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Data analysis is the foundation of Internet of Things (IoT) based applications, and clustering is an effective technology of data
analysis. Clustering ensemble integrates multiple base clustering results to obtain a consensus result and thus improves the
clustering performance in stability and robustness. However, it is difficult for existing clustering ensemble algorithms to
achieve a satisfying ensemble result, when the base clustering results are unreliable. Concerning this problem, we develop a
new clustering ensemble model in this paper, which has several advantages compared with traditional algorithms: (i) structure
information about the data is effectively extracted from the base clusterings; (ii) data characteristics and structure information
are integrated in an elegant fashion, in the production of the consensus clustering result; and (iii) our model has the generative
ability that makes the model achieve outstanding performance when training samples are insufficient. In our model, the
structural information is extracted by explicating the coupling relationships between base clusterings and between samples in
clustering members. Then, data characteristics and structure information are combined in a generative graph representation
learning framework. And the objectives of representation learning and consensus clustering are integrated into a unified
optimization model, in which the prior distribution of the data is approximated by a Gaussian mixture model (GMM).
Extensive experiments are conducted on multiple IoT datasets; the results prove that our model not only performs better than
the conventional clustering ensemble algorithms but also outperforms the state-of-the-art deep clustering methods.

1. Introduction

With the rapid development and widespread use of IoT
technology, many types of data are produced constantly with
unprecedented speed. The effective analysis and mining
around these huge amounts of data have gradually become
an important requirement to enhance the value of IoT data
[1]. As a typical data mining technology, clustering analysis
plays an important role in many IoT data analysis scenarios,
such as network energy saving [2, 3], privacy protection [4],
attack detection [5, 6], service computing [7], and pattern
discovery [8, 9]. The goal of clustering analysis is to divide
the unknown data into a set of clusters based on a certain
similarity measurement between data samples, so that sam-
ples in the same cluster are close to each other, and those
in different clusters are different from each other. With the

help of clustering analysis, the distribution pattern hidden
in the unknown data can be easily identified. Typical cluster-
ing strategies mainly consist of partitioning methods, hierar-
chical methods, grid-based methods, and graph methods. In
the past decades, a great deal of research works have been
conducted to improve the clustering performance from mul-
tiple directions, such as similarity measurement, cluster
number recognition, cluster structure optimization, atypical
data processing, and performance evaluation [10, 11]. The
performance and adaptability of clustering analysis in vari-
ous data analysis scenarios have been improved significantly.
However, as an unsupervised learning method, clustering
analysis has the following limitations: (i) due to the lack of
supervision information, the design of the clustering algo-
rithm depends on human’s subjective hypothesis. As a
result, different clustering algorithms may get distinct
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partitioning results on the same data. (ii) Searching the opti-
mal clustering result is often a nonconvex optimization
problem; thus, clustering result always depends on the input
parameters and initializations to a great extent. (iii) Real-
world data, such as the IoT data, is often multidimensional
or multisource. Therefore, one cluster may have diverse dis-
tributions or structures from different perspectives. And it is
difficult for any clustering method to identify all cluster pat-
terns completely.

To solve these problems, clustering ensemble is proposed
driven by the idea of ensemble learning. Clustering ensemble
can obtain a final partition result which describes the inner
cluster structure of the data more effectively, by combining
multiple clustering results on the data. Compared with any
single clustering algorithms, the result of clustering ensem-
ble has several significant advantages in terms of reliability,
robustness, interpretability, and scalability. Besides, cluster-
ing ensemble is friendly to parallel computation and distrib-
uted deployment. There are two main phases in the
clustering ensemble [12]: (i) generating a set of cluster parti-
tions for the data, which are called base clusterings, and (ii)
designing an efficient consensus function to integrate base
clusterings into a final partition result. It is shown that the
validity of ensemble result is closely related to the diversity
of base clusterings. To this end, several strategies are used
to generate disparate base clusterings [13], such as using dif-
ferent clustering algorithms, setting different parameters or
initializations for a clustering algorithm, extracting different
subsets of data, and projecting the data to different feature
spaces. To produce a consensus clustering result by combin-
ing base clusterings, many works focused on designing vari-
ous consensus functions for the clustering ensemble model.
Each consensus function abstracts the base clustering results
to a specific form of ensemble-information matrix. Based on
three general types of such matrix (i.e. the label-assignment
matrix, the pairwise similarity matrix, and the binary
cluster-association matrix), different consensus functions
found in these works can be categorized to four major fam-
ilies: (i) relabeling strategy [14]. These algorithms find label
correspondence and relabel each partition in accordance
with a reference partition and produce the final result by
use of a combination method such as voting. (ii) Feature-
based methods [15, 16]. These techniques predict cluster
assignments using the nominal information that is originally
obtained from base clusterings, without searching for corre-
spondence among labels or relabelling. (iii) Pairwise
similarity-based algorithms [17, 18]. This specific category
of clustering ensemble methods is based principally on the
pairwise similarity among data samples. (iv) Graph-based
approaches [19, 20]. This family of strategies utilizes the
graph structure to solve the clustering ensemble problem.
They generally construct a weighted graph from the base
clusterings and produce the final result by partitioning the
graph using certain graph partitioning methods. In recent
years, some clustering ensemble algorithms [18, 21] have
been used in IoT data analysis and achieved superior perfor-
mance to a single clustering algorithm. It is worth noting
that IoT data always includes a large number of explicit
characteristic information, as well as abundant structure

information that describes the intrinsic organization of the
data. The data characteristics and structure information
describe IoT data from different aspects; therefore, both of
them can provide valuable guidance on producing the final
ensemble result. However, existing clustering ensemble
algorithms, according to our knowledge, produce the final
partition result by employing base clusterings either in fea-
ture space or exploring structure relations. They seldom
consider to combine these two types of data information
in the design of the consensus function. This limitation
raises a problem that the clustering ensemble result may
be suffering from the unreliable base clusterings or incom-
plete data information.

To explore and utilize various types of information
implicit in the IoT data comprehensively, we propose a novel
clustering ensemble model in this paper, which integrates data
characteristics with structure information in producing the
consensus clustering result. As will be discussed, our work
devotes to solve the following two key problems to achieve
the information integration: (i) how can we extract effective
structural information hidden in the raw data? In general,
structure information of the data can be expressed by certain
relationships, such as the pairwise similarity among data sam-
ples, the nominal information originally obtained from an
ensemble, and the associations between data samples or those
among clusters. In fact, the raw data and base clustering results
can be viewed as different organization forms for same data
samples. Therefore, extracting the structure information by
solely focusing on the similarity between data samples or asso-
ciations among base clusterings is far from sufficient. This is
the first key problem we intend to address. (ii) How to inte-
grate data characteristics and structure information into
appropriate representations for producing the final ensemble
result? Data characteristics and structure information describe
the data in different space and interact with each other in the
formation of cluster structure. However, they cannot be simul-
taneously processed in existing ensemble strategies. Therefore,
how to combine these two different types of information ele-
gantly and learn their appropriate representations for cluster-
ing ensemble is another key problem.

For the first key problem, we consider to capture the
coupled clustering and sample similarity from base cluster-
ings to describe the structure information of data. On the
one hand, all the base clusterings are produced on the same
data, and there must be some relationships among those
ensemble members. On the other hand, samples from the
data are more or less associated in terms of certain coupling
relationships rather than independent. Based on these knowl-
edge, we plan to extract structural information by explicating
and integrating the coupling relationships between base clus-
terings and between data samples.

To address the second key problem, we employ a varia-
tional graph autoencoder (VGAE) [22] module to learn the
specific representations from both data characteristics and
structure information, which are suitable for clustering objec-
tive. And by assuming the prior statistic of the latent represen-
tations to be a Gaussian mixture distribution, we derive a joint
optimization model which combines representation learning
and cluster partitioning into a unified framework.
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In this work, we propose a novel clustering ensemble
model with the motivation that integrates data characteris-
tics with structure information in aggregation of the cluster-
ing results by employing the powerful representation ability
of deep learning. In fact, our work can be viewed as an
improvement for clustering ensemble approach with struc-
ture constraints to handle data with complex distribution.
Alternatively, our work can be also viewed as an enhance-
ment of deep clustering method by imposing a global model
explicitly in latent space. Our main contributions can be
summarized as follows:

(i) We discuss how to capture effective structure infor-
mation for the data by exploiting the base clustering
results comprehensively

(ii) We design an encoder-decoder specific network to
transform the integration of data characteristics
and structure information into a graph representa-
tion learning problem by treating the data as a
graph organized by global structure relationships.
We employ a mixture of Gaussian to approximate
the prior distribution of the latent representation,
which is a tractable parametric model for clustering
tasks by nature

(iii) We construct a unified optimization model with
aggregation of representation learning and consen-
sus cluster partitioning and show how to train the
network by maximizing the evidence lower bound
(ELBO) using the stochastic gradient variational
Bayes (SGVB) estimator and the reparameterization
trick

(iv) Extensive experiments on several IoT datasets dem-
onstrate the superiority of our approach in compar-
ison with several clustering ensemble algorithms
and deep clustering methods

The remainder of this paper is organized as follows. In
Section 2, some related works are introduced, respectively.
In Section 3, our generative clustering ensemble model is
proposed, and each component in the model is illustrated
in detail. To evaluate the performance of the proposed
model, a series of experiments are conducted and analyzed
in Section 4. Finally, the conclusions and discussions of
future work are given in Section 5.

2. Related Work

In this section, we introduce the most related works: autoen-
coder (AE) and variational autoencoder (VAE), representa-
tion learning for clustering, and graph representation
learning.

2.1. Autoencoder and Variational Autoencoder. AE can be
regarded as a nonlinear generalization of PCA to reduce data
dimensionality, in which high-dimensional data can be con-
verted to low-dimensional codes by training a multilayer
neural network with a small central layer. AE is composed
of three basic elements: an adaptive, multilayer encoder net-

work that transforms the high-dimensional data into a low-
dimensional code; a similar decoder network that recovers
the data from the code; and a loss function that evaluates
the lost information in dimensionality reduction. There are
several important characters of autoencoder: (i) the module
is learned automatically from data samples, (ii) the recon-
structed data is degenerated compared with the original
data, and (iii) the module is data-specific.

Using a similar encoder-decoder structure, the idea of
VAE actually has relatively little to do with classical AE
models but is deeply rooted in the variational Bayesian
methods [23, 24]. Instead of mapping the input into a fixed
vector, the VAE maps it into a distribution in the latent
space. And by sampling from the latent distribution, the
decoder network can be viewed as a generative module that
creates some new samples similar to, but not identical to, the
training data. The assumptions of this model are relatively
weak, and its training process is fast via backpropagation.
VAE does make an approximation, but the error introduced
by this approximation is arguably small. These characteris-
tics significantly make VAE to be a popular generative
model.

2.2. Representation Learning for Clustering. Recently, some
works focus on exploiting the powerful representation ability
of deep learning model to learn a better data representation
for clustering task, in order to improve the clustering perfor-
mance. In [25], a two-stage deep clustering framework is
constructed, in which deep learning is used to acquire fea-
ture representations in subspace, and then, these features
are used to predict the cluster assignments. To guarantee
that the learned features are suitable for clustering task,
many latter works attempt to incorporate clustering objec-
tive into the deep learning framework. Specifically, the deep
embedded clustering (DEC) algorithm [26] learns low-
dimensional data representations using an autoencoder con-
struction without the decoder and proposes an assistant
objective distribution based on soft cluster assignment pro-
duced on the learned representations. In DCE, the clustering
optimization and training of encoder parameters are simul-
taneously implemented in a self-learning form. To overcome
the misguidance issue in feature mapping, Guo et al. [27]
utilized a complete autoencoder to improve the DEC, in
which the clustering loss not only accomplishes cluster par-
titioning but also guarantees that the learned data represen-
tations maintain the original local structure. Similarly,
DECE [28] uses a convolutional autoencoder and a single
layer classifier to learn the data representation and the clus-
ter distributions, respectively, in which the DNN is opti-
mized by minimizing the reconstruction error and the
relative entropy between the cluster distributions and their
priori. In [29], the authors proposed a joint dimensionality
reduction (DR) and K-means clustering algorithm, to obtain
the “clustering-friendly” latent representations and better
clustering result simultaneously. Its optimization criterion
is composed of three parts: dimensionality reduction which
is realized by a SAE framework, data reconstruction, and
cluster structure-promoting regularization. Bo et al. [30]
developed a structural deep clustering network (SDCN) to
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integrate the structural information into deep clustering, in
which a delivery operator is designed to transfer the repre-
sentations learned by autoencoder to the corresponding
GCN layer, and a dual self-supervised mechanism is con-
structed to unify these two DNN architectures and guide
the update of the whole model.

In the above algorithms, AE learns effective representa-
tions for input data and then reconstructs samples with
one-to-one correspondence between original data. Unfortu-
nately, the deep clustering models may suffer from the
overfitting problem caused by AE networks, due to its pow-
erful learning capacity and the insufficiency of training
samples. To overcome this drawback, some works attempt
to replace AE with VAE as the network construction for
deep clustering. In VAE, the encoder turns to find the map-
ping relation of data distribution. The latent variables sam-
pled from the learned distribution can effectively capture
statistic characteristics of the data. And then, the decoder
which is also named generator is capable of generating
new data samples for any cluster distribution. This mecha-
nism will help the clustering model acquire more abundant
information about the inherent cluster structure of the data.
For example, Jiang et al. [31] design an unsupervised gener-
ative deep clustering algorithm variational deep embedding
(VaDE), in which the cluster distributions are modeled by
GMM, and the latent representations of data are learned
by DNN. The solution of VaDE is realized by variational
inference; specifically, its ELBO is optimized using the
SGVB estimator and the reparameterization trick. Choong
et al. [32] considered the community structure discovering
as a graph clustering problem and proposed a generative
model, namely, variational graph autoencoder for commu-
nity detection (VGAECD). Unlike traditional approaches,
the VGAECD does not require a predefined community
structure, and it is capable of exploiting feature-rich infor-
mation of a network. Hwang et al. [33] addressed the issue
of clustering complex and high-dimensional wafer maps in
semiconductor manufacturing, by proposing a variational
deep clustering algorithm namely one-step VAE+DPGMM.
In this algorithm, a GMM is implemented to a VAE frame-
work to extract more suitable features for the clustering
task, and a Dirichlet process is further applied in the var-
iational autoencoder mixture framework for automated
one-step clustering. Compared with conventional two-step
clustering methods, the model can considerably increase
the chance to distinguish small differences of wafer map
patterns.

All the algorithms above construct deep clustering
framework based on deep networks, and they provide effec-
tive data representations for clustering task by introducing
the powerful representational ability of the deep network.
However, these algorithms all focus on the general clustering
problem, rather than clustering ensemble. And they predict
the cluster assignments by use of data characteristics but
neglect the structure information implicit in the data. This
fact motivates us to consider how to take full advantage of
deep networks to learn appropriate representations for mul-
tiple data information, in order to enhance the performance
of clustering ensemble model.

2.3. Graph Representation Learning. The structure informa-
tion reveals the intrinsic relationships among data samples,
which can provide an important guidance on learning the
data representation for clustering ensemble task. As a ubiq-
uitous data organizational form, graph is of many intuitive
advantages on describing structure information of the data.
It can capture interactions between data samples and make
the structure information be efficiently recorded and
accessed. In order to incorporate the graph-formed structure
information into a machine learning model, graph represen-
tation learning can be employed to encode the high-dimen-
sional, non-Euclidean graph information into a feature
vector. Graph representation learning is aimed at converting
graph data into a low-dimensional, compact, and continu-
ous feature space and preserves the topological structure,
vertex content, and other side information in graph as com-
plete as possible. From the encoder-decoder perspective,
various graph representation learning methods can be
abstracted to a framework consisting two key mapping func-
tions [34]: an encoder, which maps each vertex to a low-
dimensional vector or embedding, and a decoder, which
reconstructs the graph data from the learned embeddings.
Generally, the objective of the encoder-decoder graph repre-
sentation learning model is optimized by minimizing the
reconstruction error or loss of the pairwise vertex similarities
between the input graph and the reconstructed graph. Most
graph representation learning methods fall into two broad
categories: (i) shallow representation approaches, which are
largely inspired by classic matrix factorization techniques
[35] or random walks [36, 37] using an embedding lookup
encoder function, and (ii) generalized encoder-decoder
architectures, which use a more complex encoder, often
based on DNNs [38, 39] and dependent on the topological
structure and vertex attributes [40] of the graph more gener-
ally. Among the latter categories, VAE is a common DNN
construction. Some works introduce VAE by adding a prior
constraint to compress information about a node’s local
neighborhood. For example, the algorithm in [22] learns
representations of an attribute network under the VAE
framework by employing a graph convolutional network
(GCN) encoder and an inner product decoder. To address
the incomplete filtering issue encountered in traditional
GCN-based graph autoencoders, [41] proposed graph con-
volutional autoencoders with colearning of graph structure
and node attributes (GASN) based on VAE. The GASN
encodes and decodes the node attributes and graph structure
comprehensively by use of a completely low-pass graph
encoder and a high-pass graph decoder.

3. The Proposed Model

Given a set of N IoT data samples X = fxigNi=1 in D-dimen-
sional space, each sample xi is represented by a vector of D
attribute values. Also, let Π = fπtgTt=1 be a set of T base clus-

terings and πt = fCt
γgktγ=1 be the tth base clustering, such thatSkt

γ=1C
t
γ = X, where kt denotes the number of clusters in πt

and Ct
γ is the γth cluster. For each xi, λ

t
i denotes the cluster
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label in the tth base clustering to which xi belongs. The label
set containing all the different labels in base clustering πt is
denoted by Λt , and the set of samples whose cluster labels
is λti in πt is specified as stðλtiÞ. The problem of clustering
ensemble is to find a new partition π∗ = fC∗

kgKk=1, where K
denotes the number of clusters in the final result.

3.1. Overview of the Model. In this section, we will illustrate
our proposed generative clustering ensemble (GCE) model,
where the overall framework is shown in Figure 1. In this
work, the data characteristics mainly refer to the data fea-
tures, which are used to express properties of individual data
object. And the structure information represents the rela-
tionships between data objects, which are used to describe
connections between different objects intrinsic in the data.
We first discuss how to effectively extract structure informa-
tion from an ensemble of base clusterings. Then, we con-
struct a variational network that combines representation
learning and clustering ensemble objective into a joint opti-
mization process. In the representation learning phase, we
treat data samples as the vertexes of a relationship graph
and integrate data characteristics with structure information
in a VGAE module. While in the production of the consen-
sus clustering result, we utilize a GMM to approximate the
prior distribution of the latent representation. At last, we
optimize the encoder-decoder module and the GMM jointly
in the form of stochastic inference.

3.2. Structure Information Extracting. In our proposed GCE
model, it is important to construct an appropriate affinity
matrix to describe structure information of the data. In
many graph-based clustering ensemble methods, the affinity
matrix is usually constructed by finding several nearest

neighbors for a given sample and evaluating their similarities
through a certain mapping function. The similarity defined
in this way is limited in revealing the local relationships
between data samples rather than global relationships
among the whole data. In clustering ensemble context, we
can actually acquire richer information about data structure
from base clusterings. Different from typical methods, we
believe that the global relationships among the data can be
determined by two elements [42]: coupling of base cluster-
ings and coupling of data samples.

3.2.1. Coupling of Base Clusterings. The coupling of base
clusterings is defined to represent relationship among differ-
ent ensemble members, which are composed of two compo-
nents: intracoupling that reflects the involvement of cluster
label occurrence frequency within a base clustering and
intercoupling that indicates the interaction between two base
clusterings. Specifically, we define the coupled clustering
similarity for clusters (CCSC) between two cluster labels in
a certain base clustering to describe the coupling relation-
ship of base clusterings, which can be calculated as

CCSC λti , λtj ∣ Λof gTo=1
� �

= IaCSC λti , λtj
� �

IeRSC λti , λtj ∣ Λof go≠t
� �

:

ð1Þ

CCSCðλti , λtj ∣ fΛogTo=1Þ is the CCSC between λti and λtj,

IaCSCðλti , λtjÞ is the intracoupled clustering similarity for

clusters (IaCSC) between λti and λtj, IeRSCðλti , λtj ∣ fΛogo≠tÞ
is the intercoupled relative similarity for clusters (IcRSC)
between λti and λtj based on another base clustering πo,
and Λo is the label set of πo. The IaCSC captures the base
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Figure 1: Overall framework of the proposed GCE model. The proposed model consists of three components. (i) In the structure extraction
component, structure information among data samples is extracted from a series of base clusterings at first. (ii) In the encoder component,
data characteristics and structure information are encoded integrated by a GCN module, which learns parameters for the distribution of
latent representation. (iii) In the decoder component, ~X is reconstructed by a generator gðz ; θÞ, and the representation z sampled from
the learned latent distribution is assumed to lie in a cluster characterized by a Gaussian component of the GMM. The objective of
representation learning and clustering ensemble are jointly optimized by maximizing the ELBO of GCE, which is calculated and
backpropagated to the latent representation.
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clustering frequency distribution by calculating the fre-
quency of cluster labels within a base clustering, and it is
defined as

IaCSC λti , λtj
� �

=
st λti
� ��� �� st λtj

� ���� ���
st λti
� ��� �� + st λtj

� ���� ��� + st λti
� ��� �� st λtj

� ���� ��� :
ð2Þ

The IcRSC characterizes the base clustering dependency
aggregation by comparing cooccurrence of the cluster labels
among different base clusterings. It is defined as

IeRSC λti , λtj ∣ Λof go≠t
� �

= 〠
T

o=1,o≠t
ωoSimt∣o λti , λtj ∣Λo

� �
, ð3Þ

where ωo ∈ ½0, 1� is the weight of base clustering πt , ∑
T
o=1,o≠t

ωo = 1, and Simt∣oðλti , λtj ∣ΛoÞ is calculated as

Simt∣o λti , λtj ∣Λo

� �
= 〠

λo∈Ω
min so λoð Þ ∩ st λti

� ��� ��
st λti
� ��� �� ,

so λoð Þ ∩ st λtj

� ���� ���
st λtj

� ���� ���
8<
:

9=
;:

ð4Þ

In equation (4), Ω is a set that represents LoðstðλtiÞÞ ∩
LoðstðλtjÞÞ, and LoðstðλtiÞÞ is the subset of cluster labels in

base clustering πo for the corresponding samples stðλtiÞ .
3.2.2. Coupling of Data Samples. Similarly, the coupling rela-
tionships among data samples can be also discussed from
intraperspective and interperspective, respectively. In terms
of the intraperspective, the similarity between xi and xj is
represented by intracoupled sample similarity (IaSS), which
is defined as

IaSS xi, xj
� �

= 1
T
〠
T

t=1
IeRSC λti , λtj ∣ Λof go≠t

� �
: ð5Þ

The IaSS refers to the average sum of the CCSC between
the associated cluster labels ranging over all the base cluster-
ings. From the interperspective, we can describe the interac-
tion between different samples by mining the correlation
among their neighbors. Accordingly, we define the inter-
coupled sample similarity (IeSS) between two samples using
their common neighbors:

IeSS xi, xj
� �

= 1
N

xn ∈ X ∣ xn ∈Nxi
∩Nxj

n o��� ���, ð6Þ

where IeSSðxi, xjÞ is the IeSS between samples xi and xj in
terms of other samples in X. Nxi

is the neighbor set of xi,
and it is defined as

Nxi
= xn ∣ κ xi, xnð Þ ≥ θf g, ð7Þ

where κð·, · Þ is the kernel function, and θ ∈ ½0, 1� is a thresh-
old of κ. For instance, with the Gaussian kernel, the κðxi, xnÞ
is defined as

κ xi, xnð Þ = 1
αi

exp −
φ xi, xnð Þ2

2ϑ2

 !
, ð8Þ

where αi is a normalizer to make ∑nκðxi, xnÞ = 1, ϑ > 0 is the
width of Gaussian kernel, and φð·Þ denotes a certain similar-
ity measure for samples, such as Euclidean dissimilarity for
numeric charicteristics or Jaccard coefficient for categorical
attributes.

3.2.3. Construction of Structure Information. Obviously, the
position of a data sample in a clustering depends on which
cluster it belongs to. Thus, the clustering coupling and
sample coupling can be integrated through the corre-
sponding clusters. Specifically, we employ IaSS as the sim-
ilarity measure in equation (8) to define coupled clustering
and sample similarity (CCSS) between samples, and we
have

CCSS xi, xj
� �

= 1
N

xn ∈ X ∣ xn ∈N
IaSS
xi

∩N IaSS
xj

n o��� ���, ð9Þ

where CCSSðxi, xjÞ is the CCSS between xi and xj and the

neighbor sets are defined as NIaSS
xi

= fxn ∣ κIaSSðxi, xnÞ ≥ θg
and N IaSS

xj
= fxn ∣ κIaSSðxj, xnÞ ≥ θg, respectively. The kernel

function in equation (8) can be rewritten as

κ xi, xnð ÞIaSS = 1
αi

exp −
IaSS xi, xnð Þ2

2ϑ2

 !
: ð10Þ

In this way, the CCSS not only takes into account both
the intracoupled and intercoupled interactions between base
clusterings but also incorporates both the intracoupled and
intercoupled relationships between samples. Given a series
of clustering members, we can define an affinity matrix
AN×N that stores the structure information about the data,
and each entry Ai,j of the matrix denotes the global similar-
ity between samples xi and xj. Specially, we set the value of
Ai,j as

Ai,j = CCSS xi, xj
� �

, ð11Þ

where CCSSðxi, xjÞ is defined in equation (9).

3.3. The Generative Clustering Ensemble Model. Based on the
affinity matrix, the data can be viewed as a sample similar-
ity graph implying both data characteristics and structure
information. To combine these two types of data descrip-
tion, we design a joint clustering ensemble model within
the framework of VGAE, in which the priori of the latent
representation is approximated as a mixture of Gaussian
distributions.
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3.3.1. Inference Model. Given a dataset X and its structure
information formed by an affinity matrix A, the inference
model is parameterized by a two-layer GCN:

q Z ∣ X, Að Þ = 〠
N

i=1
q zi ∣ X, Að Þ: ð12Þ

Here, Z = fzigNi=1 denotes latent representation of X. For
a certain data sample x and its structure information vector
a, the corresponding latent vector in the low-dimentional
space can be obtained by

q z ∣ x, að Þ =N z ∣ μz , diag σ2z
� �� �

, ð13Þ

where μz,i and σ2
z,i are mean and variance of the ith latent

vector zi. Each latent vector is sampled from a distribution
obtained by a GCN, i.e., μz = GCNμðX, AÞ, and log σz = GC
NσðX, AÞ. The GCN structure is defined as

GCN X, Að Þ = Gconv ReLU Gconv A, X ;W0ð Þð Þ ;W1ð Þ,
ð14Þ

where the Gconvð·Þ function is a graph convolutional layer
and W0 and W1 are learnable weight matrices for the first
layer and second layer, respectively. And W0 is shared
between GCNμðX, AÞ and GCNσðX, AÞ.
3.3.2. Generative Model. In our model, we assume the train-
ing data is generated from a Gaussian mixture distribution;
i.e., the clustering ensemble result fC∗

kgKk=1 can be approxi-
mated by a GMM, and each sampled latent vector should
lie in a cluster modeled by one Gaussian component with a
certain probability. For each training data sample x, we learn
a latent representation z and introduce a K-dimensional vec-
tor c satisfying ck > 0 and ∑K

k=1ck = 1 to indicate the prior
cluster distributions of the data. The generative process can
be modeled as follows:

From the consistent clustering partition, sample a cluster
C∗
k ~ CatðcÞ, where CatðcÞ is the categorical distribution

parameterized by c.

(i) From the picked cluster, sample a vector z ~Nðz ∣
μc,k, diag ðσ2c,kÞÞ, where μc,k and σ2c,k denote the mean

and variance of the kth Gaussian component,
respectively

(ii) From the reconstructed ½id = V2�datadataset
~X = f~xigNi=1, sample a vector a. For binary data,
choose a ~ Berðμ~xÞ, where Berðμ~xÞ is a multivariate
Bernoulli distribution, and μ~x is computed by μ~x =
gðz ; ϕÞ. For real-value data, choose a ~Nðμ~x, diag
ðσ2

~xÞÞ, where Nðμ~x, diag ðσ2~xÞÞ is a multivariate
Gaussian distribution, and μ~x, σ

2
x are learned by ½μ~x ;

log σ2~x� = gðz ; ϕÞ. The function gðz ; ϕÞ is a nonlinear
function parameterized by ϕ, and in our model, the
inner product decoder is used

g z ; ϕð Þ = σ zTi zj
� �

: ð15Þ

According to the above generative process, we can fac-
torize the joint probability pða, z, C∗

k Þ as

p a, z, C∗
kð Þ = p a ∣ zð Þp z ∣ C∗

kð Þp C∗
kð Þ: ð16Þ

Since a and C∗
k are independently conditioned on z, we

have

p a ∣ zð Þ = Ber μ~xð ÞorN μ~x , diag σ2~x
� �� �

, ð17Þ

p z ∣ C∗
kð Þ =N z ∣ μc,k, diag σ2

c,k
� �� �

, ð18Þ

p C∗
kð Þ = Cat C∗

k ∣ cð Þ: ð19Þ

3.4. Learning Algorithm. Our GCE model can be tuned by
maximizing the log-likelihood of the given data samples as

max
W,ϕ,C∗

〠
x

log pϕ xð Þ = max
W,ϕ,C∗

〠
x

log
ð
z
〠
C∗

pϕ x, z, C∗
kð Þ: ð20Þ

By using Jensen’s inequality, we have

log pϕ xð Þ > LELBO xð Þ = Eq z,C∗∣x,að Þ log p a, z, C∗
kð Þ

q z, C∗
k ∣ x, að Þ

� �
, ð21Þ

where LELBOðxÞ denotes the evidence lower bound (ELBO)
of x and qðz, C∗

k ∣ x, aÞ is the variational posteriori approxi-
mating the true posterior pðz, C∗

k ∣ x, aÞ. By assuming qðz,
C∗
k ∣ x, aÞ to be a mean field distribution, we can factorize

it as

q z, C∗
k ∣ x, að Þ = q z ∣ x, að Þq C∗

k ∣ x, að Þ: ð22Þ

According to equations (16) and (22), the LELBOðxÞ can
be rewritten as equation (23). By submitting the inference
model qðz ∣ x, aÞ defined by equations (13), (17), (18), and
(19) and using the Monte Carlo SGVB estimator, the
LELBOðxÞ can be further rewritten as equation (24).

LELBO xð Þ = Eq z,C∗
k ∣x,að Þ log p a ∣ zð Þp z ∣ C∗

kð Þp C∗
kð Þ

q z ∣ x, að Þq C∗
k ∣ x, að Þ

� �
= Eq z,C∗

k ∣x,að Þ log p a ∣ zð Þ + log p z ∣ C∗
kð Þ + log p C∗

kð Þ½
− log q z ∣ x, að Þ − log q C∗

k ∣ x, að Þ�:
ð23Þ
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LELBO xð Þ = 1
M

〠
M

m=1
〠
D

d=1
xd log μ

mð Þ
~x

�����
d

+ 1 − xdð Þ log 1 − μ
mð Þ
~x

���
d

� �
−
1
2〠

K

k=1
q C∗

k ∣ x, að Þ〠
R

r=1

log σ2c
��
r
+

σ2z
��
r

σc,k
��
r

+ μz r − μcj jrð Þ2
σ2
c,k
��
r

 !

+ 〠
K

k=1
q C∗

k ∣ x, að Þ log p C∗
kð Þ

q C∗
k ∣ x, að Þ

+ 1
2〠

R

r=1
1 + log σ2z

��
r

� �
,

ð24Þ

where M is the total number of samples in the SGVB esti-
mator, D and R are the dimensionalities of training data
and latent vector, respectively, xd is the dth element of x,
•ji and •jr denote the ith and rth element of vector •,
respectively. μðmÞ

~x is calculated by μðmÞ
~x = gðzðmÞ ; ϕÞ, in

which zðmÞ is the mth Monte Carlo sample picked from q
ðC∗

k ∣ x, aÞ defined in equation (13). In order to employ
gradient backpropagation on the stochastic layer, the
reparameterization trick is used here, and zðmÞ can be cal-
culated as

z mð Þ = μz + σz ∗ ρ mð Þ, ð25Þ

where the learning rate ρðmÞ is sampled from Nð0, IÞ, ∗
is the element-wise multiplication operator, and μz and
σz are learned by the GCN network formulated by
equation (14).

In our variational clustering ensemble framework, the
solution of consistent clustering result is to find the posterior
distribution qðC∗

k ∣ x, aÞ that maximizes the ELBO. By
regrouping the like terms in equation (23), the LELBOðxÞ
can be further rewritten as

LELBO xð Þ = Eq z,C∗
k ∣x,að Þ log p a, z, C∗

kð Þ
q z, C∗

k ∣ x, að Þ
� �

=
ð
z
〠
C∗

q z ∣ x, að Þq C∗
k ∣ x, að Þ log p x, a ∣ zð Þp zð Þ

q z ∣ x, að Þ + log p C∗
k ∣ zð Þ

q C∗
k ∣ x, að Þ

� �
dz

=
ð
z
q z ∣ x, að Þ log p x, a ∣ zð Þp zð Þ

q z ∣ x, að Þ dz

−
ð
z
q z ∣ x, að ÞKL p C∗

k ∣ zð Þ∥q C∗
k ∣ x, að Þ½ �dz,

ð26Þ

where KLð·Þ is the Kullback-Leibler divergence function
that measures the distance between two distributions and
pðzÞ =Nðz ∣ 0, IÞ is a Gaussian prior distribution for latent
vector. The first term in equation (26) is independent of
C∗
k , and the second term is nonnegative due to the defini-

tion of KL divergence. Thus, the LELBOðxÞ achieves the
maximum value when KL½pðC∗

k ∣ zÞ∥qðC∗
k ∣ x, aÞ� ≡ 0 is sat-

isfied. Consequently, the optimal distribution qðC∗
k ∣ x, aÞ

can be approximated by

q C∗
k ∣ x, að Þ = p C∗

k ∣ zð Þ = p C∗
kð Þp z ∣ C∗

kð Þ
∑K

k′=1p C∗
k′

� �
p z ∣ C∗

k′
� � : ð27Þ

Since the representation learning and the cluster parti-
tioning are incorporated in an integrated framework, the
latent vector z is guaranteed to be an appropriate repre-
sentation of ðx, aÞ for clustering ensemble, and we use p
ðC∗

k ∣ zÞ as an approximation to qðC∗
k ∣ x, aÞ. Meanwhile,

the information loss introduced by the mean field
assumption in equation (19) can be mitigated by the rela-
tionship between C∗

k and z captured in pðC∗
k ∣ zÞ.

To further explore how our optimal model could work
on producing a consensus clustering result by incorporating
data characteristics and structure information, we rewrite
the ELBO in equation (21) as

LELBO xð Þ = Eq z,C∗
k ∣x,að Þ log p a, z, C∗

kð Þ
q z, C∗

k ∣ x, að Þ
� �

= Eq z,C∗
k ∣x,að Þ log p a, z, C∗

kð Þ − log q z, C∗
k ∣ x, að Þ½ �

= Eq z,C∗
k ∣x,að Þ log p a, z, C∗

kð Þ
p z, C∗

kð Þ + log p z, C∗
kð Þ − log q z, C∗

k ∣ x, að Þ
� �

= Eq z,C∗
k ∣x,að Þ log p a ∣ z, C∗

kð Þ − log q z, C∗
k ∣ x, að Þ

p z, C∗
kð Þ

� �
= Eq z,C∗

k ∣x,að Þ log p a ∣ z, C∗
kð Þ½ � − KL q z, C∗

k ∣ x, að Þ∥p z, C∗
kð Þ½ �:

ð28Þ

It is obvious that the first term in equation (28) is a
reconstruction component, which promotes our framework
employing latent embedding and clustering ensemble result
to explain the relationships among data samples effectively.
And the second term is the KL divergence between the var-
iational posterior qðz, C∗

k ∣ x, aÞ and the prior distribution p
ðz, C∗

k Þ modeled by a Gaussian mixture distribution. This
KL divergence can be considered a regularization term in
our optimal objective that guarantees the learned representa-
tion z to lie on a Gaussian mixture manifold. As a result, two
advantages can be clearly recognized. (i) From an overall
perspective, our framework jointly optimizes VGAE and
GMM to obtain effective data representation and an appro-
priate cluster partitioning. (ii) Particularly, in the representa-
tion learning section, the data characteristics and the
structure information are integrated elegantly in a generative
framework.

3.5. Overall Implementation. By integrating the above deri-
vation steps and optimization solution, the implementation
of the proposed GCE model is summarized in Algorithm 1.

4. Results and Discussion

In this section, a number of experiments are conducted on
several IoT datasets to evaluate the validity and superiority
of the proposed model.
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4.1. Datasets and Evaluation Metrics. Several widely known
real datasets are employed for testing, namely, KDD’99,
NSL-KDD, AWID, and UCI-IoT. The KDD’99 is a compre-
hensive network flow dataset, which is usually used as a
benchmark in intrusion detection tasks. The NSL-KDD is a
dataset suggested to solve some of the inherent problems
of the KDD’99, which removes redundant and duplicate
records and is more suitable for comparing different intru-
sion detection methods. AWID is another commonly used
network security dataset, which consists of both normal
and intrusive network traffic records collected from real
802.11 wireless networks. UCI-IoT is a real traffic dataset
collected by lots of commercial devices, whose goal is to rec-
ognize 11 different types of traffic situations: one normal
operations and 10 malicious attacks. All these datasets are
very large and complex; it is difficult to conduct experiments
on the whole dataset. Thus, preprocessing is required to con-
struct appropriate datasets for our experiments. For the
above four datasets, we randomly draw 20,000 samples from
each of the whole dataset. In these preprocessed datasets,
symbolic features are mapped to a series of numeric values
by one-hot encoding for ease of handling. Besides, we also
employ the Network Simulator 2 (NS2) to generate a wire-
less sensor network (WSN) security dataset, in which 50 sen-
sor nodes are used to simulate attacker records. The sensor
nodes transport protocol messages and data messages
according to Ad hoc On-Demand Distance Vector (AODV)
protocol with a constrained bit rate. These synthetic records
contain normal messages and 7 types of security attack cases,
which account for 10% scale of the whole dataset. The details
of all the datasets used here are summarized in Table 1.

In the experiments, we use clustering accuracy rate
(CAR), adjusted rand index (ARI), and normalized mutual
information (NMI), which are widely utilized in clustering
task, to evaluate performances of different algorithms. For
a set of N data samples X, π = fC1, C2,⋯Ckg and P = fp1,
p2,⋯, pk′g are used to denote the clustering result and the
true category assignment, respectively. The number of data
samples in Ci and pj are represented as NC

i and Np
j . And

the number of common samples of Ci and pj is recored as
Nij. Then, the three clustering performance indexes can be
defined as follows.

CAR =
∑k

i=1maxk′j=1Nij

N
,

ARI =

N

2

 !
∑k

i=1∑
k′
j=1

Nij

2

 !
− ∑k

i=1
NC

i

2

 !
∑k′

j=1
Np

j

2

 !" #

1/2ð Þ
N

2

 !
∑k

i=1
NC

i

2

 !
+∑k′

j=1
Np

j

2

 !" #
− ∑k

i=1
NC

i

2

 !
∑k′

j=1
Np

j

2

 !" # ,

NMI =
∑k

i∑
k′
j Nij log NijN/NC

i N
p
j

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑k

i=1N
C
i · log NC

i /N
� �

·∑k′
j N

p
j · log Np

j /N
� �r :

ð29Þ

4.2. Contrastive Algorithms. In the experiments, we compare
the proposed model with several representative clustering
ensemble methods, which consist of four categories:

(i) Two relabeling-based approaches, including the
selective voting (SV) and selective weighted voting
(SWV) ensemble algorithms [14]

(ii) Two feature-based approaches, including the expec-
tation maximization (EM) algorithm [15] and the
coclustering ensemble (CoCE) approach [16]

(iii) Two pairwise similarity approaches, including the
Weighted Connected-Triple (WCT) algorithm pro-
posed by Iam-On et al. [17] and the Hierarchical
Flexi Ensemble Clustering (HFEC) model [18]

(iv) Two graph-based approaches [19], including the
cluster-based similarity partitioning algorithm
(CSPA) and the ultrascalable spectral clustering
(U-SPEC) algorithm [20].

From another perspective, the proposed model can be
viewed as an improved deep clustering method that

Input: Data samples X, learning rate ρ, number
of Monte Carlo samples in SGVB
estimator M, epochs L.

Output: Consistent clustering result
qðC∗

k ∣ xi, aiÞ.
1 Produce an ensemble of base clusterings for X;
2 From Equation (11), construct the affinity matrix

A to represent structure information for X;
3 Choose ∼Uð0, 1Þ;
4 for l = 1,⋯, L do
5 for i = 1,⋯,N do
6 μz ,i =GCNμðxi, aiÞ;
7 log σz ,i = GCNσðxi, aiÞ;
8 Sample C∗

k ∼ Cat ðC∗
k ∣ cÞ;

9 Sample zi ∼Nðz ∣ μc,k, diag ðσ2c , kÞÞ;
10 Generate reconstructed ~ai = σðzTi z jÞ;
11 From Equation (24), compute

LELBO ðxiÞ;
12 Backpropogate gradients
13 end
14 end
15 From Equation (27), obtain the category

assignment qðC∗
k ∣ xi, aiÞ;

16 returnq ðC∗
k ∣ xi, aiÞ

Algorithm 1: The implementation of the GCE model.

Table 1: Details of datasets: number of data samples (N), number
of dimensions (D), and number of clusters (K).

Dataset N D K

KDD’99 20,000 41 5

NSL-KDD 20,000 41 5

AWID 20,000 154 16

UCI-IoT 20,000 115 11

Synthetic dataset 20000 15 8
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incorporates the structure information extracted from base
clusterings. Thus, in our experiments, we also compare it
with three deep clustering methods including DEC [26],
IDEC [27], and VaDE [31].

4.3. Experimental Setup. To evaluate all algorithms under the
same condition, the following experimental settings are
adopted in experiments.

(i) For all algorithms and all datasets, the numbers of
clusters are set to be the true numbers of categories.
And parameters of all the reference algorithms are
set according to their authors’ suggestions

(ii) The K-means is conducted 200 times independently
with random and different initializations to produce
200 base clustering results. And these results are
equally divided into 10 subsets, where each subset
consists of 20 base results. Then, each ensemble
clustering algorithm in the experiments is run on
these subsets and produce 10 ensemble results.
The average values of these ensemble results are
reported as the final outcomes for comparisons

(iii) For deep clustering algorithms, they employ the net-
work architectures adopted in the GCE model, for a
fair comparison. All the layers in the encoder-
decoder framework are fully connected, and ReLU
is selected as the activate function. The network con-
struction of encoder and decoder are mirrored set as
D − 500 − 500 − 2000 − 5 and 5 − 2000 − 500 − 500
−D, respectively, where D is the dimensionality of
the input data. To improve the computational effi-
ciency, the Adam optimizer is used, and the mini-
batch size is 100. The learning rate is initialized to
be 0.02 and decreases every 10 epochs with a decay

factor of 0.9. To prevent the models from trapping
into local optima or saddle point at the beginning of
training, the pretraining method in DEC is adopted
in these deep clustering algorithms. In the testing
experiments, all the deep clustering algorithms are
executed 50 times on each dataset, respectively, and
the average results are used for comparison

(iv) For the VaDE and the proposed model, a stacked
autoencoder is used to pretrain the encoder and
decoder. And in the proposed model, the Gaussian
kernel is employed to extract the structure relation-
ships between data samples. The kernel width ϑ is
set in the interval ½0:1,2� for different datasets, with
a step size 0.1. Besides, the parameter θ in the pro-
posed model is set to be 0.5

4.4. Experimental Results

4.4.1. Performance Analysis. Tables 2–4 illustrate the CAR,
ARI, and NMI results of GCE and other compared algo-
rithms on all datasets, respectively. The best results of differ-
ent algorithms are marked in boldface. From these results,
some notable points can be found:

(i) Compared with K-means, both clustering ensemble
algorithms and deep clustering algorithms achieve
better results in aspects of CAR, ARI, and NMI. It
can be concluded that the cluster assignments pro-
duced by K-means are quit unreliable, as each data-
set consists of several linearly inseparable categories.
Clustering ensemble algorithms can enhance the
clustering performance effectively by integrating
multiple weak base results. Deep clustering algo-
rithms learn appropriate representations in latent

Table 2: CAR metrics of different approaches on IoT datasets.

Datasets
Approaches

K-means SV SWV EM CoCE WCT HFEC CSPA U-SPEC DEC IDEC VaDE GCE

KDD’99 0.6784 0.7286 0.7585 0.8083 0.7864 0.8138 0.7966 0.8291 0.8336 0.8314 0.8303 0.8624 0.9062

NSL-KDD 0.7228 0.7550 0.7863 0.8465 0.8127 0.8359 0.8260 0.8332 0.8869 0.8103 0.8522 0.8539 0.9377

AWID 0.7680 0.8032 0.8266 0.8477 0.8543 0.8307 0.8644 0.8279 0.9093 0.7968 0.8377 0.8541 0.9362

UCI-IoT 0.6593 0.7362 0.7633 0.8005 0.7634 0.7441 0.7864 0.7533 0.8351 0.7608 0.8022 0.7879 0.9073

Synthetic dataset 0.7253 0.7498 0.7758 0.7531 0.8716 0.8242 0.7826 0.8331 0.8864 0.8174 0.8206 0.8376 0.9542

Table 3: ARI metrics of different approaches on IoT datasets.

Datasets
Approaches

K-means SV SWV EM CoCE WCT HFEC CSPA U-SPEC DEC IDEC VaDE GCE

KDD’99 0.0473 0.0814 0.1255 0.3762 0.4263 0.5088 0.4207 0.2206 0.4527 0.4018 0.4290 0.4652 0.5161

NSL-KDD 0.0988 0.1339 0.1524 0.4036 0.4835 0.5231 0.4275 0.3318 0.3814 0.4364 0.4541 0.4662 0.5538

AWID 0.1548 0.1907 0.2583 0.4077 0.3590 0.3302 0.4651 0.3788 0.5007 0.4321 0.4349 0.4792 0.6145

UCI-IoT 0.1904 0.2244 0.2419 0.2163 0.2506 0.1338 0.2853 0.2527 0.3645 0.3162 0.3177 0.3203 0.4264

Synthetic dataset 0.2279 0.3775 0.4366 0.0577 0.3741 0.4559 0.6013 0.4832 0.6643 0.5506 0.5530 0.5866 0.7561
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space for clustering objective; as a result, they recog-
nize cluster patterns of these datasets more reliably
than K-means which divides clusters on raw data-
sets directly

(ii) Compared to reference clustering ensemble algo-
rithms, which produce final clustering result solely
by means of unreliable base clusterings, our GCE
model outperforms them considerably on all data-
sets. Different from these contrastive clustering
ensemble algorithms, our model not only explores
base clusterings to extract comprehensive structure
information but also integrates data characteristics
in feature space with extracted structure informa-
tion to generate effective reorganization for the data.
In this way, the unreliable partitioning in base clus-
terings can be rectified, to a certain extent. That is
why our model can easily outperform other cluster-
ing ensemble algorithms

(iii) From the experiment results, we can also find that
the GCE model achieves better clustering perfor-
mances in terms of CAR, ARI, and NMI compared
with reference state-of-the-art deep clustering algo-
rithms. The results strongly demonstrate the effec-
tiveness and superiority of our joint representation
learning strategy that integrates structure informa-
tion and data characteristics elegantly for prediction
of cluster assignments. It is worth noting that, on
most datasets, the VaDE achieves the second best
results after our model. This is mainly because these
two algorithms can recognize cluster distributions
more precisely from the random-sampled subsets
owing to the capability of generating samples. And
VaDE and GCE both utilize the GMM model to
be their classifiers, which can approximate arbitrary
distribution smoothly. Unlike the VaDE, our model

learns joint data representations that provide a pos-
itive guidance to depict the formation of clusters not
only depending on data characteristics but also
incorporating the structure information captured
from base clusterings. That is to say, the representa-
tions learned in the GCE contain richer information
about intrinsic pattern of the data. Therefore, the
GCE model outperforms VaDE

To illustrate the impact of randomness on the GCE
model, the standard deviation (std) of its running results
(CAR, ARI, and NMI) based on 10 base clustering subsets
are listed in Table 5. It can be found that the std value is
really small on each dataset. Thus, we can draw a conclusion
that the GCE model is of strong robustness to randomness.

4.4.2. Parameter Analysis. In this part, we analyze the rela-
tionship between the parameter θ and the ensemble result
of the GCE model. θ is used to control the size of neighbor
set in structure information extraction, which may make
some impacts on the construction of the affinity matrix for
data reorganization. A smaller θ will bring more samples
into the neighbor set of a given sample, and more neighbors
will involve more sufficient information giving assistance for
the cluster partitioning. However, the other side of the coin
is that inconsistent neighbors will also be more likely
included, which may introduce misguidance for the cluster
partitioning as well as additional computations. In the
experiments, we conduct the GCE model 50 times on 5 data-
sets with different values of θ. And the average results on
each dataset are shown in Figure 2. According to these
results, some notes can be found as follows. (i) The proposed
model achieves the best result 5when the parameter θ takes a
certain value, and its performance will degrade as the value
of θ gets too large or too small. That is to say, too large or
too small neighbor set may lead to a degradation of the

Table 5: Std of running results for the proposed algorithm on different datasets.

Indices
Datasets

KDD’99 NSL-KDD AWID UCI-IoT Synthetic dataset

CAR (std) 0.0179 0.0155 0.0362 0.0552 0.0328

ARI (std) 0.0208 0.0184 0.0510 0.0758 0.0559

NMI (std) 0.0126 0.0161 0.0563 0.0673 0.0624

Table 4: NMI metrics of different approaches on IoT datasets.

Datasets
Approaches

K-means SV SWV EM CoCE WCT HFEC CSPA U-SPEC DEC IDEC VaDE GCE

KDD’99 0.1457 0.1968 0.2073 0.1964 0.3750 0.4273 0.4038 0.1638 0.3647 0.3204 0.3944 0.4164 0.4742

NSL-KDD 0.1686 0.2147 0.2566 0.2773 0.3905 0.4765 0.4164 0.2664 0.4367 0.4151 0.4633 0.4846 0.5402

AWID 0.2280 0.2661 0.2764 0.5051 0.3348 0.3927 0.5229 0.3562 0.6003 0.4471 0.4533 0.4462 0.6482

UCI-IoT 0.1517 0.1843 0.1856 0.2236 0.3146 0.2504 0.3359 0.2742 0.3057 0.3316 0.3513 0.3345 0.4217

Synthetic dataset 0.2509 0.3162 0.3865 0.3374 0.4285 0.4196 0.4957 0.4152 0.6960 0.4618 0.5176 0.5504 0.7160
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clustering performance. (ii) No matter what value the
parameter θ is, the GCE model reflects more or less advan-
tages over the reference deep clustering algorithms. It dem-
onstrates that introducing structure information into
representation learning can and do enhance the ability of
capturing cluster distributions.

5. Conclusion

A novel clustering ensemble model is developed in this
paper, in order to effectively integrate data characteristics
and structure information. Different from conventional
clustering ensemble algorithms which generate the final

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.8

0.85

0.9

0.95

1

�eta

CA
R

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.4

0.5

0.6

0.7

0.8

�eta

A
IR

(b)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.5

0.6

0.7

0.8

�eta

N
M

I

KDD’99
NSL−KDD
AWID

UCI−IoT
Synthetic dataset

(c)

Figure 2: Clustering results of the GCE algorithm with different values of parameter θ: (a) CAR results; (b) ARI results; (c) NMI results.
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clustering result solely relying on potentially unreliable base
clusterings, our model produces the consensus cluster
assignment depending on both base clusterings and raw
dataset. It first exploits structure information about the data
from a set of base clusterings and then transformed the inte-
gration of data characteristics and structure information into
a graph representation learning problem by reconstructing
the data as a sample similarity graph. The learned data rep-
resentations can not only capture description of the data
from both of feature space and structure space but also be
suitable for clustering objective. Thus, the final consensus
clustering result can be responsibly acquired from it. We
conduct experiments by comparing the model with several
state-of-the-art clustering ensemble and deep clustering
algorithms on several IOT datasets. The experimental results
demonstrate the effectiveness and superiority of the pro-
posed model in contrast to the reference algorithms.

In future work, we will extend our model for more com-
plex data types and application tasks. And we also plan to
improve it to deal with super-large-scale datasets by opti-
mizing its execution mechanism.

Data Availability

The datasets used in the experiments can be acquired from
the following websites: KDD’99—http://kdd.ics.uci.edu/
databases/kddcup99/kddcup99.html; NSL-KDD—https://
www.unb.ca/cic/datasets/nsl.html; AWID—https://icsdweb
.aegean.gr/awid/; and UCI-IoT—http://archive.ics.uci.edu/
ml/index.php.
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