
Research Article
Behavicker: Eavesdropping Computer-Usage Activities through
Acoustic Side Channel

Mengqi Chen , Jiawei Lin, WeiFeng Liu, and Kaishun Wu

College of Computer Science and Software Engineering, Shenzhen University, China

Correspondence should be addressed to Mengqi Chen; chenmengqi2017@email.szu.edu.cn

Received 17 June 2022; Accepted 18 August 2022; Published 21 September 2022

Academic Editor: Pengfei Wang

Copyright © 2022 Mengqi Chen et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Computers are widely used for business and entertainment purposes throughout our modern lives. Computer kits provide a
variety of services such as text processing, programming, shopping, and gaming. Computers have greatly enhanced the quality
of our lives; however, we discover an often-overlooked fact that engaging in computer-related activities may be eavesdropped
upon by an attacker by sniffing the emitted acoustic signals from keyboard and mouse. The activity of eavesdropping via
acoustic side channel has lower requirements in terms of hardware instrumentation and is easier to implement in real-world
applications than other side channel attacks that have been presented in previous work. In this paper, we design and
implement a system, namely, Behavicker, to validate the feasibility of this kind of attack. Unlike conventional activity
recognition, Behavicker infers high-level computer-usage activities with a semantics-preserving multiscale learning scheme,
based on the recognition of basic keyboard and mouse events including left click, right click, middle click, scrolling up, and
scrolling down. Real-world experiments show that Behavicker can recognize six interaction events with an accuracy of 88.3%
and infer computer-usage activities with an accuracy of 82.7% in an indoor environment.

1. Introduction

It is still the case that desktop computers dominate office
environments despite the rapid penetration of mobile
devices. A recent survey [1] shows that desktop PCs remain
the most commonly used office facility for online shopping,
communicating, document editing, etc. Consequently, desk-
tops contain increasing personal information of users, of
which even computer-usage activities reflect users’ privacy.
Traditional privacy eavesdropping methods require instal-
ling malicious software on target desktops which can be eas-
ily detected and blocked. However, researchers have revealed
some more imperceptible eavesdropping attacks in recent
days which steal private information during using desktops
with various sensors such as microphone [2] and magnetic
sensor [3]. Most of them focus on recognizing keystrokes
and infer the input contents of an attacker [2–4]. Different
from them, we investigate another unexplored eavesdrop-
ping method which infers computer-usage activities on a
desktop from the audio recorded by a smartphone placed
nearby. Specifically, we consider such a practical attack sce-

nario, in which a hacked smartphone is placed near a desk-
top and continuously records acoustic signals induced by a
user’s interactions with the desktop via a keyboard and
mouse. With the acoustic signals transmitted to and ana-
lyzed on a sever, the attacker is able to know what programs
and services the victim is using in real time.

Someone may wonder what benefits can an attacker
obtain from such a kind of eavesdropping, especially consider-
ing that previous works can infer keystrokes [2–4]. We admit
that keystroke recognition can obtain more fine-grained infor-
mation compared with our high-level computer-usage activity
eavesdropping. Nevertheless, it is rather difficult to identify
valuable information from a large amount of keystroke
sequences without knowing what specific programs or ser-
vices the target is using. For example, when an attacker wants
to eavesdrop the user name and password of a target’s bank
account, it is labour-intensive to extract corresponding infor-
mation hidden in long sequences. Therefore, computer-usage
recognition makes the attack scheme more threatening. Such
high-level recognition can be the prior process of the attack
workflow. Filtering out unwanted information reduces the

Hindawi
Wireless Communications and Mobile Computing
Volume 2022, Article ID 8090652, 18 pages
https://doi.org/10.1155/2022/8090652

https://orcid.org/0000-0002-4159-7478
https://orcid.org/0000-0003-2216-0737
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/8090652

difficulty and increases the efficiency of eavesdropping. Fur-
ther, not only did we consider keystrokes but also mouse
clicks.

Based on the above, this paper proposes Behavicker, an
acoustic side channel eavesdropping system that monitors
common computer-usage activities such as texting, gaming,
and web browsing. Different from conventional activity rec-
ognition methods, we decompose an high-level computer-
usage activity into six low-level meta events including key-
stroke, left click, right click, middle click, scrolling up, and
scrolling down. Our insights are twofold. For one thing, all
the human-computer interaction activities are composed of
part of the above events but differ from each other in the dis-
tribution patterns. For example, text processing involves the
use of a substantial number of keys, whereas web browsing is
likely to rely primarily on mouse clicks. It is feasible to dis-
tinguish different computer-usage activities based on event
distributions. For another thing, the mechanical design of
keyboards and mice results in distinct acoustic properties
associated with interaction events, which makes it possible
to recognize meta events.

However, in order to realize such an idea, we need to deal
with the following two key challenges. First, as it is nearly
impossible to get labeled training data from a target, it is chal-
lenging to design an accurate classification model. To handle
this, we propose an iterative model adaptation method in the
learning process which feedbacks samples with high confi-
dence output by an initial inaccurate classification model, in
order to boost the model gradually. Second, considering the
diversity of desktop applications and hardware, it is difficult
to devise a feasible framework for computer-usage activity rec-
ognition. We design a hierarchical learning scheme to distin-
guish different computer-usage activities. In the first layer,
we classify the acoustic recordings into six basic interaction
events. In the second layer, we design a tree-structured classi-
fier to identify different computer-usage activities from basic
interaction events via time-series analysis.

We implement Behavicker with different keyboard and
mouse pairs and conduct comprehensive evaluation in various
settings. Our experiments reveal that Behavicker can recognize
the aforementioned sixmeta events with an accuracy of 88.3%
without any training samples from a target at the beginning.
More importantly, Behavicker can identify seven different cat-
egories of computer-usage activities including instant messag-
ing, programming, text processing, gaming, reading, online
shopping, and designing with an accuracy of 82.7%, by analyz-
ing the temporal distribution of meta events. In a summary,
our contribution includes the following:

(i) An acoustic side channel is first used to demonstrate
the eavesdropping of desktop computer-related activ-
ity. Specifically, we have designed acoustic processing
schemes, keyboard, and mouse interaction-event rec-
ognition schemes and computer-usage activity recog-
nition schemes appropriate for eavesdropping

(ii) To evaluate the effectiveness of our proposed eaves-
dropping scheme, we implement Behavicker on
commodity devices and conduct extensive real-

world experiments with 20 participants on 5 pairs
of keyboards and mice in 3 indoor environments.
The experimental results have shown that it is possi-
ble to recognize up to 88.3% of 6 user interaction
events in real-world office environments and 82.7%
of seven computer-usage tasks

In the rest of this paper, we review related work in
Related Work, present the scope and overview of Behavicker
in Overview, and introduce its detailed design in Acoustic-
Based Interaction Event Recognition and Computer Usage
Recognition. Evaluation presents the evaluations, and finally,
we conclude this work in Conclusion.

2. Related Work

2.1. Computer Eavesdropping via Side Channels. There are
many potential side channels to eavesdrop computer con-
tents or usage, including electromagnetic [5, 6], optical [7,
8], vibrational [9, 10], and acoustic [2, 4, 11–13]. Eavesdrop-
ping via electromagnetic and optical emanations needs spe-
cialized equipment [14]. In contrast, vibrational and
acoustic side channels are viable on commodity smart
devices [2, 4, 9–13]. For instance, Marquardt et al. [10]
and de Souza Faria et al. [9] make use of commercial accel-
erometers to sense vibrations of pressing keys and decode
text input via a nearby keyboard or ATM keypad. Asonov
et al. [11] observe that the sound of keystrokes differs from
key to key and build a supervised learning model to recog-
nize keystrokes. A series of following studies are then pro-
posed to snoop keyboard input via acoustic side channels,
by combining different techniques such as time difference
of arrival (TDOA) [2–4], the language model [13], and a dic-
tionary model [12]. Our work is inspired by previous efforts
on acoustic side channels. In comparison, rather than focusing
on locating which keystroke a user is typing, this work is
aimed at inferring high-level semantic computer-usage activi-
ties from keystroke, mouse clicking, and mouse scrolling pat-
terns. It makes previous work easier for an attacker to further
extract wanted information from target activities compared to
a large amount of unlabeled keystroke sequences.

2.2. Acoustic Sensing with Smartphones. The built-in micro-
phone of smartphones has been used to perceive more than
human speech. Researchers have exploited it to sense various
nonspeech activities including but not limited to food intake
[15], tooth brush [16], sleep [17], and breath-related symp-
toms [18]. For instance, Hao et al. [19] and Gu et al. [17]
use built-in microphone of a smartphone to detect sounds
caused by activities during sleep and assess the quality of
sleep. Ren et al. [20] achieve fine-grained sleep monitoring
by detecting breathing rates and sleeping events with smart-
phone earphones. Lu et al. [21] propose a scalable frame-
work for classifying sound events on smartphones.
Similarly, sound can be used to analyze the performance of
tooth brush [16] and food intake [15]. SymDetector [18]
detects sound-related respiratory symptoms occurred in a
user’s daily life, including sneeze, cough, sniffle, and throat
clearing. StressSense [22] recognizes human stress

2 Wireless Communications and Mobile Computing

unobtrusively from voice using smartphones. [23] makes use
of Doppler effect to sense gestures and achieve interaction
between devices. Our work also tries to recognize nonspeech
activities via acoustic sensing. In particular, we design
proper audio processing pipelines to detect, segment, and
identify 6 user interaction events with keyboards and mice
for computer-usage activity tracking.

3. Overview

We aim to recognize computer-usage activities in an office
environment by analyzing patterns of user interface events
such as keystrokes and mouse clicks, which can be perceived
by microphones via acoustic sensing. This work serves as a
feasibility study on the potential privacy leakage of computer
usage (e.g., either the user is working or gaming) caused by
an acoustic side channel (e.g., the microphone of a smart-
phone placed near the computer in use).

3.1. Computer-Usage Activities. Since exhaustive coverage of
all computer-usage activities is impossible, we restrict our
scope to 7 categories of computer usage covering 20 computer
software (In the rest of this paper, we regard activities with dif-
ferent software to be different activities, even though they
belong to the same category.) as a feasibility study. The 18 soft-
ware are selected based on a questionnaire survey from 150
college students and staffs (56 females and 94 males, aged 20
to 47) in our department. The participants were asked to list
30 most frequently used computer software in their daily life.
We list 18 most frequently mentioned software and classify
them into 7 computer-usage activities below. The numbers
in the bracket represent the number of participants who list
the software as “commonly used in daily life” in the survey.

(i) Instant messaging: WeChat (M1, 150); QQ (M2,
120); Jingdong Chat (M3, 150); and Taobao Chat
(M4, 130)

(ii) Programming: Java programming with Eclipse (P1,
123) and Python programming with PyCharm (P2,
118)

(iii) Text processing: Microsoft default notepad (T1,
106) and Microsoft Word (T2, 150)

(iv) Gaming: Tetris (Ga1, 98); Dino Runner (Ga2, 87);
Landlord (Ga3, 102); and Plants vs. Zombies (Ga4,
110)

(v) Reading: News on Baidu (R1, 88); Novels on Qidian
(R2, 90); and Comics on Netease (R3, 102)

(vi) Online shopping: Jingdong (S1, 150) and Taobao
(S2, 145)

(vii) Designing: Photoshop (D1, 81)

We make two notes on the survey results and the catego-
ries of computer-usage activities. (i) We focus on users of the
Windows operating system because it dominates the desktop
operating system in market [24]. (ii) Jingdong and Taobao
listed in the online shopping category are popular online

shopping platforms in China. They both provide instant
messaging functions, i.e., Jingdong Chat and Taobao Chat.
In this work, we separate the instant messaging activities
during online shopping and other online shopping activities
such as browsing products.

3.2. User Interaction Events. We focus on 6 common user
interaction events with the keyboard and the mouse, includ-
ing keystrokes (KS), clicking left mouse button (i.e., left click,
CLM), clicking right mouse button (i.e., right click, CRM),
scrolling mouse wheel up (i.e., scrolling up, SWU), scrolling
mouse wheel down (i.e., scrolling down, SWD), and clicking
mouse wheel (i.e., middle click, CMW). Behavicker tries to
distinguish these 6 events for two reasons.

(i) Since desktop users mainly use the keyboard and the
mouse to interact with the computer, most
computer-usage activities involve some of the user
interaction events above. Furthermore, it is possible
to distinguish different computer-usage activities
from the temporal patterns of these interaction
events because different categories of computer-
usage activities differ in the interaction logics

(ii) Due to the differences in material and mechanics,
these interaction events tend to generate sounds that
exhibit distinctive characteristics. Thus, it is possible
to differentiate these events via acoustic sensing

3.3. Behavicker Overview. Behavicker consists of two func-
tional modules, acoustic-based interaction event recognition
and computer-usage recognition. At a high level, Behavicker
collects acoustic signals via microphones and detects and
recognizes the 6 interaction events. Sequences of user inter-
action events are then analyzed to identify different catego-
ries of computer-usage activities.

Figure 1 shows the overall data processing architecture
of Behavicker. The acoustic-based interaction event recogni-
tion module applies single processing and machine learning
techniques catered for keyboard and mouse interaction-
induced sounds. The raw acoustic streams are first prepro-
cessed to remove noises and improve the signal-to-noise ratio
(SNR). Then, an adaptive threshold scheme is adopted to seg-
ment acoustic events of interests. Finally, a tree-structured
classifier is trained to identify different keyboard and mouse
interaction events. Since the labeled data in an eavesdropping
setting are usually limited, a model adaptation scheme is pro-
posed to boost the training of the classifier with limited labeled
data. The computer-usage recognition module takes the
streams of keyboard and mouse interaction events as input
and applies a hierarchical classifiers to distinguish different
computer-usage activities via time-series analysis. As next,
we elaborate on the details of each module in sequel.

4. Acoustic-Based Interaction
Event Recognition

This section explains how Behavicker processes raw acoustic
signals to detect and identify common keyboard and mouse
interaction events.

3Wireless Communications and Mobile Computing

4.1. Interaction Event Detection

4.1.1. Audio Preprocessing. The aim of preprocessing is to
filter out band noise and improve the SNR of the audio
signals of interest. Since we focus on detecting keyboard
and mouse interaction events in typical office environ-
ments, we first investigate the spectrum of these events
and common interference in office environments. Specifi-
cally, we recorded audio signals of six interaction events
and three kinds of external noise including background
noise, human speech, and playing music with computers,
using Galaxy Note 5 at a sampling rate of Fs = 44:1 kHz.
Each kind of acoustic events is recorded for a total period
of 5 minutes. The audio signals are framed using a 100ms
Hanning window with 50% overlap and thus produce
6000 samples for each acoustic event and external noise.
Following this, we compute their respective cumulative
energy distribution and obtain the results as shown in
Figure 2. As is shown, the energy of events signals is cen-
tered within frequency range of [5,17] kHz, while the
energy of external noises is centered below 5kHz. As a
result, to filter out-of-band noise, we apply a 3-order But-
terworth bandpass filter of a pass band of [5,17] kHz. To
suppress in-band noise, we further apply cepstral mean

normalization (CMN) [16] on the audio frames. Figure 3
shows the spectrograms of an example audio frame after
bandpass filtering and CMN, respectively.

4.1.2. Event Detection and Segmentation. After preprocess-
ing, the next step is to detect an event as well as its start
and end points. However, it is not straightforward to cor-
rectly detect events using conventional thresholding method
due to complex environment. In this paper, we make use of
constant false alarm rate (CFAR) [25] method combining
with blind segmentation to detect start and end points of
each event. Essentially, CFAR is an energy-based adaptive
thresholding method which adapts threshold value accord-
ing to levels of external interference. Specifically, a sliding
window of width W moves along the signal sequence SðiÞ
(i is the sample index). Let us assume that the power of
remaining noise follows a Gaussian distribution. The aver-
age and standard deviation of signal power at sample index
i are μðiÞ and σðiÞ, respectively. Consequently, the average
signal power within a sliding window is calculated by

μ ið Þ = 1
W

A ið Þ + 1 −
1
W

� �
μ i − 1ð Þ, ð1Þ

Framing Windowing Denoising Segmentation

Coarse-layer feature extraction, model training and
coarse events classification

1. Scrolling wheel up
2. Scrolling wheel down

Intra-group feature extraction, model training and intra-
group classification

Scrolling
up

 Sample pool

Model adaptation

Sequence of meta events
along timeline

Audio
Stream

Confidence
thresholding

Confidence
thresholding

 Sample pool

1. Click left mouse
2. Click right mouse

1. Keystrokes
2. Click mouse wheel

Left click Keystroke Clicking
wheel

Right click

Semantics-preserving multi-scale behavior recognition

Scrolling
down

Figure 1: The system architecture of Behavicker.

4 Wireless Communications and Mobile Computing

where μð0Þ = 0 and AðiÞ represents the cumulated power of
signals in a window calculated by

A ið Þ = 1
W

〠
W+i

k=i
S kð Þj j2: ð2Þ

Similarly, the standard deviation at sample index i is
obtained by

σ ið Þ = 1
W

B ið Þ + 1 −
1
W

� �
σ i − 1ð Þ, ð3Þ

where BðiÞ represents the overall standard deviation of signal
power within a sliding window calculated by

B ið Þ =
ffi
1
W

〠
W+i

k=i
S kð Þj j2 − A kð Þ� �2

vuut : ð4Þ

Based on the above equations, a potential start point SðiÞ
can be determined if

S ið Þj j2 > μ ið Þ + γ1σ ið Þ, ð5Þ

where γ1 is a constant parameter that is independent of
noise level. Similarly, an end point is detected if

S ið Þj j2 < γ2�μ, ð6Þ

where γ2 is also a constant parameter dependent of noise
level. �μ is the average noise power when there is no input.
In our design of Behavicker, γ1 and γ2 are empirically set
to be 2 and 40, respectively. After detecting a start point Sð
kÞ, we blindly extract a segment of fixed sample length L =
16000 in the range of ½SðmÞ, SðnÞ� = ½k − 1000, k + 15000�.
This length corresponds to a sampling period of 36.3ms.
This value is empirically determined based on the statistics
of 600 events duration as shown in Figure 4. The result indi-
cates that the maximum event duration is less than 30ms for
all six kinds of interaction events. Taking variations in realis-
tic scenarios. we slightly relax this value and set it to be Fs
× 36:3ms corresponding to 16000 samples. After blind
extraction, we apply CFAR algorithm on extracted segment
in two directions, one from SðmÞ to SðnÞ to find out the first
end point (fist red point from left to right in Figure 5) and
the other from SðnÞ to SðmÞ to find out inverse start point
(the second red point from left to right in Figure 5). By doing
this, we can remove irrelevant samples and extract event

50 100 150
Time (ms)

0

5

10

15

20

 F
re

qu
en

cy
 (K

H
z)

–30

–20

–10

0

(a) The spectrogram after filtering

0

5

10

15

20
 F

re
qu

en
cy

 (K
H

z)

50 100 150
Time (ms)

0

2

4

6

8

10

(b) The spectrogram after CMN

Figure 3: Spectrograms of an audio frame after (a) bandpass filtering and (b) cepstral mean normalization.

Frequency (Hz) × 104

0 0.5 1 1.5 2

 C
D

F

0

0.2

0.4

0.6

0.8

1

 CLM
 CRM
 CMW

 SWD
 SWU
 KS

(a) The CDF of signal energy of interaction events

Frequency (Hz) × 104

0 0.5 1 1.5 2

 C
D

F

0

0.2

0.4

0.6

0.8

1

 BG noise
 Human speech
 Music

(b) The CDF of signal energy of external noises

Figure 2: The results of primary experiments which show cumulative energy distributions of interaction events and external noises,
respectively.

5Wireless Communications and Mobile Computing

signal more correctly. The results of event detection and
extraction are displayed as well in Figure 5. In a summary,
the event detection algorithm can be summarized in
Algorithm 1.

4.2. The Rationale of Hierarchical Learning Scheme. After
signal preprocessing, the data is fed into the hierarchical
event recognition layer as shown in Figure 1. It is worthy
to think over such a question: Why we need to design such
a hierarchical scheme instead of directly training a single
support vector machine [26] to recognize meta events? Here,
we denote a single SVM classifier as single-layer scheme and
hierarchical architecture as multilevel scheme. We give some
explanations on the choice of multilayer event detection
scheme. First, it achieves better performance compared with
single-layer scheme in experiments. We test performances of
two learning schemes in cross-person scenario where the
model is trained and tested with data from the attacker
and target, respectively. Experimental results are shown in
Figure 6. As we can see, the average accuracy of recognizing
interaction events in single-layer method is about 70.6%
which is about 16.0% lower than that of multilayer scheme.
For scrolling wheel, the recognition accuracy is especially
low in single-layer method. Second, it is reasonable for mul-
tilayer scheme to perform better since features of interaction
events are extracted in a more careful way. In multilayer
scheme, feature extraction and model training are conducted
in a group-specific way, which is helpful to boost the perfor-
mance of event recognition.

4.3. Event Classification in Coarse Layer. As demonstrated
above, our goal in the first layer is to divide interaction
events into three categories. Based on the observation of sig-
nals as shown in Figure 5, we find that some interaction
events have similar signal pattern. For example, the signal
pattern of keystroke and clicking mouse wheel having a large
fluctuation follows with a small fluctuation (Figure 5(a)). For
clicking left and clicking right mouse button, a large fluctu-
ation follows with other large fluctuation (Figure 5(b)).
For scrolling mouse wheel up and down, the large fluctu-
ation is within small fluctuation (Figure 5(c)). Therefore,
we group clicking left mouse button (CLM) and clicking
right mouse button (CRM) as G1, keystroke (KS), and
clicking mouse wheel (CMW) together as G2, and scrol-
ling mouse wheel up (SWU) and down (SWD) as G3. In
the following, we introduce how we construct a classifica-
tion model in this layer.

4.3.1. Feature Selection. As shown in Figure 5, signals of
clicking events including KS, CMW, CLM, and CRM con-
tain two parts which correspond to press and release stages,
respectively. Since the features that we extracted are closely
related to the press stage, it is required to pinpoint the press
segment in a whole signal sequence. To do this, we apply
CFAR method on the extracted signal sequence and find
out the first endpoint which is also the endpoint of press
stage as shown in Figure 5 marked by the first red point.
For the sake of convenience, we denote the segments
between start point and first endpoint as S1 and the whole

signal sequence as S. However, it is noted that for SWU
and SWD, their signals last continuously and present a sin-
gle stage during the whole event, which indicates that S1 is
exactly the same as S. For the convenience of narration, we
let SðiÞ with i = 1, 2,⋯,N denotes whole signal sequence of
an event and S1ðiÞ with i = 1, 2,⋯, n represents the press seg-
ment. We also define energy sequence EðiÞ with i = 1, 2,⋯
,N to be the square of original signal sequence. The statistics
of average energy ratio of all interaction events with 600
samples is shown in Figure 7. To construct an efficient clas-
sification model, we first extract 5 features including maxi-
mum, mean, minimum, range, and standard deviation, on
both original signal and energy sequences, respectively.
Through this operation, we can obtain 10 features for a
interaction event segment, denoted by Smax, Emax, Smean,
Emean, Smin, Emin, Srange, Erange, Sstd, and Estd. We also define
two customized features based on our analysis on obtained
signals as follows.

(i) Energy ratio (Eratio): it describes the energy ratio of
segment to the energy of a whole signal sequence.
It is mathematically defined as

Eratio =
∑n

i=1S
2
1 ið Þ

∑N
i=1S

2 ið Þ
ð7Þ

(ii) Time duration (TD): it represents the duration of
signal segment between first pair of start and end
point and is defined by

TD =
1
Fs

S1 nð Þ − S1 1ð Þð Þ ð8Þ

As a result, we obtain a total number of 12 features for
each interaction event sample. For the sake of performance
and efficiency, we perform feature selection with wrapper
methodology in order to pick out a feature subset that helps
classify interaction events accurately and efficiently. Gener-
ally, the wrapper methodology relies on the prediction per-
formance of a given machine learning to assess the
usefulness of feature subsets [27]. However, there are two
problems to be solved in order to apply this methodology.

Time (ms)
0 5 10 15

of

 sa
m

pl
es

0

50

100

150

200

Figure 4: The statistics of time duration of all interaction events
with 600 samples.

6 Wireless Communications and Mobile Computing

For one thing, searching the global optimal feature subset is
a NP-hard problem and becomes quickly computationally
intractable when the number of candidates features
increases. In our case, there are a total number of 212 − 1
possible feature combinations which make it extremely
exhausting to test each of them. To handle this, we apply a

forward selection strategy in which features are progressively
incorporated into increasingly larger subsets until all the fea-
tures are added. The other problem is to choose an appropri-
ate machine learning method to assess the effectiveness of
feature combinations. As we utilize SVM as our classification
model, we take it as the black box embedded in wrapper

 A
m

pl
itu

de

–0.5

0

0.5

 A
m

pl
itu

de

–0.5

0

0.5

Press Release
Whole event

Start point Press end point
End point

Press Release
End point

Start point
Whole event

Press end point

Sample index ×104

0 0.5 1 1.5 2 2.5

KS

Sample index ×104

0 0.5 1 1.5 2 2.5

CMW

(a) Signals of keystroke (KS, top) and clicking

mouse wheel (CMW, bottom)

Press Release
Whole event

End point
Press end pointStart point

press release
whole event

start point
end point

press end point

 A
m

pl
itu

de

–0.1

0

0.1

Sample index ×104

0 0.5 1 1.5 2 2.5

CRM

 A
m

pl
itu

de

–0.1

0

0.1

Sample index ×104

0 0.5 1 1.5 2 2.5

CLM

(b) Signals of clicking left (CLM, top) and right mouse

buttons (CRM, bottom)

 A
m

pl
itu

de

–0.02

0

0.02

 A
m

pl
itu

de

–0.01

0

0.01

End pointsStart point

Whole event

Start point End points

Whole event

Sample index ×104

0 0.5 1 1.5 2 2.5

SWU

Sample index ×104

0 0.5 1 1.5 2 2.5

SWD

(c) Signals of scrolling mouse wheel up (SWU, top) and down (SWD, bottom)

Figure 5: The results of event detection with modified CFAR performed on signal sequences of six basic events, namely, KS, CMW, CLM,
CRM, SWU, and SWD.

Input: clean audio signal sequence S, constant parameters γ1 and γ2
Output: event segments ES, event start point esp, press(first) end point pep, event(release) end point eep,

1 W ⟵ FrameSigðSÞ; framing the signal as windows sequence W with step equal to 1;

2 while Sð++iÞ ≠NULL do

3 update μðiÞ, δðiÞ and �μ, based on Equation(1)~Equation (4);

4 if jSðiÞj2 > μðiÞ + γ1δðiÞ then
5 sig = Sði − 1000 : i + 15000Þ; ==Blindly segment the signal into equal length as signal sig;

6 forward to find pep that satisfied jSðpepÞj2 < γ2�μ;

7 sig = reverseðsigÞ;
8 find inverse start point as eep on the reversed signal sig

9 ES = S(i-1000:eep+1000);

10 return ES, esp, pep;

11 end

12 end

Algorithm 1: Event detection.

7Wireless Communications and Mobile Computing

methodology. As a result, our feature selection in coarse
layer works as follows. For the total samples after prepro-
cessing on raw data, we run forward selection method and
test classification performance on each feature subset with
10-fold cross-validation. This process halts when all features
are incorporated into a whole set. To reduce bias, we ran-
domly run this process for 5 times and integrate all results
to perform final feature selection. We have displayed the
top 10 subsets with highest accuracies in feature selection
process in Figure 8(a). As we can see, the feature subset F1
consisting of Estd, Eratio, and TD achieves optimal perfor-
mance considering accuracy and efficiency (i.e., number of
features). For feature subsets achieving comparable accura-
cies (i.e., less than 3% difference), we give preference to the
one with less features; otherwise, we choose the one with
high accuracy. To visualize the effectiveness of selected fea-
tures, we plot data points of events in the feature space as
shown in Figure 9. It is clear that selected features can effec-
tively partition the data points into three groups with
hyperplanes.

4.3.2. Model Training. After feature extraction, we train a
SVM model with radial basis function (RBF) kernel using
samples collected from the attacker. Compared with other
classification models, SVM outperforms with its simplicity
and lightweight computational overhead. As a result, it is
widely used in classification, regression, and other learning
tasks. In Behavicker, we make use of libSVM library and
the implementation of “one-vs.-one” (OvO) approach for
multiclass classification. To be noted, it is also feasible to
implement “one-vs.-all” (OvA) since it achieves comparable
performance with OvO. In OvO scheme, for k classes, total
ðk × ðk − 1ÞÞ/2 classifiers need to be trained, those trained
classifiers would be used to predict the test data, and the test
samples would be classified into the class with maximum
votes. In order to obtain optimal performance, we carefully
tune critical parameters of RBF kernel including C and γ
by performing a grid search within ranges of 2−4 ≤ C ≤ 212
and 2−8 ≤ γ ≤ 24. C controls the cost of misclassification on
the training data and γ can be seen as the inverse of the
radius of influence of samples selected by the model as sup-

port vectors. The parameter tuning results are shown in
Figure 10.

4.4. Intragroup Event Classification. After grouping interac-
tion events in coarse layer, we following conduct intragroup
events classification, e.g., recognizing events individually
within a group. To achieve this, we follow a similar routine
with events classification in coarse layer, that is, feature
selection and model training. But it is slightly different from
previous stage that these two measures are conducted specif-
ically for each group, since interaction events within different
groups possess unique characteristics. In a whole, we first
extract a universal set of features which includes Mel-
frequency cepstral coefficients (MFCCs), average of top k
RMSs (ATR), λth-percentile spectral rolloff (SR), spectral
flux (SF), spectral centroid (SC), spectral entropy (SE), and
autocorrelation coefficients (AC). Our considerations about
extracting these features are twofold. First, they reflect char-
acteristics of the signal from different domains including
time domain, frequency domain, and cepstrum domain. As
a result, they can be utilized to do classification effectively.
Second, these features have been widely utilized for acoustic
signals-based classification problems and proved to be effec-
tive. We borrow the idea from previous works and adjust it
to fit for our problem. Due to limited space, we omit the
detailed definitions and explanations of these features here
and kindly refer interested readers to literature [18].

After feature extraction, we follow the same feature
selection methodology as described in coarse-level event
classification and obtain classification accuracies of three
groups with different feature subsets. The results are shown
in Figures 8(b)–8(d)for G1, G2, and G3, respectively. We
can obtain several valuable observations from the results.
First, different groups have different optimal feature subsets,
namely, G1 with F10 consisting of MFCCs and ATR, G2
with F10 consisting of MFCCs, SR, and SF, and G3 with
F9 consisting of MFCC and SC. The underlying reason is
that acoustic events belonging to different groups are pro-
duced from separate mechanisms. In order to distinguish
them with optimal performance, event-specific features are

Interaction events
KS CLB CRB CMW SWD SWU

A
cc

ur
ac

y
(%

)

20

40

60

80

100

Single-layer

Multi-layer

Figure 6: Performance comparison of single and multilayer
schemes.

0 5 10 15 20 25 30 35 40 45
of press segment

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

En
er

gy
 ra

tio

KS
CLM
CRM

CMW
SWD
CWU

Figure 7: The statistics of average energy ratio of all interaction
events with 600 samples.

8 Wireless Communications and Mobile Computing

preferred. Second, different groups possess varied accuracies,
among which G3 achieves the lowest accuracy. Intuitively,
this is because the energy of signals produced by SWU and
SWD are relatively small which makes the signals easy to
be interfered by noises and hard to be differentiated. This
will be verified and further explained in Evaluation section.
After feature selection, we train a SVM model and tune
parameters for each group following the same routine as
aforementioned.

4.5. Model Adaptation. As aforementioned, a main challenge
of Behavicker is that we cannot obtain labeled training data
from the eavesdropping target. An alternative way to solve
this problem is to train a learning model with samples col-
lected from the attacker itself. However, due to personalized
styles of using mouse and keyboard, the distribution of data

points in feature space varies from person to person. As a
result, the model trained with the attacker’s data is not pow-
erful enough to predict activities of a target. To get a clear
idea about this, we have conducted experiments for compari-
son in two different scenarios, namely, identical-person and
cross-person scenarios. In the former case, interaction events
are recognized with a SVM model trained and tested on the
same person. In contrast, events are recognized with themodel
trained and tested on data of different persons in the cross-
person scenario. The experimental results are shown in
Figure 11. As we can see, the average accuracy of event recog-
nition in cross-person scenario is only about 82.3% which is
about 5.4% lower than that of identical scenario. Due to the
dependence of behavior recovering in the following step, it is
required to further improve the performance.

To achieve this goal, we subtly design an iterative model
adaptation scheme in the learning process which is similar to
incremental learning technique in machine learning. As
introduced in Overview, the key idea of model adaptation
is to feedback samples of target with labels assigned by

Feature sets

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

A
cc

ur
ac

y
(%

)
0

50

100

G1

G2

G3

(a) Top 10 subsets of features and their corresponding accuracies in coarse layer

Feature sets

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

A
cc

ur
ac

y
(%

)

50

60

70

80

90

100

(b) Top 10 subsets of features and corresponding accuracies in G1

Feature sets

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

A
cc

ur
ac

y
(%

)

50

60

70

80

90

100

(c) Top 10 subsets of features and corresponding accuracies in G2

Feature sets

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

A
cc

ur
ac

y
(%

)

50

60

70

80

90

100

(d) Top 10 subsets of features and corresponding accuracies in G3

Figure 8: The classification accuracies of different feature subsets during feature selection process at different layers and for different groups.
It is noted that features contained in subsets from F1 to F10 vary in different subfigures.

60

Time duration

40
20

00
0.1

Energy std

0

0.5

1

0.2

En
er

gy
 ra

tio

CLM + CRM
SWU + SWD
KS + CMW

Figure 9: The distribution of data points in the selected feature
space.

24
2–2

2–82–4
24

212

40

60

80

100

A
cc

ur
ac

y
(%

)

𝜎
𝛾

Figure 10: An example of parameter tuning in SVM model.

9Wireless Communications and Mobile Computing

classification procedure to the original training data set.
However, a critical problem is how we can obtain the exact
labels of samples without target’s active involvement, since
labels assigned by classification model are with uncertainty.
To resolve this problem, we utilize a metric of confidence
which implies the certainty of classification result for each
sample to help select feedback samples. Specifically, we select
samples classified with high confidence to feedback to the
original training data set. The rationale is based on such an
insight that although people show varied patterns of per-
forming mouse and keystroke events, there still exist com-
mon patterns as indicated by the results in cross-person
scenario in Figure 11. As a result, samples classified in
cross-person scenario with high confidence indicate exact
categories with high probability. Mathematically, the confi-
dence score is determined by the distance between a sample
point and the hyperplane as follows [28]:

Pr class ∣ inputð Þ = Pr y = 1 ∣ xð Þ y = 1 xjð Þ ≈ PA,B f xð Þð Þ
=

1
1 + exp Af xð Þ + Bð Þ ,

ð9Þ

where f ðxÞ = hðxÞ + b represents the decision function of
a SVM model. By determining parameters of A and B, it is
capable of obtaining the confidence score of each sample
after its label is assigned by the model. In the implementa-
tion of Behavicker, we feedback classified samples with con-
fidence score above a certain threshold δ (δ = 0:70 in
Behavicker) and delete the same number of samples at the
same time. After that, the model is retrained on the updated
data set. To reduce overhead, the model adaptation proce-
dure is performed by batch of samples. In Behavicker, we
update the model with a collection of 10 samples each time.
Figure 11 also shows the effect of model adaptation. It is
clear that the accuracy of interaction event recognition is
nearly the same as that of identical-person scenario after
model adaptation, which indicates the effectiveness of this
technique.

5. Computer-Usage Recognition

The previous parts enable us to obtain an interaction event
sequence, which can be denoted by Linf = <e1, e2,⋯, ei,⋯
> , where ei represents a certain keyboard and mouse event
identified in Acoustic-Based Interaction Event Recognition.
Considering a certain time resolution Δt, the sequence Linf
reduces to L = <e1, e2,⋯, ei,⋯, en > . This section introduces
how Behavicker recognizes the computer-usage activities
defined in Overview from such an event sequence L.

We propose to apply a tree-structured classifier to recog-
nize different computer-usage activities from interaction
events with keyboard and mouse. Despite its simplicity, a
tree-structured classifier is able to model and interpret the
differences in the interaction logics of various computer soft-
ware, which is the core idea to distinguish computer-usage
activities from keyboard and mouse interaction events. At
different tree levels, we use different metrics to differ
computer-usage activities. Figure 12 illustrates the tree struc-

ture of the classifier as well as the metrics and rules at each
tree level. Before going deep into how it works, we introduce
some notations by referring to Figure 12.

(i) Gi
j: the jth activity group (i.e., rectangles in

Figure 12) at the ith layer from left to right

(ii) Ri
j: the jth rule at the ith layer from left to right

(iii) G1
1 represents the considered event sequence within

time resolution Δt

Specifically, we first categorize the 7 computer-usage
activities with 18 software as either keyboard-dominant or
mouse-dominant. We use the ratio between frequencies of
keyboard and mouse events (KMR) as the metric.
Figure 13(a) shows the KMRs in different computer-usage
activities with software.

For example, text processing usually involves more key-
board interaction events (i.e. keystrokes) than online read-
ing. Then, we differ computer-usage activities based on the
change frequency of interaction events, calculated by the
event switch rate (ESR). Given a user interaction event
sequence L = <e1, e2,⋯, en > , ESR is defined as mean of
the absolute ΔL which describes the change rate of interac-
tion events. Figure 13(b) shows statistics of ESRs of different
computer-usage activities. For instance, text processing, e.g.,
is likely to involve mainly keystrokes while online shopping
may be mixed with keystrokes (e.g., input keywords to
search products) and mouse events (e.g., clicks to select
products and scrolls to go through product details). Finally,
we further differentiate computer-usage activities according
to temporal features including the mean duration of actions
within the time window (MDA), where an action is a cluster
of events with consecutive gap smaller than 10 s, and the gap
between events (GBE), which is the mean of time intervals
between consecutive interaction events.

Figure 13(c) illustrates the differences in MDA and GBE
with examples. For example, chatting with sellers on Jing-
dong has lower MDA than chatting on Weixin since users

Interaction events
KS CLB CRB CMW SWD SWU

A
cc

ur
ac

y
(%

)

40

60

80

100

Cross-person

Identical-person

Adaptive scheme

Figure 11: Performance comparison of cross- and identical-person
scenarios.

10 Wireless Communications and Mobile Computing

need to wait longer for response in the former cases. Text
processing has smaller GBE than Diano Runner. We also
use left click frequency (LCF) which is defined as the num-
ber of clicking left mouse over the considered time duration,
keystroke frequency (KSF) which is defined as the number of
keystrokes over the considered time duration, and scrolling
up rate (SUR) which is defined as the ratio of scrolling up.

We apply the following method to determine the thresh-
olds of the rules at each branches. To decide a threshold for a
metric at a rule node (i.e., diamond in Figure 12), we first
obtain the distributions of 5 samples belonging to the chil-
dren nodes on this metric. Then, the threshold is empirically
determined by averaging the first quartile of the distribution
of one child and the third quartile of the distribution of the

Text Word Tetris Dino
runner

Gaming

Java Python

Programming

Wechat QQ JD_chat TB_chat

JD Taobao

Shopping Reading

News Novels Comics

PS

Gaming

Landlord Plants
VS Zombies

Instant messaging

Wechat QQ JD_chat TB_chat Java Python

Programming

Text Word

Text processing

Tetris Dino
runner

Gaming
JD Taobao

Shopping Reading

News Novels Comics PS

Gaming

JD_chat TB_chat Java Python

Programming

Text Word Tetris Dino
runner

JD Taobao
Shopping

Wechat QQ Landlord Plants
VS zombies

Platform-basedNon-platform

News Novels Comics

PSJD Taobao News Novels Comics

Shopping Reading

Landlord Plants
VS zombies

Designing

Designing

Gaming

Dino
runner Tetris News Novels Comics

Reading

Interaction events sequence

KMR

ESR ESR

MDA GBE ESR LCF

GBE KSF

SUR

Text processing

Text processing

Instant messaging

Designing

G2
6 G3

6

G4
5G3

5G2
5G1

5

G1
4 G2

4 G3
4 G4

4

G1
2

G1
1

G2
2

G3
3G2

3G1
3 G4

3

G5
4 G6

4 G7
4 G8

4 G9
4

R1
5

R2
4R1

4

R1
3 R2

3

R1
2

R1
1

R2
2

R3
3 R4

3

G1
6

Figure 12: Tree-structured classifier for computer-usage recognition.

Activities with softwares

M1 M2 M3 M4 P1 P2 T1 T2 Ga1 Ga2 S1 S2 R1 R2 R3 D1 Ga3 Ga4

KM
R

va
lu

e

0

50

100

150

200

250

300

(a) The KMR values of different activities with software

Activities with softwares

M1 M2 M3 M4 P1 P2 T1 T2 Ga1 Ga2 S1 S2 R1 R2 R3 D1 Ga3 Ga4

ES
R

va
lu

e

0

0.2

0.4

0.6

0.8

1

(b) The ESR values of different activities with software

Weixin

JD_chat

Programming

Texting

Dino Runner

Time

Pause Action

Gap

(c) The ESR values of different activities with software

Figure 13: Statistics of (a) KMR and (b) ESR for different computer-usage activities with software and the illustrations of MDA and GBE for
different computer-usage activities.

11Wireless Communications and Mobile Computing

other child. Afterwards, the threshold is fine-tuned using the
training data set. For example, to determine ESR R2

2, we first
compute ESR distributions of samples in G3

3 and G3
4. Then,

we average the first quartile of G3
3 and the third quartile of

G3
3 as initial threshold and fine tune it to select an optimal

one. It is to be noted that, since thresholds here reveal charac-
teristic of distribution patterns of interaction events, they are
more independent with users and scalable to different behav-
ior performers. As a result, thresholds determined with
attackers’ samples can be easily applied for recognizing users’
behaviors. What is more, due to this property, it does not need
intensive data collection for determining thresholds.

6. Evaluation

6.1. Experiment Setup

6.1.1. Implementation.We prototype Behavicker on a smart-
phone and a back-end server. The smartphone collects
acoustic signals via its built-in microphone, preprocesses
the audio, and detects user interaction events as in Interac-
tion Event Detection.

The back-end server is responsible for user interaction
event recognition (Acoustic-Based Interaction Event Recog-
nition) as well as computer-usage activity recognition (Com-
puter-Usage Recognition). The smartphone and the back-
end server are connected by Wi-Fi. We use a Samsung Gal-
axy Note 5 running Android OS 6.0.1 for acoustic sensing. A
sampling thread continuously collects 16-bit mono audio
samples at a frequency of 44.1 kHz. It feeds the audio sam-
ples to another thread for preprocessing and event detection
once 17,640 samples (corresponding to 400ms) are gath-
ered. Audio frames without events are discarded. Frames
with events detected are buffered and transmitted to the
server through Wi-Fi. All processing threads are imple-
mented in Java. We use a desktop with four-core Intel (R)
Xeon (R) E3-1231 CPU and 32G RAM running Ubuntu
16.04 LTS as the server. User interaction event recognition
and computer-usage activity recognition are implemented
in MATLAB. Classifiers are constructed and trained based
on the libSVM library [29].

6.1.2. Data Collection. We evaluate Behavicker on data col-
lected by different participants, devices, and office environ-
ments. Specifically, we recruit 20 participants (labeled as
V_1~V_20, 12 males and 8 females) from our department
to collect computer-usage activity data. To evaluate the

impact of device diversity, we collect data using 5
keyboard-mouse combinations as listed in Table 1. Since
we mainly target at office environments, we conduct experi-
ments in three typical settings.

(i) Private office with noise (i.e., setting 1): this is a rel-
atively quiet setting with background noise of
roughly 35 dB generated by air conditioners

(ii) Public lab (i.e., setting 2): this is an uncontrolled set-
ting where students work in a public lab. During the
experiments, nonparticipants in the lab were
unaware of the ongoing experiments and are free
to work, chat, etc.

(iii) Private office with music (i.e., setting 3): this is a rel-
atively noisy setting with music playing in moderate
volume in the same private office. The measured
noise level is about 60 dB

For user interaction event recognition, each participant
is asked to perform each interaction (i.e., KS, CLB, CRB,
CW, SDW, and SUW) for 100 times in each setting with
every pair of keyboard and mouse. We use a Samsung Gal-
axy Note 5 (see Implementation) to record acoustic signals.
The smartphone is placed 25 cm away from the keyboard
and collects data in three different relative positions, i.e., left,
right, and upper side. Therefore, the total number of interac-
tion events is 108,000, i.e., 20 ðparticipantsÞ × 3 ðsettingsÞ ×
3 ðrelative positionsÞ × 6 ðinteraction eventsÞ × 100 ð
repetitionsÞ. To guarantee the fidelity of data, we collect data
of interaction events when the participants use their com-
puters as usual. For example, they can choose to edit docu-
ments, play computer games, and chat online when we
collect data of interaction events. For ease of labeling, data
of only one kind of interaction event are collected each col-
lection session.

For computer-usage activity recognition, each partici-
pant is asked to use the software in scope for 2 hours in each
setting using keyboard-mouse pair K3 in Table 1. We use the
same Samsung Galaxy Note 5 to collect data. The smart-
phone is placed roughly 25 cm away from the keyboard,
but we do not restrict its relative position to the keyboard.
In total, 2,520 hours of data are collected, i.e., 20 ð
participantsÞ × 20 ðactivitiesÞ × 2 ðhoursÞ × 3 ðsettingsÞ. The
ground truth labels are obtained by video recording with
informed consent. The data collection process spans 3
months.

Table 1: Pairs of keyboards and mice for evaluation.

Pair Keyboard Mouse
ID item Brand Model Type Brand Model

K1 Lenovo LXB-JME7155P Membrane Lenovo MOEUUOA

K2 Logitech G610 Mechanical Logitech M150

K3 USCorsair STRAFE Mechanical Logitech M212

K4 Lenovo sk-8813 Membrane Microsoft Sculpt Ergonomic

K5 HP KU-1156 Membrane HP MSU1465

12 Wireless Communications and Mobile Computing

6.2. Performance of User Interaction Event Recognition

6.2.1. Overall Performance. Figure 14 shows the performance
of Behavicker of recognizing events in group-level (i.e.,
coarse layer) and event-level in the three settings as afore-
mentioned. As we can see, the group-level classification
accuracies are about 95.3%, 92.2%, and 89.8% in different
settings, respectively, while the average event recognition
accuracies are 88.6%, 86.2%, and 84.9%. It is noted that the
event-level accuracy (i.e., accuracy of recognizing interaction
events) is obtained by multiplying group-level accuracy with
intragroup classification accuracy. From the results, we can
obtain several observations about the performance of Beha-
vicker. First, Behavicker shows favorable robustness to nor-
mal noise interference. Second, compared with music,
human talking shows less interference to Behavicker. The
reason is that music shows higher energy in the frequency
band of [4, 17] kHz compared to human speech as shown
in Figure 2. As a result, there remains more noise in the
denoised signals in the playing music scenario.

6.2.2. Performance of Different Hardware. To examine the
scalability of Behavicker on different hardware, we compare
the performance of recognizing interaction events with dif-

ferent pairs of keyboard and mouse in three scenarios. The
results are shown in Figure 15. According to the results,
Behavicker can achieve an average accuracy of 83.1%,
89.0%, 86.5%, 88.0%, and 88.1%, respectively. This variance
is induced by the hardware diversity, which results in differ-
ent acoustic signals on devices. However, since Behavicker is
trained and tested on the same set of hardware, the hardware
diversity has minute effect on the final performance. In the
following evaluation, the results are averaged over different
pairs of keyboards and mice without additional specification.

6.2.3. Performance of Different Positions. Although it is pos-
sible for attackers to collect data in the workplace of a victim,
they usually tend to commit this in different positions for the
sake of secrecy. Moreover, the smart device placed near the
victim to collect acoustic signals will be moved to different
positions during the eavesdropping process, which makes
the training environment not consistent with the testing
environment. To evaluate the effect of such inconsistency,
we test the recognition accuracy of Behavicker with data col-
lected from different positions. Specifically, we use one par-
ticipant’s data which is collected at one location of the
public lab to train Behavicker, and test it with another par-
ticipant’s data collected in the right, front, and left of the
keyboard in a private office. The corresponding results are
shown in Figure 16. As we can see, even when Behavicker
is trained in different positions from where it is trained, it
can achieve a relatively high accuracy up to 88.3% of recog-
nizing interaction events. In addition, it is noted that when
the smartphone is placed in different positions, the perfor-
mance of Behavicker in each position differs slightly from
each other with a standard deviation of 1.2%.

6.2.4. Performance of Cross-Persons. Considering the attack
scenario, it is difficult to obtain labeled training data from
a victim for Behavicker. As a result, we train the system with
data collected from one participant and test it with data from
another. The scalability of Behavicker among different pairs
of attackers and victims was evaluated. Since there are 20
participants in our experiments, the total number of

Interaction events groups
G1 G2 G3

A
cc

ur
ac

y
(%

)

50

60

70

80

90

100

Grouping accuracy
Event 1 in group
Event 2 in group

(a) In private office with noise

Interaction events groups
G1 G2 G3

A
cc

ur
ac

y
(%

)

50

60

70

80

90

100

Grouping accuracy
Event 1 in group
Event 2 in group

(b) In public lab

Interaction events groups
G1 G2 G3

A
cc

ur
ac

y
(%

)

50

60

70

80

90

100

Grouping accuracy
Event 1 in group
Event 2 in group

(c) In private office with playing music

Figure 14: The overall performance of Behavicker in typical scenarios, namely, with background noise, with people talking and with playing
music. G1, G2, and G3 represent three groups of interaction events. G1 contains keystroke (event 1) and clicking wheel (event 2); G2
contains left click (event 1) and right click (event 2); G3 contains scrolling up (event 1) and scrolling down (event 2).

Device pairs
K1 K2 K3 K4 K5

A
cc

ur
ac

y
(%

)

50

60

70

80

90

100

Setting 1
Setting 2
Setting 3

Figure 15: Performance comparison with different device pairs.

13Wireless Communications and Mobile Computing

attacker-victim pairs is A2
20 = 380. Considering the minute

difference in results of pairs, we randomly display the overall
accuracy of 10 pairs as shown in Figure 17. The average
accuracy of these pairs is 88.9%, and the corresponding stan-
dard deviation is 2.3%, which indicates that Behavicker can
achieve favorable performance with different pairs of
attacker and victim. The reasons for Behavicker’s scalability
are twofold. First, although the habits of performing interac-
tion events are diverse among different persons, the features
that we utilize for coarse-grained grouping and interaction

event classification reflect the intrinsic characteristics of
events. Second, the model adaptation scheme gradually
updates the itself with victim’s pseudo-labeled samples dur-
ing eavesdropping, which finally evolves to be a model
trained with samples of the victim.

6.2.5. Impact of Eavesdropping Distances. To evaluate the
impact of the distance between recorder (i.e., smartphone)
and keyboard, we conduct experiments by placing the
smartphone at positions with distances of 10 cm, 20 cm,
30 cm, 40 cm, and 50 cm from the keyboard. There are two
points to be pointed out. First, this set of experiments are
conducted by 2 instead of 20 participants since differences
caused by participants are negligible. Second, we train Beha-
vicker with data collected at 20 cm and test it with data at
five distances, respectively. Figure 18 displays accuracies
averaged across both persons and device pairs at each dis-
tance. As we can see, within 30 centimeters, the accuracy
of interaction event recognition maintains an average value
of 85.6%. When the distance increases, the accuracy
decreases due to lower signal to noise ratio (SNR). The
abnormal case in 50 cm is caused by tapping keyboard and
mouse emphatically by a participant according to our pos-
teriori investigation.

6.2.6. Impact of Training Samples. Figure 19 shows the effect
of training samples on the overall accuracy of recognizing
interaction events. The evaluation result is accomplished by
averaging the results of different attacker-user pairs with dif-
ferent combinations of positions. In this figure, we display
the training overhead in the first and second layer. As we
can see, for the first-layer classification, the number of train-
ing samples is 15, the average grouping accuracy in the first
layer has reached about 92.6%, and the performance
increases little even when the training samples increases fur-
ther. This trend is very similar to the intragroup classifica-
tion for three groups. This indicates that Behavicker
requires reasonable training effort and is practical in real
cases. The variance of recognizing interaction events within
groups is larger than that of grouping in the first layer, even
after the number of training samples exceeds 15. We think
that it is reasonable since interaction events within a group

Interaction events
KS CMW CLM CRM SWD SWU

A
cc

ur
ac

y
(%

)

60

70

80

90

100

Right
Front
Left

Figure 16: The performance of Behavicker in cross-position
scenarios.

Attacker-user pairs
P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

A
cc

ur
ac

y
(%

)

50

60

70

80

90

100

Setting 1
Setting 2
Setting 3

Figure 17: The performance with different attacker-user pairs.

Distance (cm)
10 20 30 40 50

A
cc

ur
ac

y
(%

)

0

25

50

75

100

Figure 18: Performance at different recording distances.

of samples per event
5 10 15 20 25 30

A
cc

ur
ac

y
(%

)

40

60

80

100

First-layer
G1

G2
G3

Figure 19: Performance with different number of training samples.

14 Wireless Communications and Mobile Computing

share more similarities and are more difficult to be
distinguished.

6.2.7. Impact of Model Adaptation. To evaluate the impact of
model adaptation, we display the overall interaction event
recognition accuracy varying with the number of updated
samples under different confidence threshold δ. We have
tested the confidence threshold δ in model adaptation from
0.65 to 0.90 with a step value of 0.05. As we can see, the
threshold has great impact on the recognition accuracy of
interaction events. When the confidence is set too high, the

overall accuracy decreases with the increasing number of
updated samples. The larger the threshold is, the faster the
accuracy decreases. The reason for this trend is that although
a high confidence threshold guarantees the returned samples
being correctly labeled, it filters out many other samples
belonging to a certain category which makes the retrained
classifier biased. As the returned samples increase, the bias
of the classifier is also magnified. On the other hand, when
the confidence threshold is set too low, the returned samples
contain more mislabeled ones which results in errors in the
retrained classifier. Considering the trade-off between reject-
ing mislabeled samples and keeping the completeness of
training data set, a moderate confidence threshold is an opti-
mal choice as shown in the figure. In our implementation of
Behavicker, we set the confidence threshold δ to 0.7.

6.3. Performance of Computer-Usage Activity Recognition.
Before presenting evaluation, we first introduce two con-
cepts that will be utilized in the following. For an activity
classified into a node Gi

j in Figure 12, there are two types
of accuracies, namely, local accuracy and global accuracy.
The local accuracy of an activity in node Gi

j represents the
probability of its being classified into present node from par-
ent node of Gi

j, while the global accuracy represents the

probability of its being classified into Gi
j from the root node

G1
1. Consequently, the global accuracy is a multiplicative

function of local accuracies along a same path.

Different groups of behaviors

 A
cc

ur
ac

y
(%

)

40

60

80

100

Local accuracy

Global accuracy

 G2
1 G3

1 G3
2 G3

3 G3
4 G2

2 G4
1 G4

2 G4
3 G4

4 G4
5 G4

6 G4
7 G4

8 G4
9 G5

1 G5
2 G5

3 G5
4 G6

1 G6
2 G6

3

Figure 20: The local and global recognition accuracy of different activity groups at each layer.

Indexes of leaf nodes

 A
cc

ur
ac

y
(%

)

20

40

60

80

100

 G4
1 G4

2 G4
3 G4

4 G5
1 G5

2 G5
3 G6

1 G6
2 G6

3 G4
7 G4

8 G4
9

Figure 21: Global accuracies of activity recognition at leaf nodes.

 Threshold of ESR (× 1000)
0 10 20 30 40

 A
cc

ur
ac

y
(%

)

0

50

100

Accuracy of G3
3

Accuracy of G3
4

Average accuracy

Figure 22: Performance with different thresholds of ESR in R2
1.

 Threshold of ESR (× 1000)

Accuracy of G3
1

Accuracy of G3
2

Average accuracy

0 100 200 300 400

 A
cc

ur
ac

y
(%

)

0

50

100

Figure 23: Performance with different thresholds of ESR in R2
2.

15Wireless Communications and Mobile Computing

6.3.1. Multiscale Accuracy. Since activities are recognized at
multiple scales with preserving semantics, it is meaningful
to evaluate performance of activity classification at different
layers. Figure 20 shows local and global accuracies of recog-
nizing activities at different layers. The average local and
global accuracies are (94.5%, 94.5%), (94.8%, 89.6%),
(90.8%, 82.6%), (95.1%, 82.4%), and (84.6%, 78.6%) for each
layer from the top to the bottom, respectively. An overall
trend is that global accuracies of recognizing activities
decrease with the depth of layers, since they are obtained
by multiplying local accuracies along the path from the root
to present node. We can also observe that local accuracies
decrease with layer depth as well, for the reason that activi-
ties belonging to the same group in deeper layers share more

similarities and thus are more challenging to be
differentiated.

6.3.2. The Ultimate Accuracy. The ultimate accuracy
describes how accurately activities can be classified at the leaf
node. In our evaluation, an original acoustic signal sequence
corresponding to an activity is first analyzed by interaction
event recognition methods to obtain an event sequence.
After that, the whole sequence is divided into small segments
by a window of 10 minutes sliding with a step of 5 minutes.
As a result, we can obtain a number of segments containing
interaction events. Each segment is then fed into activity rec-
ognition scheme as described in Computer-Usage Recogni-
tion. Figure 21 shows the ultimate accuracies of different

Window size (minutes)
5 10 15

A
cc

ur
ac

y
(%

)
75

80

85

90

95

100

 G2
1

 G2
2

(a) Local accuracy of recognizing activities at the

2nd layer with different window sizes

G3
1

G3
2

Window size (minutes)
5 10 15

A
cc

ur
ac

y
(%

)

70

80

90

100

G3
3

G3
4

(b) Local accuracy of recognizing activities at the

3rd layer with different window sizes

 G4
1

 G4
2

 G4
3

 G4
4

Window size (minutes)
5 10 15

A
cc

ur
ac

y
(%

)

40

60

80

100

(c) Local accuracy of recognizing activities at the 4th layer with different window sizes

Figure 24: The impact of time resolution on the accuracy of recognizing activities at different layers.

Chatting
Reading novel
Plants vs Zombies Typing in word

Non-activity
Reading news

Wrong block Right block

Behavicker
Error

0 30 60 90 120 150 180
Min

Designing

Ground truth

Others

210

Figure 25: The results of our user study experiment in which a participant conducts different activities with his computer for 220 minutes.

16 Wireless Communications and Mobile Computing

activities with an average value of 82.7% which indicates the
effectiveness of our scheme. Referring to Figure 12, it is
noted that some activities are grouped at leaf nodes and eval-
uated as a whole.

6.3.3. Impact of Thresholds. Even though thresholds used in
activity recognition are automatically determined by our
method, we also evaluate their impacts by varying them in
a certain range. As there are a number of branches in activity
recognition tree, we only pick out activity recognition at
layer 2 for example. Figures 22 and 23 show performance
at layer 2 for G2

1 and G2
2, respectively. As we can see, both

average accuracies increase with the thresholds of ESR until
a certain value. When the threshold of ESR exceeds this
value, the average accuracies decrease accordingly. It is
because with different thresholds of ESR, accuracies of two
child nodes vary differently. More interestingly, the value
of the turning point is much close to the threshold chosen
by our method described in Computer-Usage Recognition
which verifies its effectiveness.

6.3.4. Impact of Time Resolution Δt. Time resolution of ana-
lyzing activities refers to the width of a moving window in
segmenting a whole sequence of interaction events. As dif-
ferent lengths of an event sequence reflect different levels
of activity pattern, time resolution has impact on activity
recognition. We vary the window size from 2.5 minutes to
15 minutes and test the performance of activity recognition
at different layers. As local accuracy better reveals the impact
of time resolution, we evaluate the performance by this met-
ric for groups in layer 2 to layer 4 here and obtain results as
shown in Figure 24. As we can see, the local accuracy of an
activity group in different layers increases with the window
size. This is because a wider window covers a more complete
pattern of considered activity and is helpful for differentiat-
ing different activities. However, when it reaches 10 minutes,
further increasing does not enhance performance notably for
most activities in different layers. What is more, we can
notice that time resolution has larger impact on activity rec-
ognition at deep layers which demonstrates that fine-grained
activity classification is more sensitive to time resolution.

6.3.5. Case Study. Finally, we conduct a user study to evalu-
ate Behavicker in the case where different activities are con-
ducted by a participant sequentially. During the user study, a
participant is free to perform activities, each of which lasts
for 30 minutes, with his/her own desktop PC. The collected
acoustic signals are analyzed by a sliding window of 10
minutes with an overlap of 5 minutes. Figure 25 displays
the results in which each block represents an activity with
a duration of 10 minutes. As is shown, a red block indicates
a wrongly recognized activity, while a green one represents a
correctly recognized activity. As we can see, there are only 6
error blocks among a total number of 37 blocks, resulting in
an accuracy of 83.8%. Moreover, we can observe that 4 error
blocks happen at the beginning or end of an activity. This is
because transitions between different activities bring about
noises to the distribution pattern of interaction events of a
pure activity, which is more likely to induce errors.

7. Conclusion

In this paper, we shed light on the possibility of eavesdrop-
ping common computer-usage activities through acoustic
side channel, by designing and implementing a prototype
system Behavicker. Different from previous works, our sys-
tem infers a target’s computer-usage activities at multiple
scales based on interaction event recognition with light-
weight training. To guarantee and validate its effectiveness,
we propose novel data processing techniques and conduct
comprehensive real-world experiments. Experimental
results reveal an ignored fact that acoustic side channel
enables an eavesdropper to recover a target’s computer-
usage behaviors with a high accuracy. We anticipate that
our work can provide a warning for user if they are sensitive
to behavior leakage while using computers.

Data Availability

The experimental data used to support the findings of this
study are available from the corresponding author upon
request.

Disclosure

This article is extended and revised from the previously
version in SSRN [30].

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This research was supported in part by the China NSFC
Grant (No. 62172286) and Guangdong NSF Grant (No.
2022A1515011509).

References

[1] Gartner Inc, “User survey analysis: mobile device adoption at
the workplace is not yet mature,” 2016, //http://www.gartner
.com/newsroom/id/3528217.

[2] T. Zhu, Q. Ma, S. Zhang, and Y. Liu, “Context-free attacks
using keyboard acoustic emanations,” in Proceedings of the
2014 ACM SIGSAC conference on computer and communica-
tions security, pp. 453–464, 2014.

[3] X. Ji, Y. Cheng, W. Xu et al., “No seeing is also believing: elec-
tromagneticemission- based application guessing attacks via
smartphones,” IEEE Transactions on Mobile Computing, 2021.

[4] J. Liu, Y. Wang, G. Kar, Y. Chen, J. Yang, and M. Gruteser,
“Snooping keystrokes with mm-level audio ranging on a single
phone,” in Proceedings of the 21st Annual International Con-
ference on Mobile Computing and Networking, pp. 142–154,
2015.

[5] M. G. Kuhn and R. J. Anderson, “Soft tempest: hidden data
transmission using electromagnetic emanations,” in Interna-
tional Workshop on Information Hiding, pp. 124–142,
Springer, 1998.

17Wireless Communications and Mobile Computing

http://www.gartner.com/newsroom/id/3528217
http://www.gartner.com/newsroom/id/3528217

[6] M. Vuagnoux and S. Pasini, “Compromising electromagnetic
emanations of wired and wireless keyboards,” USENIX Secu-
rity Symposium, pp. , 20091–16, 2009.

[7] M. G. Kuhn, “Optical time-domain eavesdropping risks of
CRT displays,” in Proceedings. 2002 IEEE Symposium on Secu-
rity and Privacy, pp. 3–18, 2002.

[8] J. Loughry and D. A. Umphress, “Information leakage from
optical emanations,” ACM Transactions on Information and
System Security, vol. 5, no. 3, pp. 262–289, 2002.

[9] G. de Souza Faria and H. Y. Kim, “Identification of pressed
keys frommechanical vibrations,” IEEE Transactions on Infor-
mation Forensics and Security, vol. 8, no. 7, pp. 1221–1229,
2013.

[10] P. Marquardt, A. Verma, H. Carter, and P. Traynor, “(sp)
iPhone: decoding vibrations from nearby keyboards using
mobile phone accelerometers,” in Proceedings of ACM CCS,
pp. 551–562, 2011.

[11] D. Asonov and R. Agrawal, “Keyboard acoustic emanations,”
in Proceedings of IEEE Symposium on Security and Privacy,
pp. 3–11, 2004.

[12] Y. Berger, A. Wool, and A. Yeredor, “Dictionary attacks using
keyboard acoustic emanations,” in Proceedings of ACM CCS,
pp. 245–254, 2006.

[13] L. Zhuang, F. Zhou, J. Doug, and J. D. Tygar, “Keyboard acous-
tic emanations revisited,” ACM Transactions on Information
and System Security, vol. 13, no. 1, p. 3, 2009.

[14] D. Salomon, Elements of Computer Security, Springer Science
& Business Media, 2010.

[15] Y. Bi, M. Lv, C. Song, W. Xu, N. Guan, and W. Yi, “Autodie-
tary: a wearable acoustic sensor system for food intake recog-
nition in daily life,” IEEE Sensors Journal, vol. 16, no. 3,
pp. 806–816, 2016.

[16] J. Korpela, R. Miyaji, T. Maekawa, K. Nozaki, and
H. Tamagawa, “Evaluating tooth brushing performance with
smartphone sound data,” in Proceedings of ACM Ubicomp,
pp. 109–120, 2015.

[17] W. Gu, Z. Yang, L. Shangguan, W. Sun, K. Jin, and Y. Liu,
“Intelligent sleep stage mining service with smartphones,” in
Proceedings of ACM Ubicomp, pp. 649–660, 2014.

[18] X. Sun, Z. Lu, W. Hu, and G. Cao, “Symdetector: detecting
sound-related respiratory symptoms using smartphones,” in
Proceedings of ACM Ubicomp, pp. 97–108, 2015.

[19] T. Hao, G. Xing, and G. Zhou, “iSleep: unobtrusive sleep qual-
ity monitoring using smartphones,” in Proceedings of ACM
SenSys, 2013.

[20] Y. Ren, C. Wang, J. Yang, and Y. Chen, “Fine grained sleep
monitoring: hearing your breathing with smartphones,” in
Proceedings of IEEE Infocom, pp. 1194–1202, 2015.

[21] L. Hong, W. Pan, N. D. Lane, T. Choudhury, and A. T. Camp-
bell, “Soundsense: scalable sound sensing for people-centric
applications on mobile phones,” in Proceedings of the ACM
MobiSys, pp. 165–178, 2009.

[22] H. Lu, D. Frauendorfer, M. Rabbi et al., “Stresssense: detecting
stress in unconstrained acoustic environments using smart-
phones,” in Proceedings of ACM Ubicomp, pp. 351–360, 2012.

[23] S. B. Moqadam, A. S. Asheghabadi, and X. Jing, “A novel
hybrid approach to pattern recognition of finger movements
and grasping gestures in upper limb amputees,” IEEE Sensors
Journal, vol. 22, no. 3, pp. 2591–2602, 2022.

[24] S. Ganguli, “Computer operating systems: from every palm to
the entire cosmos in the 21st century lifestyle,” Computer Soci-
ety of India Communications, vol. 40, no. 11, pp. 5–8, 2017.

[25] M. A. Richards, Fundamentals of Radar Signal Processing,
McGraw-Hill Education, 2014.

[26] C. Cortes and V. Vapnik, “Supportvector networks,” Machine
learning, vol. 20, no. 3, pp. 273–297, 1995.

[27] I. Guyon and A. Elisseeff, “An introduction to variable and fea-
ture selection,” Journal of Machine Learning Research, vol. 3,
pp. 1157–1182, 2003.

[28] H.-T. Lin, C.-J. Lin, and R. C. Weng, “A note on Platt’s prob-
abilistic outputs for support vector machines,”Machine Learn-
ing, vol. 68, no. 3, pp. 267–276, 2007.

[29] C.-C. Chang and C.-J. Lin, “LIBSVM-a library for support vec-
tor machines,” ACM transactions on intelligent systems and
technology, vol. 2, no. 3, pp. 1–27, 2016, https://www.csie.ntu
.edu.tw/~cjlin/libsvm/.

[30] M. Chen, Y. Zou, and W. Kaishun, “Behavicker: eavesdrop-
ping computer-usage activities through acoustic side channel,”
SSRN Electronic Journal, 2022, Available at SSRN 4019830.

18 Wireless Communications and Mobile Computing

https://www.csie.ntu.edu.tw/<cjlin/libsvm/
https://www.csie.ntu.edu.tw/<cjlin/libsvm/

	Behavicker: Eavesdropping Computer-Usage Activities through Acoustic Side Channel
	1. Introduction
	2. Related Work
	2.1. Computer Eavesdropping via Side Channels
	2.2. Acoustic Sensing with Smartphones

	3. Overview
	3.1. Computer-Usage Activities
	3.2. User Interaction Events
	3.3. Behavicker Overview

	4. Acoustic-Based Interaction Event Recognition
	4.1. Interaction Event Detection
	4.1.1. Audio Preprocessing
	4.1.2. Event Detection and Segmentation

	4.2. The Rationale of Hierarchical Learning Scheme
	4.3. Event Classification in Coarse Layer
	4.3.1. Feature Selection
	4.3.2. Model Training

	4.4. Intragroup Event Classification
	4.5. Model Adaptation

	5. Computer-Usage Recognition
	6. Evaluation
	6.1. Experiment Setup
	6.1.1. Implementation
	6.1.2. Data Collection

	6.2. Performance of User Interaction Event Recognition
	6.2.1. Overall Performance
	6.2.2. Performance of Different Hardware
	6.2.3. Performance of Different Positions
	6.2.4. Performance of Cross-Persons
	6.2.5. Impact of Eavesdropping Distances
	6.2.6. Impact of Training Samples
	6.2.7. Impact of Model Adaptation

	6.3. Performance of Computer-Usage Activity Recognition
	6.3.1. Multiscale Accuracy
	6.3.2. The Ultimate Accuracy
	6.3.3. Impact of Thresholds
	6.3.4. Impact of Time Resolution Δt
	6.3.5. Case Study

	7. Conclusion
	Data Availability
	Disclosure
	Conflicts of Interest
	Acknowledgments

