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Indoor localization detection acts as an important issue and has wide applications with wireless Internet of Things (IoT) networks.
In recent years, the WiFi-based localization by using the latest artificial intelligence methods for improving the detection accuracy
has attracted attention of many researchers. Granular computing is a newly emerged computing paradigm in artificial intelligence,
which focuses on the structured thinking based on multiple levels of granularity. Thus, we introduce granular computing
approaches to the task of wireless indoor localization detection, and a novel heuristic data discretization method is proposed
based on the binary ant colony optimization and rough set (BACORS) for the selection of optimal granularity. For BACORS,
the global optimal cut point set is searched based on the binary ant colony optimization to simultaneously discretize multiple
attributes. Meanwhile, the accuracy of approximation classifications coined from rough sets is used to determine the consistent
of multiple attribute data. To validate the effectiveness of BACORS, it is applied to a wireless indoor localization data set, and
the experimental results indicate that it has promising performance.

1. Introduction

With the rapid development of wireless indoor positioning
systems and techniques in Internet of Things (IoT), the
application of indoor localization detection is more and
more extensive [1]. To name a few, one can consider detect-
ing the location of criminals in a bounded area, detecting the
location of vehicles in a large underground garage, and find-
ing products stored in a warehouse [2]. In recent years, the
indoor localization detection based on WiFi signal strength
has received great attention due to its widely available and
low cost. In existing literatures, many methods have been
proposed by considering positioning as a classification prob-
lem, and lots of machine learning techniques have been used
to improve the prediction accuracy of localization detection

[3, 4]. For instance, Pei et al. [5] presented a motion
recognition-assisted wireless positioning method by using a
least square-support vector machines (LS-SVM) to detect
common motion states used during indoor navigation.
Wang et al. [6] studied a deep network with three hidden
layers pretrained with the greedy learning algorithm for
location prediction. Zhang et al. [7] explored a novel wireless
positioning method by using a four-layer neural network
structure pretrained by stacked denoising autoencoder
(SDA) to extract features from massive widely fluctuating
WiFi data. As received WiFi signal strength is vulnerable
to various environments, Zhang et al. [8] proposed a
multi-information fusion algorithm to improve the accuracy
of indoor location. Rohra et al. [2] used neural network to
detect the location of the users in an indoor environment
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based on WiFi signal strength received from various routers.
To obtain a higher accuracy, fuzzy hybrid of particle swarm
optimization and gravitational search algorithm is used to
train the weights. Bhatti et al. [9] put forth a technique
named iF_Ensemble by using the combination of isolation
forest (IForest), support vector machine (SVM), K nearest
neighbor (KNN), and random forest (RF) to effectively
detect the outlier of users in a WiFi indoor localization
environment.

To overcome the drawback that accuracy of indoor
localization detection based on WiFi signal strength is easily
disturbed by diverse environments, researchers devote to
investigating novel detection methods for improving the
accuracy. Granular computing has emerged as one of the
fastest growing computing paradigms on formation, pro-
cessing, and communicating information granules in the
artificial intelligence field [10], which has been widely
applied in many realistic areas, such as private data protec-
tion [11], medical diagnose [12], image segmentation [13],
and web services recommendation [14]. Thus, it is meaning-
ful to apply granular computing methods to indoor localiza-
tion detection for improving the detection accuracy.

For granular computing, the construction of information
granules and computation with granules are two basic issues.
The selection of appropriate granularity levels plays an
important role to address application problems. Optimal
granularity selection has become one of the hotspots. Discre-
tization is an essential data preprocessing procedure, which
has been used to obtain the equivalence-based information
granules and improve the performances of granular comput-
ing methods. In the past decades, the researches on
discretization-based optimal granularity selection have been
received significant attention, and many discretization
methods have been developed [15, 16]. Those methods can
be classified with different taxonomies. Liu et al. [17] sum-
marized the commonly used discretization methods from
different taxonomies in detail. Unsupervised and supervised
ones are the most commonly used taxonomies among them.
Unsupervised discretization methods do not consider class
labels during the discretization process. They are generally
easy to implement and own low time complexity, whereas
supervised discretization methods relate class labels to the
discretization process. Therefore, the research work of dis-
cretization mainly focuses on the improvement of super-
vised discretization methods.

Supervised discretization methods mainly include
entropy-based, χ2 measure-based, and dependency-based
methods. The main differences of those methods are the
choice approaches of optimal cut point sets. Entropy-based
discretization methods find the optimal cut point set by using
different kinds of entropies to evaluate the importance of cut
point sets. MDLP (minimal description length principle) is
one of the most common methods among them [18–20],
which uses the class information entropy as the measure to
evaluate importance of cut points during the discretization
process. For a given continuous attribute, the cut point which
minimizes the entropy function over all candidate cut points is
selected as the optimal cut point. This method can then be

applied recursively to both of the intervals induced by the opti-
mal cut point until the stopping condition MDLP defined by
Fayyad and Irani is achieved. χ2 measure-based discretization
methods are a series of supervised discretization methods
which evaluate the importance of cut points based on χ2 mea-
sure. ChiMerge and Chi2 are two typical χ2 measure-based
discretization methods. The ChiMerge merges the adjacent
pair intervals with lowest χ2 value until a termination condi-
tion is met [21]. One drawback of ChiMerge is that it requires
to specify the significant level α when computing the χ2 value.
Nevertheless, too big or too small of an α will over- or under-
discretize continuous data, and it is hard to find an appropri-
ate α for ChiMerge. The Chi2 stems from ChiMerge and an
autoversion of ChiMerge [22]. Dependency-based discretiza-
tion methods evaluate the importance of cut points based on
the dependency between continuous data and class labels cal-
culated according to contingency table. They mainly include
CAIM and CACC. CAIM (class attribute interdependence
maximum) defined the interdependency between class labels
and the discretization scheme of a continuous attribute. It
maximizes the class attribute interdependence and generates
a possibly minimal number of cut points [23]. This method
does not need to predefine the number of intervals and can
always achieve better discretization results. The drawback of
CAIM is that the number of intervals generated is very close
to the number of target classes. CACC (class-attribute contin-
gency coefficient) is the improvement method of CAIM and
overcomes the drawbacks of CAIM. CACC defines contin-
gency coefficient and maximizes it in the process of discretiza-
tion instead of making class attribute interdependence
maximum in CAIM [24].

For the commonly used supervised discretization
methods, most of them are local methods performing on a sin-
gle attribute. They independently generate intervals on each
attribute without taking into account the interdependence
among attributes. Compared to local discretization methods,
global discretization methods discretize multiple continuous
attributes simultaneously. The discretization process can be
defined as a problem of searching for an optimal cut point
set of multiple continuous attributes. Global discretization
should obtain less cut points and have better discretization
results than local discretization. However, it has been proved
by Nguyen and Skowron that the optimization problem to
find the optimal cut point set of multiple continuous attributes
is NP-hard [25]. Therefore, the commonly used discretization
methods are basically heuristic methods by using efficient heu-
ristics to return suboptimal cut point set.

To obtain the optimal equivalence-based information
granules, this article proposes a new global heuristic super-
vised discretization method based on binary ant colony
optimization and rough set. It uses binary ant colony opti-
mization to search the optimal least cut point set of mul-
tiple attributes. Meanwhile, this method tries to keep the
indiscernibility relation defined with rough set unchanged
for maintaining the consistent of multiple continuous
attributes data. The experiment applying the proposed
method to the wireless indoor localization data set indi-
cates that it is effective for improving the prediction accu-
racy of indoor localization detection.
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2. Related Works

2.1. Discretization. Discretization problem investigates how
to partition continuous attributes into several discrete inter-
vals with the selected optimal cut points. Let Ai be a contin-
uous attribute of a data set with multiple continuous
attributes A and the cut point c be a value within the range
½Vmin, Vmax� of Ai. A cut point set C = fc1, c2,⋯, cmjci ∈ ½
Vmin, Vmax�g is used to partition Ai into m + 1 intervals rep-
resenting with m + 1 different labels during the discretiza-
tion process. The essential problem of discretization is the
selection of optimal cut point set from the candidate cut
point set. For continuous attribute Ai, the value set is Vi =
fa1i , a2i ,⋯, ani g after sorting in ascending order and remov-
ing duplicate values, where a1i < a2i <⋯ < ani . The candidate
cut point set of Ai can be defined as Ccandidate

Ai
= fcji jcji = ðaji

+ aj+1i Þ/2g, j = 1,⋯, n − 1, and the candidate cut point set
of A is

Ccandidate
A = ∪

Aj j
i=1

Ccandidate
i : ð1Þ

For the available discretization methods, the main differ-
ence is the selection method used to find the optimal cut
point set. Local and global discretization methods search
the optimal cut point set of single attribute and multiply
attributes, respectively. For supervised local or global discre-
tization methods, the optimal cut point set is determined by
taking into account the relationship between attributes and
class labels.

A discretization process mainly include four steps: (1)
sort the continuous values of the attribute and remove the
duplicate values, (2) calculate the candidate cut point set of
the attribute, (3) search the optimal cut point set, and (4)
use the optimal cut point set to discretize the continuous
attribute into discrete attributes.

2.2. The Rough Set Theory. The rough set theory proposed by
Pawlak et al. is an extension of the classic set theory and
proved to be very useful in dealing with inconsistency prob-
lems [26]. Since rough sets are useful in analyzing vagueness
and uncertain data, it has been widely applied in uncer-
tainty data mining and knowledge discovery. Rough set
operates on information system S = <U , CUD, V , f > ,
where U is a finite nonempty set of objects, C is a finite
nonempty set of condition attributes, D is a finite non-
empty set of decision attributes, V = ∪

a∈CUD
Va is a non-

empty set of values of all attributes, and f is an
information function such f ðx, aÞ ∈ Va for each a ∈ A and
x ∈U . To each nonempty subset of attributes A ⊆ C, an
indiscernibility relation can be defined as

IND Að Þ = x, yð Þ ∈U ×U j∀a ∈ Af a, xð Þ = f a, yð Þf g: ð2Þ

IND (A) is called the A-indiscernibility relation. The
family of all the equivalence classes of the relation IND
(A) containing an object x ∈U is denoted as ½x�A.

Let S be an information system, X ⊆U be nonempty sub-
set, and A ⊆ C. The lower and upper approximations of X
are defined as follows:

A− Xð Þ = x ∈U x½ �A
�� ⊆ X

� �
, ð3Þ

A− Xð Þ = x ∈U x½ �A
�� ∩ X ≠∅

� �
, ð4Þ

A−ðXÞ is an object set whose objects belonging to the
equivalence classes generated by the indiscernibility relation
IND (A) can be certainty contained in X; A−ðXÞ is an object
set whose objects belonging to the equivalence classes gener-
ated by the indiscernibility relation IND (A) can be possibly
contained in X. For any nonempty subset X ⊆U and A ⊆ C,
X is a definable set of with respect to A iff A−ðXÞ = A−ðXÞ;
otherwise, X is a rough set with respect to A iff A−ðXÞ ≠ A−

ðXÞ. The vagueness of X can be described by the accuracy
of approximations:

αA Xð Þ = A− Xð Þj j
A− Xð Þj j , ð5Þ

where 0 ≤ αAðXÞ ≤ 1. αAðXÞ provides a measure of how
closely the lower and upper approximations of X.

The definition of accuracy of approximations can be

applied to a partition or classification F = fX1, X2,⋯, Xngð
U = ∪

n

i=1
XiÞ of U . Subsets, Xi, i = 1,⋯, n, are equivalence

classes of U . The lower and upper approximations of F
are expressed as A−ðFÞ = fA−ðX1Þ, A−ðX2Þ,⋯, A−ðXnÞg
and A−ðFÞ = fA−ðX1Þ, A−ðX2Þ,⋯, A−ðXnÞg, respectively.
The accuracy of approximations of the classification F is
defined as

αA Fð Þ = A− Fð Þj j
A− Fð Þj j =

∑n
i=1 A− Xið Þj j

∑n
i=1 A

− Xið Þj j : ð6Þ

αAðFÞ denotes the ratio of all correctly classified
objects to possibly classified objects by means of attributes
from A. It measures the classification ability with respect
to A. The closer to 1 the value of αAðFÞ is, the greater is
the classify accuracy with respect to A.

2.3. Binary Ant Colony Optimization. Ant colony optimiza-
tion (ACO), initially proposed by Dorigo et al., is a stochas-
tic metaheuristic for solutions to global combinatorial
optimization problems [27]. ACO is a nature-inspired intel-
ligent algorithm inspired from the phenomenon that ants
could always find the shortest path between the nest and
food. The main idea of ACO is that a number of ants coop-
erate according to the pheromone laid on the path. ACO has
been successfully applied in data mining, particularly for
learning classification rules [28]. Binary ant colony optimi-
zation (BACO) is a binary version of ACO to solve the
binary optimization problems. For BACO, the artificial ants
walk on the mapping graph to represent the given binary
optimization problem as described in Figure 1. And each
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path corresponds to a potential solution to the given
problem [29].

Ant selects the path ijðj ∈ f0, 1gÞ to walk from node 1 to
node n by depending on the pheromone on the path. τij rep-
resents the pheromone level for path ijðj ∈ f0, 1gÞ.The solu-
tions of BACO can be represented by a binary string:
x = fx1, x2,⋯, xng, xi ∈ f0, 1g. If the ant selects path i0, then
xi = 0, and if the ant selects path i1, then xi = 1. The selection
probability of path ijðj ∈ f0, 1gÞ for each ant can be defined
as [30]

pi0 =
ταi0 ∗ η

β
i0

ταi0 ∗ η
β
i0 + ταi1 ∗ η

β
i1
, ð7Þ

pi1 = 1‐pi0, ð8Þ
where ηi0 and ηi1 represent the visibility of path i0 and i1,
and α and β are both weight factors.

Every ant makes a complete selection of the entire paths
to generate a solution. After all ants complete the routines,
all the solutions generated during the current iteration are
evaluated by the fitness function f ðxÞ. The ants having bet-
ter fitness values are selected to enhance the pheromone.
The pheromones on each path are updated as

τij = 1 − ρð Þτij + 〠
T

k=1
Δτkij, ð9Þ

where ρ is the evaporation rate of pheromone, and Δτkij is the
intensified pheromone of ant k on path ij.

3. BACORS

Optimal discretization of multiple attributes is an actual sub-
set optimization problem, which selects optimal cut point set
from the candidate cut point set. The solution of the prob-
lem can be represented by a binary-encoding bit string. For
each candidate cut point, if it belongs to the optimal cut
point set, the bit value is 1; otherwise, the bit value is 0.
Obviously, it is a binary optimization problem. As BACO
is a useful technique to solve binary optimization problem,
it is used to deal the optimal discretization problem of mul-
tiple attributes in this article. The selection of optimal cut
point set with BACO during the discretization process can
also be described in Figure 1, where candidate cut points
are represented by the node 1 to N . The length of the routine
is equal to the cardinal number of the candidate cut point

set. If ant walks through the upper path i0, it means that
the candidate cut point i is not selected. And if the lower
path i1 is selected by the ant, the candidate cut points i is
selected. Pheromone laid on the path is used for selections
of 0 and 1 for each bit of the solution string. And the prob-
abilities of the selections of 0 and 1 are calculated depending
on the pheromone.

The fitness function f ðxÞ is used to evaluate the solution
(ant) x in BACO. To find the optimal cut point set, the fit-
ness function of the solution is defined as

f xð Þ =Q · αB Fxð Þ
Cxj jN

, ð10Þ

where Q ðQ > 0Þ and NðN > 0Þ are both constants, jCxj is the
cardinal number of cut point set Cx, and αBðFxÞ is the accu-
racy of approximation of classification Fx induced by Cx. For
multiple attributes, the optimal discretization is to find the
least cut points among all attributes by keeping consistency
for class. Therefore, the construction of fitness function
takes into account the consistency and the number of cut
points. The consistency is measured by αBðFxÞ defined in
rough set. The solution of the ant corresponding to higher
accuracy of approximation and less cut points has higher fit-
ness value.

An ant deposits various amounts of pheromone on the
path, which can be detected by other ants. The path having
richer pheromone concentration will be selected by more
ants. The laid pheromone of an ant k on path ij is defined as

Δτkij =
f xð Þ
0

(
,
if ant kwalks through ij

otherwise
: ð11Þ

The pheromone on each path are updated for each ant i.
And the selection probability of paths i0 and i1 for each ant
is calculated by using Eq. (12). To improve the search ability,
some randomness is added to calculate the transfer direction
of the ant. The value of the solution is determined as

xi =
0
1

(
,
pi0 · r0 < pi1 · r1

else
: ð12Þ

where r0 and r1 are both random numbers in [0, 1]. The
steps of BACORS are as follows:

Start

……

……

Node 1

0

1

0

1

0

1

0

1

Node 2 Node n-1 Node n

Figure 1: Path diagram of a binary ant colony optimization.
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4. Experimental Study

4.1. Data Sets. A wireless indoor localization data set is gath-
ered from the U.C. Irvine repository. It is collected for the pur-
pose of performing experimentation on how signal strengths
can be used to determine one of the indoor locations of the
users. The data set totally have 2000 instances and eight attri-
butes. The first seven attributes correspond to the signal
strengths captured by Android devices from seven routers.
And the last attribute is the class label including four numbers
1, 2, 3, and 4 which correspond to the four locations of the office
such as conference room, kitchen, or the indoor sports room.

4.2. Experiment Settings. The performance of our proposed
method is compared with seven other commonly used dis-
cretization methods:

(1) EW (equal width)

(2) EF (equal frequency)

(3) MDLP (minimal description length principle)

(4) ChiMerge

(5) Chi2

(6) CAIM (class-attribute interdependency
maximization)

(7) CACC (class-attribute contingency coefficient)

(8) BACORS (hybrid BACO and RS)

Among the eight discretization methods, EW and EF are
unsupervised and require the user to specify the number of

intervals. It is set to 5 and 10 in our experiment. The last
six methods are supervised discretization methods. MDLP
is an entropy-based discretization method. ChiMerge and
Chi2 are χ2 measure-based discretization methods. For the
ChiMerge method, we set the level of significance to 0.95.
CAIM and CACC are dependency-based methods.

To validate the effectiveness of different discretization
methods, the C4.5, Naive Bayes, and Bayes Network classi-
fiers are implemented to the experimental data set. It has
been proved that discretization leads to the improvement
of accuracy and efficiency of the three classifiers. This is
the reason why the three classifiers were chosen. The wire-
less indoor localization data set is classified into training sets
and test sets. The instances of training sets are selected ran-
domly from the original data, and five training and testing
schemes are generated. The ratios of original data for gener-
ating five trainings are set to 0.1, 0.15, 0.2, 0.25, and 0.3,
respectively. The discretization methods are applied to the
training sets, and the testing sets are discretized using the
generated cut points from the training set. The classification
accuracies as a major evaluation indicator are compared
among the eight discretization methods.

4.3. Results. The wireless indoor localization data are discre-
tized with the proposed BACORS and other different discre-
tization methods. The impact of the discretization methods
on the classification result will be analyzed. Here, the original
and discretized wireless indoor location data are classified by
C4.5, Naive Bayes, and Bayes Network classifiers. The classifi-
cation accuracies of the three classifiers with different discreti-
zation methods are shown in Tables 1–3. To effectively reflect
the differences of the classification accuracies in Tables 1–3,
four maps are drawn (Figures 2–5), which can give direct

Input: information system S = <U , CUD, V , f > ;
Output: cut point set Copt corresponding to the solutions having highest fitness values;
Initialize parameters of BACORS including the population of ant colony P, the number of generations G, best fitness f ; pheromone τ0
of each ant on each path, visibility of the path η, evaporation rate of pheromone ρ and accuracy of approximation classification μ
defined in rough set;
Calculate the candidate cut point set Ccanditate of multiple continuous attributes C;
Determine the solution of each ant x = fx1, x2,⋯, xjCcanditate jg, xi ∈ f0, 1g;
for m=1, 2, ..., P

for n=1, 2, ..., G
Determine the routine of ant n by Eq. (7) and Eq. (8);
Obtain the cut point set Cx according to the routine;
Calculate the accuracy of approximation classification αðFxÞ by Eq. (6);
Calculate the fitness f ðnÞ of ant n by Eq. (10);
if f ðnÞ > f then
Determine the solution of ant n xðnÞ = fx1, x2,⋯, xjCcanditatejg, xi ∈ f0, 1g;
Obtain the cut point set Copt corresponding to the solution;

end if
if αðFxÞ > μ then
Calculate the intensified pheromone Δτ of ant n by Eq. (11);

end if
end for
Updating the pheromone on the paths by Eq. (9);

end for

Algorithm 1
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and visual expressions for the changes of the classification
accuracies with different discretization methods.

4.4. Discussions. In our experimental study, BACORS is used
to discretize multiple continuous wireless indoor location
data for improving the classification accuracies. To assess
the effectiveness, the classification accuracies of C4.5, Naive
Bayes, and Bayes Network classifiers are compared between
BACORS and other commonly used discretization methods.
Figure 2 displays a map of the mean classification accuracies
for the original and discretized wireless indoor localization
data with different discretization methods. The mean classi-
fication accuracies are calculated for the five training and
testing schemes. It can be seen that discretization methods
have obviously impacts on the performance of the classifiers.
Compared to the original data, the classification results are
improved when the data are discretized with some discreti-
zation methods, but the performance of the discretization
methods is distinct when the discretized data are classified
by different classifiers. The mean classification accuracies
of C4.5 and Naive Bayes classifiers for the discretized data
with other commonly used discretization methods are lower
than the mean classification accuracy for original data. How-
ever, the classification accuracies of Bayes Network classifier
are improved when EW (10), EF (10), MDL, CAIM, Chi-
Merge, and Chi2 are used to discretize the original data.
The mean classification accuracies for the discretized data
with BACORS are 96.29%, 97.07%, and 97.25% when the
three classifiers are used. They are the highest among the
classification accuracies for the original data or discretized
data with other discretization methods.

Figures 3–5 display maps of the classification accuracies
of C4.5, Naive Bayes, and Bayes Network, respectively, when
different discretization methods are applied to the five types
of training and testing schemes. From these three maps, the
impacts of discretization methods on the classification
results are compared. From Figure 3, it can be seen that
the classification accuracies of C4.5 classifier are the highest
when BACORS is applied to all the five training and testing
scheme. And they increase when the sizes of training set
become larger. Other discretization methods have bad per-
formance especially for unsupervised discretization methods
EW and EF. The classification accuracies of C4.5 classifier
based on those discretization methods are lower than the
classification accuracies for the original data. The number
of interval is a parameter for EW and EF which needs to
be predefined before discretization. As there is no rule to
find the optimal number of intervals, 5 and 10 are set in
our article. Compared to EW and EF, the classification accu-
racies of C4.5 classifier are significantly higher when
BACORS is used.

Figure 4 is also analyzed and showed that the differences
of classification accuracies become smaller for Naive Bayes
classifier. The classification accuracies are larger than that
for original data when the ratio for training set is 0.1, and
MDL, CAIM, CACC, and Chi2 are used for discretization.
Meanwhile, the classification accuracies are also improved
when ChiMerge and Chi2 are used and the ratios for train-
ing set are 0.25 and 0.3, respectively. The classification

Table 2: Classification accuracies of Naive Bayes classifier for
original and discretized wireless indoor localization data with
different discretization methods.

Methods
Ratios

0.10 0.15 0.20 0.25 0.30 Mean

Original 94.72 96.82 96.94 97.27 96.86 96.52

EW (10) 93.83 94.47 96.75 96.47 96.64 95.63

EW (5) 90.67 90.24 92.75 93.13 93.86 92.13

EF (10) 93.00 93.00 95.56 95.87 96.36 94.76

EF (5) 92.06 94.59 94.31 95.60 95.21 94.35

MDL 95.72 96.47 96.06 96.80 96.78 96.37

CAIM 95.06 95.65 96.06 95.87 95.71 95.67

CACC 96.00 95.88 96.56 96.27 96.00 96.14

ChiMerge 94.56 96.12 96.75 97.40 96.50 96.27

Chi2 95.44 95.76 95.63 96.27 97.14 96.05

BACORS 96.78 97.06 97.38 97.53 97.50 97.25

Table 3: Classification accuracies of Bayes Network classifier for
original and discretized wireless indoor localization data with
different discretization methods.

Methods
Ratios

0.10 0.15 0.20 0.25 0.30 Mean

Original 94.72 95.80 96.88 96.27 96.79 96.09

EW (10) 95.56 95.94 96.63 96.65 97.07 96.37

EW (5) 91.13 91.00 91.63 92.13 92.86 91.75

EF (10) 95.11 95.35 96.38 96.27 97.57 96.14

EF (5) 94.94 95.06 94.81 94.87 95.79 95.09

MDL 95.44 95.76 96.69 96.60 96.79 96.26

CAIM 95.50 95.76 96.50 96.20 97.14 96.22

CACC 95.00 95.47 96.38 96.20 97.36 96.08

ChiMerge 95.78 96.35 96.56 97.07 97.93 96.74

Chi2 95.50 95.53 96.25 96.73 97.36 96.27

BACORS 96.39 96.76 97.31 97.27 97.64 97.07

Table 1: Classification accuracies of C4.5 classifier for original and
discretized wireless indoor localization data with different
discretization methods.

Methods
Ratios

0.10 0.15 0.20 0.25 0.30 Mean

Original 93.33 94.41 95.31 96.40 95.64 95.02

EW (10) 93.67 93.65 93.50 93.13 94.93 93.78

EW (5) 89.06 91.59 91.88 89.60 91.14 90.65

EF (10) 82.94 90.64 91.06 92.80 93.86 90.26

EF (5) 87.89 92.59 92.31 92.27 94.79 91.97

MDL 91.11 94.24 94.50 94.13 95.36 93.87

CAIM 91.70 94.47 94.50 94.40 96.14 94.24

CACC 92.22 91.29 94.50 94.40 96.21 93.72

ChiMerge 92.89 95.24 95.13 95.20 95.21 94.73

Chi2 93.17 94.71 92.56 96.20 95.64 94.46

BACORS 95.78 95.94 96.06 96.87 96.79 96.29
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accuracies of Naive Bayes classifier are still the highest for all
the training and testing schemes discretized based on
BACORS. It can be seen that from Figure 5, the classification
accuracies of Bayes Network are very close for most of the
discretization methods. When the ratios for training set are
0.1, 0.25, and 0.3, the classification accuracies based on most

of the discretization methods are much larger than that for
original data. It indicates that discretization can help to
improve the efficacy of the classification result for Bayes Net-
work classifier. For BACORS, the classification accuracies
are the highest except that the ratio for training set is 0.3,
for which the highest accuracy is reached for ChiMerge
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Figure 2: Mean classification accuracies of the three classifiers for original and discretized wireless indoor localization data with different
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and second highest for BACORS. Following the comparison
of classification accuracies, we regard that BACORS is an
optimal discretization method for enhancing the accuracy
of indoor localization detection.

5. Conclusions and Future Works

In this paper, we propose a novel discretization method
titled BACORS to construct the optimal granularity struc-
tures for multiple continuous attributes by combining the
binary ant colony optimization with rough set. BACORS
uses the binary ant colony optimization (BACO) algorithm
to search the global optimal cut point set of multiple contin-
uous attributes. Meanwhile, the accuracy of approximation
classification defined in rough set is used to measure the
consistency of the data and construct the fitness function
to guide the path selection of the ant. We also apply
BACORS to the wireless indoor localization data to validate
the effectiveness. Comparing with several typical discretiza-
tion methods, it can be seen that the BACORS has relative
better performance on the classification of C4.5, Naive
Bayes, and Bayes Network classifier. However, there are
some issues to be resolved. For example, some parameters
must be initialized while BACO is used for searching the
optimal cut point set such as colony size, generation size,
evaporation rate, and visibility of path. The efficiency of
BACO depends on the selection of the parameters. How to
select optimal BACO parameters to obtain better discretiza-
tion results needs further research. For BACORS, the accu-
racy of approximation classification defined in rough set is

used to measure the consistency of multiattribute data. Mul-
tigranulation rough set (MGRS) is an extended version of
classic rough sets, which uses multiple binary relations to
construct granular structures rather than single binary rela-
tion. It is a kind of new information fusion strategies and
has become one of desirable direction in granular computing
[31–33]. In future researches, we will investigate more dis-
cretization methods based on BACO and MGRS to extend
the applicability of the proposed method [34, 35].
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