, SÞ, and call CalcValidPriceViaQuality (see below) to
match the data quality of ðB, SÞ among ðDðgÞ,DðvÞÞ, so as
to select the proper prices of buyers and sellers and use them
as valid price f ðxÞðtÞ for buyers (when x = g) and sellers
(when x = v) at slot t.

We provide an intuitive explanation of Algorithm 2 in
Figure 3. To calculate the valid price, Algorithm 2 first
ranks active buyers in descending order of price and active
sellers in ascending order of price. On this basis, the prices
of active buyers and active sellers are matched. As shown
on the left of Figure 3, the buyer price (marked red) and
the seller price (marked green) are the critical points,
and the buyer and seller starting from the critical points
to the left become refined active buyers and sellers. Next,
refined active sellers are sorted in descending order of data
quality and refined active buyers in ascending order of
data quality. Then, the data quality of refined active buyers
and refined active sellers are matched. As shown on the
right of Figure 3, the buyer data quality (marked red)
and the seller data quality (marked green) are the critical
points, and we take the prices of the buyer and the seller
located at the critical points as the corresponding valid
price.

4.3. Normal Data Trading Method. We provide the normal
data trading method as Algorithm 3. In the data trading
process, we select the buyer with the highest price in SðgÞ

as the winning buyer �g and assign the trading price for the
sellers providing data. We record the data trading informa-
tion for the winning buyer �g and for the sellers providing
data (i.e., the winning sellers). The winning sellers provide
data with all they can (eðvÞ), except that the last winning
seller needs to provide data with the one the winning buyer
needs left (∑

v∈SðvÞw
eðvÞ − eð�gÞ), whose nonnegative value will

indicate that the winning buyer has the enough data
demanded.

As shown in Algorithm 3, when the number of candidate
buyers exceeds 1, the trading price of the winning buyer �g is
equal to the second highest price among the bids of these
candidate buyers. When only one candidate buyer exists,
the trading price of the winning buyer �g is equal to its bid.
The former case follows the Vickrey-Clarke-Groves auction
model [25] to ensure the truthfulness of our algorithm.

The elements in SðvÞ − SðvÞw and SðvÞw are sorted according

to their asking prices in a positive sequence, where SðvÞw

Start pointer for
data provider 1

Start pointer for
data provider 2

Start pointer for
data provider 3

Data which the winning buyer needs

Figure 4: Data trading start pointer for data providers.
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represents the winning data sellers and SðvÞ − SðvÞw represents
the left sellers (nonwinning data providers). When there
exist elements in SðvÞ − SðvÞw , we use the asking price of the
first element in it as the trading price of all the sellers in
SðvÞw . When there are no elements in SðvÞ − SðvÞw , we use the
asking price of the last element in SðvÞw as the trading price
of all the sellers in SðvÞw . In this pricing scheme, data provided
to a buyer from different sellers are given the same price,
reflecting the principle of fairness.

As shown in Figure 4, a data trading start pointer is
adopted to indicate where a provider starts providing data.
By default, the provider provides data starting from the l-
ocation indicated by the pointer. Among those providing
data to a buyer, data that can be provided by the last data
provider may not be all that is required, so the cutoff
point is recorded and fed back to the provider.

4.4. DANTM Scheme Analysis. We theoretically analyze the
DANTM scheme properties.

Lemma 5. The DANTM scheme is individually rational.

Proof. For the buyer, the DANTM scheme considers two
cases. First is jSðgÞj > 1, where winning buyer �g is assigned

trading price �pð�gÞt as the second-highest bid pðg
′Þ

t from CðgÞ.

Since �pð�gÞt = pðg
′Þ

t < pð�gÞt , there exists pð�gÞt − �pð�gÞt > 0. Second is
jSðgÞj = 1, where winning buyer �g is assigned trading price
�pð�gÞt as bid pð�gÞt of itself, so pð�gÞt − �pð�gÞt = 0. Hence, the scheme
is individually rational for buyers.

For the seller, trading price �pðvÞt of the winning sellers in

SðvÞw is assigned as asking price cðv
′Þ

t of the first seller v′ in
SðvÞ − SðvÞw . Since the asking prices of sellers in SðvÞ are sorted

in ascending order, �pðvÞt − cðvÞt = cðv
′Þ

t − cðvÞt > 0. Therefore, the
scheme is individually rational for sellers.

Lemma 6. The DANTM scheme is weakly budget-balanced.

Proof. A winning buyer �g is provided data by a group of
winning sellers SðvÞw with a single trading price. The data
quantity is the same for both the buyer and sellers. To prove

the lemma, we only need to show that �pð�gÞt ≥ �pðvÞt . From the
DANTM scheme, winning buyers and sellers come from

candidate buyers/sellers, and p−ð�gÞt ≥ f ðgÞðtÞ ≥ f ðvÞðtÞ ≥ p−ðvÞt .

Lemma 7. The DANTM scheme is truthful.

Proof.We consider two cases for a buyer. First is jSðgÞj = 1.
If the initial bid of the winning buyer is lower than its real

value pðgÞt , the buyer loses the opportunity to first become

a candidate buyer and receives utility U ðgÞ
t = 0. If the initial

bid is greater than pðgÞt , a successful transaction may bring

about negative utility U ðgÞ
t < 0 because the transaction

price �pðgÞt is greater than pðgÞt . In the second case, jSðgÞj >
1, the secondary bid is selected as �pðgÞt , in accordance with
the Vickrey second price auction rule, which is known to
be truthful [25].

The DANTM scheme also considers two cases for a
seller. First, only one qualified seller provides data to the
buyer. A seller with an asking price greater than its real value

cðvÞt loses the opportunity to become a winning seller and

receives utility U ðvÞ
t = 0. If the asking price is less than cðvÞt ,

a successful transaction may have utility U ðvÞ
t < 0 because

�pðvÞt is less than cðvÞt . Second, multiple qualified sellers provide
data to the same purchaser. Among them, the offer with the
highest asking price, following the Vickrey second price auc-
tion rule, guarantees a truthful ask [25], and other winning
sellers will not get more utility. A seller whose asking price

exceeds cðvÞt loses the opportunity to become a winning

seller, and U ðvÞ
t = 0, or becomes the last winning one, which

maybe provide limited data ∑v∈SðvÞw
eðvÞ − eð�gÞ when ∑v∈SðvÞw

eðvÞ

− eð�gÞ > 0, and impact its utility UðvÞ
t . If a seller gives an ask-

ing price below its real value cðvÞt , its utility UðvÞ
t is not

affected.

Theorem 8. The DANTM scheme is individually rational,
truthful, and weakly budget-balanced.

5. DADPM

5.1. Differential Privacy Data Trading Method. An inference
attack can exist in a double auction [5], and when it
works, data buyers or sellers can infer the bidding infor-
mation of other buyers or sellers, which compromises
their privacy. To protect privacy requires an obstacle to
prevent the guessing of original bids from data trading
results, in which case differential privacy is used. If two
nearly identical inputs are input to a function, the proba-
bility distribution of their outputs is limited, which is the
effect of differential privacy, which we define as follows.

Definition 9 (Differential Privacy). A function f has ε-dif-
ferential privacy (ðε, δÞ-differential privacy) if, for any two
input sets A and B with a single input difference, the outputs
are within a fixed range R,

Pr f Að Þ ∈ R½ � ≤ exp εð Þ × Pr f Bð Þ ∈ R½ � +δð Þ, ð8Þ

where ε and δ are small positive values.

To maintain the privacy of bids for both winning
buyers and sellers, we randomly select them from candi-
date buyers and sellers, while preserving some valuable
properties. We present an exponential-based privacy pre-
serving mechanism to choose winning buyers and sellers.

We calculate the quality value for candidate buyers
and determine the probability distribution of winning
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buyers. We want the buyer with a higher bid to be the
winning buyer with priority. As the bids CðgÞ of candidate
buyers are arranged in descending order, cðgÞ1 is the highest
bid. We set the quality value of buyers as

q gð Þ
i ⟵

c gð Þ
i

c gð Þ
1

, ð9Þ

determine the probability distribution of winning buyers,

Pr c gð Þ
i

� �
=

exp ε1 ⋅ q
gð Þ
i

� �
∑

s gð Þ
j ∈S gð Þexp ε1 ⋅ q

gð Þ
j

� � , ð10Þ

where SðgÞ is the set of candidate buyers, and choose a
winning buyer.

Input: candidate buyers and sellers ðSðgÞ, SðvÞÞ, data amounts ðEðgÞ, EðvÞÞ, prices of candidate buyers and sellers ðCðgÞ, PðvÞÞ, valid price
f ðxÞðtÞ in slot t, and differential privacy-related parameters ε1 and ε2.
Output: data transaction result DataTradingRecord and winning buyer
//Initialization
DataTradingRecord⟵∅, SðvÞw ⟵∅, SðgÞw ⟵∅
//Determine winning buyer
for i = 1 to jSðgÞjdo

qðgÞi ⟵ cðgÞi /cðgÞ1
end
for i = 1 to jSðgÞjdo
PrðcðgÞi Þ = exp ðε1 ⋅ qðgÞi ÞÞ/∑

sðgÞj ∈SðgÞ exp ðε1 ⋅ qðgÞj Þ
end

Select data buyer �g ∈ SðgÞ according to probability distribution PrðcðgÞi Þ
//Determine trading price for winning buyer
Use f ðgÞðtÞ as trading price of �g
//Calculate probability to be a winning seller
for i = 1 to jSðvÞjdo

qðvÞi ⟵ pðvÞ1 /pðvÞi
end
for i = 1 to jSðvÞjdo

PrðpðvÞi Þ = exp ðε2 ⋅ qðvÞi ÞÞ/∑n
j=1 exp ðε2 ⋅ qðvÞj ÞÞ

end
while SðvÞ ≠∅do

//Select a winning seller for the winning buyer

Select seller v ∈ SðvÞ according to probability distribution PrðpðvÞi Þ
SðvÞw ⟵ SðvÞw ∪ fvg
Use f ðvÞðtÞ as trading price of v
//Record trading information of seller
if∑

v∈SðvÞw
eðvÞ ≥ eð�gÞthen

DataTradingRecord + =(v, the trading price of v, �g, ∑v∈SðvÞw
eðvÞ − eð�gÞ)

exit
else

DataTradingRecord + =(v, the trading price of v, �g, eðvÞ)
SðvÞ ⟵ SðvÞ − fvg

end
end
//Record trading information of buyer
if SðvÞw ≠∅then

SðgÞw ⟵ SðgÞw ∪ f�gg
DataTradingRecord + =(�g, the trading price of �g, SðvÞw , ∑

v∈SðvÞw
eðvÞ − eð�gÞ)

end
return ðDataTradingRecord, SðgÞw Þ

Algorithm 4: DPTradeMethod

9Wireless Communications and Mobile Computing



We choose a method to calculate the quality value for
sellers. We want a seller with a lower asking price to be the
winning seller with priority. The asking prices PðvÞ of candi-
date sellers are arranged in ascending order, so pðvÞ1 is the
lowest asking price. The quality value of a seller is

q vð Þ
i ⟵

p vð Þ
1

p vð Þ
i

: ð11Þ

We calculate the probability distribution of winning
sellers among n candidate sellers

Pr p vð Þ
i

� �
=

exp ε2 ⋅ q
vð Þ
i

�� �
∑n

j=1exp ε2 ⋅ f q vð Þ
j

� �� � , ð12Þ

and choose a winning seller.

We assume that the quality function of buyer (seller) i
is bounded by ½qmin, qmax�, and the difference between
maximum and minimum value of the quality function of
buyers (sellers) is △1 (△2).

According to Theorem 9.36 in [25], while a mecha-
nism is truthful, there is a critical value such that if a
buyer’s bid is higher than the critical value, the buyer’s
trading price is equal to the value; if a buyer’s bid is less
than the value, the buyer will lose in the transaction. In
our situation, we can conclude that the bid threshold is
just our valid price f ðgÞðtÞ, and this is the trading price
of the winning buyer. We similarly use valid price f ðvÞðtÞ
as the trading price of the winning seller.

Algorithm 4 presents the implementation of data
transaction preserving differential privacy, using DPTrade
Method instead of NormalTradeMethod defined in
Algorithm 1:

We define Algorithm 4 using differential privacy method
as DADPM. To call DPTradeMethod, we add an input

parameter, valid price f ðxÞðtÞ, and differential privacy-
related parameters ε1 and ε2.

To achieve differential privacy, we calculate the quality

value qðgÞi and probability distribution PrðcðgÞi Þ for each

candidate buyer and select a data buyer �g according to

this distribution, with trading price f ðgÞðtÞ as the trading
price of �g.

We calculate the quality value qðvÞi for each candidate

seller and obtain probability distribution PrðpðvÞi Þ, selecting
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Figure 5: Payoff for (a) buyers and (b) sellers.

DataTradingRecord+,S gð Þ
w

� �
= DPTradeMethod S gð Þ, S vð Þ, C gð Þ, P vð Þ, E gð Þ, E vð Þ, f xð Þ tð Þ, DP parameters

� �
: ð13Þ
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sellers according to this distribution to provide data for �g.
We use f ðvÞðtÞ as the trading price of sellers. Similar to the
normal trade method, we record and return ð
DataTradingRecord, SðgÞw Þ and adopt a data trading start
pointer in Algorithm 4 as Algorithm 3.

5.2. DADPM Analysis. We theoretically analyze DADPM.

Lemma 10. The DADPM scheme is individually rational.

Proof. The winning buyer �g is assigned trading price �pð�gÞt as
valid price f ðgÞðtÞ. From the calculation of the active buyers

SðgÞ (Algorithm 1), pð�gÞt ≥ f ðgÞðtÞ So, pð�gÞt − �pð�gÞt = pð�gÞt − f ðgÞð
tÞ ≥ 0. Therefore, DADPM is individually rational for
buyers.

The trading price �pðvÞt of the winning sellers in SðvÞw is

assigned as valid price f ðvÞðtÞ. From the calculation of the

active sellers SðvÞ (Algorithm 1), cðvÞt ≤ f ðvÞðtÞ. So, �pðvÞt − cðvÞt

= f ðvÞðtÞ − cðvÞt ≥ 0. Therefore, DADPM is individually rational
for sellers.

With a proof similar to that of the DANTM scheme, we
can conclude Lemma 11.

Lemma 11. The DADPM scheme is weakly budget-balanced.

Lemma 12. The DADPM scheme is truthful.

Proof. For buyers, we can prove the conclusion directly using
Theorem 9.36 in [25], according to which, if there is a criti-
cal trading price for buyers, the scheme is truthful. From
Algorithm 1, SðgÞ is obtained by sorting cðgÞ in descending
order, so the elements in SðgÞ are monotone in cðgÞ. Also

from Algorithm 1, SðgÞ is obtained by filtering buyers with
cðgÞ ≥ f ðgÞðtÞ. So, there exists a critical value f ðgÞðtÞ.

Recall that Vazirani et al. [25] discussed the situation of a
simple auction, with one seller and multiple buyers. We discuss
a double auction, with multiple sellers and buyers. A buyer’s bid
is a preference to choose a buyer, and an asking price is a pref-
erence to choose a seller. Then, if there is a critical value of a
trading price for sellers, the scheme is truthful.

Based on the above discussion, we can prove that the
DADPM scheme is truthful for sellers. From Algorithm 1,
SðvÞ is obtained by sorting pðvÞ in ascending order, so the ele-
ments in SðvÞ are monotone in pðvÞ, andS

ðvÞ is obtained by fil-
tering sellers with pðvÞ ≤ f ðvÞðtÞ. So, there exists a critical
value f ðvÞðtÞ.

Theorem 13. The DADPM scheme is individually rational,
truthful, and weakly budget-balanced.

Now, we prove that DADPM preserves the data buyer’s
valuation privacy.

Theorem 14. For data buyers, DADPM preserves
(ε1ðe − 1ÞΔ1 ln ðe/δÞ, δ) differential privacy for bidders’ qual-
ity values when δ ≤ 1/2.

Proof. We can prove our conclusions using a proof method
similar to Theorem 8 in [23]. Let Q and Q′ be vectors of a
quality function that differ for a single bidder, and let CðgÞ

and C′ðgÞ be corresponding bid vectors. We show that
DADPM can preserve bid privacy even if the order of win-
ning bidders is revealed. Assume we get an arbitrary
sequence of winning buyersW =W ′ð= fw1,w2,⋯,wlgÞ with
length l. The relative probability of obtaining the sequences
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Figure 6: Budget of data market.
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for given vectors of quality function Q and Q′ is

Pr W = w1,w2,⋯,wlf g½ �
Pr W ′ = w1,w2,⋯,wlf g
h i = Yl

i=1

exp ε1 ⋅ q
gð Þ
i

� �
/∑

s gð Þ
j ∈S gð Þexp ε1 ⋅ q

gð Þ
ij

� �
exp ε1 ⋅ q′

gð Þ
i

� �
/∑s gð Þ

j ∈S gð Þexp ε1 ⋅ q′
gð Þ
ij

� �
0
B@

1
CA

=
Yl
i=1

exp ε1 ⋅ q gð Þ
i − q′ gð Þ

i

� �� �

×
Yl
i=1

∑
s
gð Þ
j ∈S gð Þexp ε1 ⋅ q′

gð Þ
ij

� �
∑

s gð Þ
j ∈S gð Þexp ε1 ⋅ q

gð Þ
ij

� � ,

ð14Þ

if qðgÞi > q′ðgÞi , exp ðε1 ⋅ ðqðgÞi − q′ðgÞi ÞÞ ≤ exp ðε1 ⋅ Δ1Þ, and the
second product is less than 1. Therefore,

Pr W = w1,w2,⋯,wlf g½ �
Pr W ′ = w1,w2,⋯,wlf g
h i ≤ exp ε1 ⋅ Δ1ð Þ, ð15Þ

if qðgÞi < q′ðgÞi , the first product is less than 1; therefore,

Pr W = w1,w2,⋯,wlf g½ �
Pr W ′ = w1,w2,⋯,wlf g
h i ≤ Yl

i=1

∑
s
gð Þ
j ∈S gð Þexp ε1 ⋅ q′

gð Þ
ij

� �
∑

s gð Þ
j ∈S gð Þexp ε1 ⋅ q

gð Þ
ij

� �

=
Yl
i=1

∑
s
gð Þ
j ∈S gð Þexp ε1 ⋅ βij

� �
⋅ exp ε1 ⋅ q

gð Þ
ij

� �
∑

s gð Þ
j ∈S gð Þexp ε1 ⋅ q

gð Þ
ij

� �

=
Yl
i=1

Ei exp ε1 ⋅ βið Þ½ �,

ð16Þ

where βij = q′ðgÞij − qðgÞij , and the expectation is taken over

the probability distribution about the quality values of SðgÞ at

the time slot. Note that SðgÞ is adjusted dynamically in

DADPM, and qðgÞij is the value of qðgÞj to calculate PrðcðgÞi Þ
when winning buyer i is selected. For all α ≤ 1, eα ≤ 1 + ðe
− 1Þ ⋅ α. Therefore, for all ε1 ≤ 1, we have

Yl
i=1

Ei exp ε1 ⋅ βið Þ½ � ≤
Yl
i=1

Ei 1 + e − 1ð Þε1 ⋅ βi½ �

≤ exp e − 1ð Þε1
Yl
i=1

Ei βi½ �
 !

:

ð17Þ

Since δ is a small positive value (δ ≤ 1/2), by Lemma B.2
in [26], we have

Ql
i=1Ei½βi� ≤ Δ1 ln ðeδ−1Þ.

So, there exists

Pr W = w1,w2,⋯,wlf g½ �
Pr W ′ = w1,w2,⋯,wlf g
h i ≤ exp ε1 ⋅ Δ1 ⋅ e − 1ð Þ ⋅ ln eδ−1

� ��
:

ð18Þ

Similar to the proof of Theorem 14, we can conclude that
DADPM preserves sellers’ valuation privacy.

Theorem 15. For data sellers, DADPM preserves
(ε2ðe − 1ÞΔ2 ln ðe/δÞ, δ) differential privacy for bidders’ qual-
ity values when δ ≤ 1/2.

5.3. Design Rationale Discussion. Two popular mechanisms
to ensure differential privacy are the exponential mechanism
and Gaussian mechanism. The exponential mechanism
protects the privacy of the input by randomly selecting the
output result via probability in a set. It is commonly used
for a one-sided auction. Problems with lower social welfare
and satisfaction ratio may occur when it is used for a double
auction [5]. The Gaussian mechanism protects the privacy of
the input by calculating the output results after adding
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Gaussian noise to the input. The disadvantage of this
method is the difficulty in determining the size of the noise
to achieve a balance between the protection of privacy and
the auction performance.

Researchers who used the above mechanisms include
Zhu and Shin [23] and Li et al. [5]. Zhu and Shin [23] used
the exponential mechanism to solve the one-side auction for
spectrum with approximate revenue maximization and
achieved good results. Li et al. [5] solved the double auction
for smart grid, where the Gaussian mechanism was adopted
for the privacy protection of bidders’ valuation, while the
exponential mechanism was adopted for the protection of
transaction volume.

To the best of our knowledge, prior to our paper, there
was no double-auction study on data and no differential pri-
vacy protection solution on this basis. Given the apparent
shortcomings of the Gaussian mechanism, our work
employs an exponential mechanism to protect price privacy.

Our work for data double auction is different from the
traditional sense of resource double auction, because the
resource (such as the above spectrum and power) is unique;
a resource in a slot can only match and provide to a unique
buyer, and the data are repeatable, i.e., a seller of data in a
slot can match and provide them to multiple different
buyers, not a one-to-one matching relationship. Therefore,
our work adopts the exponential mechanism for double
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auction, which theoretically has no problem, and will not
encounter the low auction performance mentioned by Li
et al. [5]. Later performance evaluations also demonstrate
this.

In addition, our work focuses on the single core element
of the bid of the auction, which is different from [5] to
protect valuation and transaction volume, making the back-
ground of using the exponential mechanism different from
[5] at this point.

6. Performance Evaluation

As there is no existing scheme for data double auction as far
as we know, we directly evaluate the effectiveness of
DANTM and DADPM, considering the auction process in
a slot. We assume uniformly distributed bids, asking prices,
and demand and supply volumes of bidders. We further
assume substantial matches of data quality between pro-
viders and purchasers. We set ε1 and ε2 to 0.1. Unless other-
wise stated, simulation results are based on these settings.

We evaluate the characteristics of DANTM and
DADPM, including individual rationality, weak budget bal-
ance, and truthfulness, and their comprehensive perfor-
mance, including social welfare, time cost, and privacy
leakage.

We ran simulations on a PC with a 1.80GHz Intel Core
i7-8565U CPU and 16GB RAM under Windows 10. Results
were averaged over 100 runs to obtain fair and credible
results.

6.1. Evaluation of Basic Characteristics for DANTM
and DADPM

6.1.1. Individual Rationality. Figure 5 shows payoffs for
buyers and sellers using DANTM and DADPM. We can
see that every payoff is positive, which satisfies the principle
of individual rationality for buyers and sellers.

6.1.2. Weak Budget Balance. Figure 6 displays the
relationship between the number of bidders and the average
budget (defined in (6)) obtained with DANTM and
DADPM. Half the bidders are buyers, and half are sellers;
the same setting is used while the horizontal axis represents
the number of bidders in Figures 7 and 8. The results show
positive budgets in DANTM and DADPM; hence, a weak
budget balance is reached.

6.1.3. Truthfulness. To verify truthfulness using DANTM
and DADPM, we need to observe how the bid/asking price
impacts the payoff for buyers/sellers. Figure 9 shows the
experimental results. In Figure 9(a), the payoff generally
decreases with decreasing bids, which means that a lower
bid does not help buyers obtain a higher payoff. In
Figure 9(b), the payoff does not increase when sellers ask a
higher price.

6.2. Evaluation of Comprehensive Performance for DANTM
and DADPM

6.2.1. Social Welfare. Figure 7 shows the average social
welfare for a bidder with different numbers of bidders. We

can see that the average social welfare in DADPM is higher
than in DANTM in most cases, which is due to different
transaction pricing mechanisms. For convenience, we
replace ε with Ifif in Figures 7 and 10 (note that ε represents
ε1 and ε2).

6.2.2. Privacy Leakage

Definition 16 (Privacy Leakage). Assume Q1 and Q2 are
neighboring databases that differ only in a single datum.
We use W as the output of some algorithm MðÞ on input
Q1 and Q2, and W+ is the set of outputs W. Pr is the prob-
ability distribution about MðQiÞ =W with i = 1 and 2. The
privacy leakage (Pl) between two neighboring databases is
derived as [5]

Pl = 〠
W∈W+

Pr M Q1ð Þ =W½ � ln Pr M Q1ð Þ =W½ �
Pr M Q2ð Þ =W½ �
� �

: ð19Þ

From the definition, we can see that privacy leakage
indicates how we can distinguish the input when the gener-
ated output is the same. The less the privacy leakage, the
better the privacy protection.

In our situation, we change one bid in a group of
bidders, with the winning bidders unchanged, to obtain the
privacy leakage results in Figure 10. In Figure 10(a), the pri-
vacy leakage is limited between −0.0002 and 0.0002. In
Figure 10(b), it is limited between 0 and 0.0004. Based on
these results, it is almost impossible to distinguish or infer
the bidding information and threaten bidder privacy.

6.2.3. Time Cost. Figure 8 shows the time cost of data trading
as the number of bidders changes from 10 to 100. In most
cases, the time cost increases with the number of bidders.
As the computing process is more complex in DADPM than
in DANTM, its time cost is higher. The highest time cost is
less than 20ms, which indicates the effectiveness of our
schemes.

7. Conclusion

We described a blockchain-supported IoT data market
framework and focused on data trading of multiple buyers
and sellers. We presented a data trading scheme, based
directly on the bid information of participants, to determine
the winning sellers and buyers at auction and the amount
and trading price. To protect participant bid information,
we leveraged the data transaction scheme based on differen-
tial privacy, with the properties of individual rationality,
weak budget balance, and truthfulness, and with good pri-
vacy protection based on an exponential mechanism. A per-
formance evaluation demonstrated the effectiveness of the
schemes. Experimental results confirmed the above proper-
ties, along with good performance in terms of social welfare
and computational overhead.
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