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Predicting spatiotemporal congestion situations of a traffic network is a prerequisite for urban traffic control. This study proposes
a spatiotemporal traffic congestion situation prediction method based on the recurrent gated unit-convolutional neural network
(GRU-CNN). Considering the time and space attributes of traffic data, the third-order tensor of the traffic data is extracted from
the time domain, and the GRU is used to predict the traffic flow parameters of the traffic network. Then, the third-order tensor of
multisource spatiotemporal traffic data is compressed into traffic data images and combined with the spatial structure. The feature
extraction technology of a CNN is used to extract and identify the traffic network congestion features. Actual urban traffic network
data are selected for model verification. The multistep prediction of the traffic flow parameters effectively ensures prediction
accuracy. The proposed model is trained by the actual classification dataset. The prediction results of the test set demonstrate
the model’s reliability. Based on predicting the traffic parameters of the network, this model can give a highly accurate
judgment of the traffic situation for the entire network. Compared with other models, the proposed model further improves
the accuracy of road network traffic state discrimination and has better robustness.

1. Introduction

Although the traffic flow of an urban road network changes
over a certain period, its basic structure is fixed for a long
period [1]. Therefore, the changes in the traffic flow in the
urban road network are closely related to the choices of trav-
elers. Identifying traffic congestion conditions can help trav-
elers and decision-makers quantitatively grasp the changes
in traffic conditions and decide on path selection, road plan-
ning, and traffic control according to the changes [2, 3]. For
the development of intelligent transportation, it is necessary
to expand the analysis of traffic data characteristics for a sin-
gle road section to the overall traffic state characteristics at
the road network level [4].

This study takes an urban traffic network as a whole and
analyzes its operation. The topology of the traffic network is
abstracted based on the location and correlation of the
detector. As the road network structure is considered fixed
over a long period of time, the defining characteristic of
urban traffic network change is the time-varying traffic flow,
and the specific storage object is the traffic data, which are

continuously generated [5]. Due to the fixed location of the
detection equipment, the acquired traffic data can match
with the corresponding spatial information, and the changes
in that data can depict the dynamic characteristics of the
urban traffic network [6]. Therefore, considering the actual
situation of the current large amount of traffic data, this
study combines the constructed urban traffic network model
and the description form of the traffic data tensor to deter-
mine the spatiotemporal state matrix of the dynamic road
network and combines the time and space perspectives to
predict traffic congestion. Considering the temporal and
spatial attributes of the traffic data, third-order tensors of
the traffic data are extracted from the time domain, and a
GRU is used to predict the traffic flow parameters of the traf-
fic network. Afterward, the third-order tensors of multi-
source spatiotemporal traffic data are compressed into
traffic data images and combined with the spatial structure.
A CNN is used to extract and identify traffic network con-
gestion features. This paper combines the advantages of
GRU and CNN to predict traffic parameters in the time
domain and identify traffic states in the space domain and
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finally provide information support for traffic diversion after
regional traffic congestion identification.

2. Evaluation of Traffic Congestion in an Urban
Road Network

A traffic congestion status is generally a category of traffic
congestion within a selected area. It is used either to reflect
the subjective feelings of people stuck in traffic or to meet
the requirements for decision-making of management agen-
cies. Specific grades are divided and described by the corre-
sponding segments of common indicator variables or
traffic parameters. The Road Capacity Manual published
by the Transportation Research Board divides the traffic ser-
vice level into six grades according to selected parameters.
Germany proposed dividing the traffic status of an express-
way into five levels according to the intervals of the traffic
density [7]. In 2016, the Beijing Transportation Develop-
ment Research Center proposed the Evaluation Index Sys-
tem of Urban Road Traffic Congestion, which classified
different types of traffic status based on sections and defined
road network congestion [8]. In this system, the traffic clas-
sification of sections is mainly based on the average speed of
the section. The congestion degree of the road network is
divided into very smooth, smooth, slightly congested, mod-
erately congested, and severely congested.

There are two problems with the current standards of
traffic congestion. First, there is only one single measure-
ment index, and the state prediction lacks comprehensive-
ness. Second, there is a limited number of standards for
classifying the traffic status of a road network, and the daily
traffic congestion index ignores the changes in rules of the
road network on each statistical day [9, 10]. Therefore, the
five-level division of road network congestion is chosen as
the classification of traffic congestion levels for the indicator
system. However, two aspects should be added to the corre-
sponding indicators. The first is to increase the comprehen-
siveness of the state measurements. Three common traffic
parameters are used as the basis of measurements to jointly
analyze the congestion situation. The second aspect is the
percentage of traffic congestion mileage every 15 minutes,
as shown in Table 1. It facilitates the analysis of daily traffic
congestion changes in the road traffic network.

The calculation of the percentage of road congestion
mileage every 15 minutes is as follows:

(1) Taking 15 minutes as the statistical interval, the
operation level of each road section is judged jointly
according to the three traffic parameters. Clustering
is used for the classification of the above levels

(2) The percentage of road section mileage running in a
severely congested road network is calculated (road
section mileage is included as the coefficient)

(3) The percentage of road network congestion mileage
in 15 minutes is calculated by weighting the vehicle
mileage (select the recommended value of the pro-
portion of vehicle mileage in the index system)

3. Image Extraction Method of Traffic Data

3.1. Construction of the Urban Traffic Network Model
considering the Detector Layout. Each collected traffic dataset
contains temporal and spatial attributes. Since the time attri-
bute is the first-order attribute and the space attribute is a
second-order attribute, the actual traffic data are represented
as a third-order tensor.

Urban traffic is a complex, open, self-adaptive system
characterized by abrupt changes [11]. Based on graph the-
ory, the abstract network topology method for traffic feature
extraction is discussed. According to the basic definition in
graph theory [12], a graph G = ðV , EÞ consists of a set of
nodes V = fp1, p2,⋯,png and a set of edges E = fe1, e2,⋯,eg
connecting pairs of nodes in V. If the graph contains the
set of edge weights W = fw1,w2,⋯,wng corresponding to
the elements in E, the graph is called a weighted graph and
denoted as G = ðV , E,WÞ.

In this paper, the traffic data are from fixed detectors.
Generally, fixed traffic detectors are placed at different loca-
tions where the flow of a section changes. Common loca-
tions are the entrances of traffic flow at intersections and
ramps. To facilitate the loading of traffic data, the traffic net-
work topology constructed in this section is mainly com-
posed of road connection points connected through
sections with limited lengths; that is, the original abstract
method is used to construct the urban traffic network. In
actual traffic operations, the traffic flow changes at the
entrances and exits of intersections and ramps, so the traffic
flow varies on the street sections in the urban network. A
fixed point where the traffic flow state changes obviously is
regarded as the connection point between sections, which
is abstracted as a node in the urban road network. The net-
work model adopts the directed graph structure in the orig-
inal abstract method, where some parameters, including the
road grade, number of lanes, and length, are not considered
when extracting the topology. The dynamics of the network
are determined by the traffic flow on the roads, which is
embodied in the dynamic traffic data of the traffic network.

The traffic data entity is described as ft, linkID,
parameter1, parameter2, parameter3g, where t represents
the time at which the detection data are collected,
parameteri represents the i-th traffic parameter in the detec-
tor, and i = 1, 2, 3 (the traffic detector can obtain many traffic
parameters; however, only three common traffic parameters
are selected). Common traffic data entities are described as
{t, linkID, v, q, o}, where the corresponding time of the data
is set as T , the location-averaged speed data are represented

Table 1: Classification of congestion levels in the road network.

Level Road network congestion level
Percentage of road traffic
congestion in 15 minutes

1 Very smooth traffic [0%, 20%]

2 Smooth traffic (20%, 40%]

3 Slightly congested traffic (40%, 60%]

4 Moderately congested (60%, 80%]

5 Severely congested traffic (80%, 100%]
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by v, the traffic flow data are represented by q, and the time-
share data are represented by o. For the traffic network, V is
the set of nodes, the included element piði ≤ nÞ denotes the
nodes, and pi represents the location where the actual road
traffic flow state changes significantly. E represents the set
of road sections, the included element ej ðj ≤ kÞ denotes the
edges, and ej represents a one-way road section in the traffic
network and corresponds to the road section in which the
data collected by the detector ej = <pjs, pjo > , where pjs ≠
pjo, and pjs, pjo ∈ V . W is the set of edge weights in which
wjðj ≤ kÞ is the weight of edge ej, and wj =w<pjs ,pjo> repre-

sents the traffic parameter data matched by the correspond-
ing section <pjs, pjo > . To clarify the problem, three different
parameters representing the traffic state are selected to form
the traffic network G = ðV , E,WÞ with dynamically changing
parameters. If w<pjs ,pjo> = vlim − v<pjs ,pjo> (v<pjs ,pjo> is the

location-averaged speed on section linkID corresponding
to the sequence pair <pjs, pjo > in the network within the
same time segment, and vlim represents the maximum speed
limit on the section interval), the network can be expressed
as G = ðV , E,WÞ. If w<pjs ,pjo> = q<pjs ,pjo> (q<pjs ,pjo> is the traffic

flow on section linkID corresponding to sequence pair <pjs
, pjo > in the network within the same time segment), the
network can be expressed as G = ðV , E,WqÞ. If w<pjs ,pjo> =
o<pjs ,pjo> (o<pjs ,pjo> is the time occupancy on section linkID

corresponding to the sequence pair <pjs, pjo > in the net-
work during the same time segment), the network can be
expressed as G = ðV , E,WoÞ.
3.2. Traffic Data Tensor Description Based on Traffic
Network Structure. A tensor is a multidimensional array of
data [13]. Tensors can be understood as extensions of vec-
tors and matrices in a multidimensional space. Scalars, vec-
tors, and matrices are representations of tensors in low-
dimensional spaces: scalars are represented as zero-order
tensors, vectors are first-order tensors, and matrices are
second-order tensors. Each element in a tensor is associated
with multiple indexes. The expression form of a tensor (A)
is shown in Equation (1), where niði = 1, 2,⋯,mÞ is a posi-
tive integer and m is called the order of the tensor. If n1 =

n2 =⋯ = nm = n, then n is called the dimension of tensor
A. An m-order tensor with n dimensions which are real
numbers is denoted as Γðℝn,mÞ.

A = al1,l2,⋯,lm

� �
∈ℝn1×n2×⋯×nm : ð1Þ

In order to clearly describe the tensor characteristics of
the traffic data in the traffic network described above, spatial
information of the traffic data is represented as a network
adjacency matrix. The adjacency matrix is a matrix repre-
senting the network structure as in Equation (2), where
apjs ,pjo represents the element of the adjacency matrix M.

In Equation (3), pjs and pjo are node numbers of the traffic
network, V , and the corresponding graphical diagram of M
is shown in Figure 1(a). The third-order tensor of space-
time traffic data is shown in Equation (3), where pjs and
pjo are node numbers of the traffic network, V , and t is
the sequential number of traffic data collection time. The
adjacency matrix corresponding to the urban traffic net-
work weighted by the average road speed at a certain time
is used to describe the network. Figure 1(a) is the heatmap
of the adjacent matrix with 100 nodes in the network.

a

pjs ,pjo=
wpjs ,pjo, <pjs ,pjo>∈E,

0, <pjs ,pjo>∉E:

(
ð2Þ

A = apjs ,pjo ,t
� �

∈ℝn×n×T : ð3Þ

The time attribute of the traffic data is combined with
the spatial attribute of the road section, where the data is
generated by being added to the adjacency matrix reflecting
the weighted data. The data collected in the urban traffic
network can be represented as a third-order tensor using
three coordinates: the relevant intersections (nodes) of the
data generated sections are taken as the spatial row and col-
umn coordinates, and the time when the data is generated
is taken as the time coordinate. Figure 1(b) shows an exam-
ple of the third-order tensor representing spatiotemporal
traffic data.
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Figure 1: A graph of spatiotemporal traffic data tensors.
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3.3. Tensor Compression of Spatiotemporal Traffic Data
Based on Tensor Tube Fibers. Extracting the tube fibers of
the traffic data tensor maintains the temporal relationship
in the traffic data. The corresponding tube fibers of each
one-way road section are extracted from the third-order ten-
sor of the space-time traffic data, and then, they are tiled and
reconstructed to form a second-order tensor of the space-
time traffic data. The row coordinates of each data recombi-
nation are labeled according to the sequence of the tensor
tube fibers, and the column coordinates of each data recom-
bination are labeled according to the sequence of the sec-
tions on the front of the tensor. The extraction process is
illustrated in Figure 2. The front section of the third-order
tensor of the spatiotemporal traffic single-parameter data is
an image representation of the adjacency matrix corre-
sponding to the traffic network. The elements of the adja-
cency matrix are shown in Equation (2). To extract the
second-order tensor of the spatiotemporal traffic data, it is
assumed that e represents the number of ordinal couples in
E in the directed traffic network G = ðV , E,WÞ and s repre-
sents the total number of frontal slices of the third-order
tensor of the spatiotemporal traffic data. The expression of
elements bj,k in the second-order tensor B = ðbj,kÞ ∈ℝe×s of
the space-time traffic data is shown in Equation (4). The
traffic data tensor is essentially a way of describing traffic
data in both time and space dimensions. To extract the time
characteristics of the traffic data, the data retaining the time
sequence relationship are extracted first while ignoring the
spatial relationship from the time dimension, and then, the
extraction results are converted into the spatiotemporal traf-
fic data tensor compression matrix.

bj,k =
255 ×w<pjs ,pjo>,k

w
: ð4Þ

In Equation (4), section j corresponds to the number of
ordinal couples <pjs, pjo > ; that is, according to the order of

the edge in the adjacency matrix of the traffic network, the
main order is the row, and the order is j. k represents the
frontal slice number of the third-order tensor of the corre-
sponding spatiotemporal traffic data, w =max ðWÞ. To
facilitate image processing, bi,k is standardized, as shown
in Figure 2.

3.4. Extraction of Traffic Data Tensor considering the
Combination of Multiparameter Data. This section selects
three parameters to describe the temporal and spatial traffic
data together according to the actual detection situation
and computational complexity. According to the extraction
method described in the previous section, each parameter
can be described as a second-order tensor B of the space-
time relationship and B = fN1,N2,⋯,Nsg, where the row
vector Nk is extracted at each time k. Considering the high
performance of CNN in deep learning theory for image pro-
cessing, a dsqrtðeÞe × dsqrtðeÞematrixN ′ of traffic data based
on time k is constructed, and the matrix data are provided by
vector Nk. If the value of e of ordered pairs E in the original
graph G = ðV , E,WÞ is less than the number of elements in
the matrix, the corresponding zero-complement operation
will be performed at the last position of the matrix.

The analysis of the traffic state mainly consists of the
identification and evaluation of single-parameter data, such
as the daily traffic congestion index. This data mainly deter-
mines the operation level of each section in the road network
through the average travel speed at the section. Evaluation of
single-parameter data is simple with low computational cost;
however, the identification of the traffic state is not reliable.
For example, if the actual state of the traffic flow on the road
is free, the traffic state determined by the subjective driving
speed of a driver is inconsistent with reality. Therefore, it
is more reasonable to evaluate the traffic state by combining
multiple commonly used traffic parameters. The image
extracted from the time-based multiparameter traffic data
is C = ðci,j,hÞ ∈ℝdsqrtðeÞe×dsqrtðeÞe×3, where h represents the
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Figure 2: Spatiotemporal traffic data tensor compression extraction diagram.
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RGB color channel of the image: h = 1 represents the red
channel (corresponding to the average traffic speed parame-
ter C:,:,1 =N′v), h = 2 represents the green channel (corre-
sponding to the traffic flow parameter C:,:,2 =N′q), and
h = 3 represents the blue channel (corresponding to the traf-
fic time occupancy parameter C:,:,3 =N′o). An example of an
RGB image is shown in Figure 3. The spatial traffic data in
red, green, and blue are allocated according to the different
traffic parameters, as shown in Figures 3(a)–3(c). The super-
position of the three channels is shown in Figure 3(d). The
“stacking” of multiple traffic parameters is realized by the
three-layer channel stacking of the RGB images. This data
representation is useful for identifying the network traffic
state represented by multiple traffic parameters through
image processing in subsequent steps.

4. Spatiotemporal Congestion Prediction for
Road Networks Based on Deep Learning

A large amount of traffic data generated every day also plays
a key role in improving the generalization ability of deep
learning models [14]. With recent advances in architecture

design, deep learning has demonstrated the capabilities of
fitting complex functions in various applications [15].

Deep learning is a subtype of machine learning devel-
oped based on neural networks. With a “deep” neural net-
work structure, it overcomes multiple drawbacks of
traditional machine learning techniques. The hierarchical
structure of deep learning is composed of several layers
between the input layer and the output layer, and a nonlin-
ear information processing unit formed by these hierarchi-
cal structures can realize feature learning [16]. Considering
this characteristic, deep learning extracts features from the
original data through a deep neural network and eliminates
the empirical setting of the original method. Many case
studies have shown that high-level features extracted by
deep neural networks are highly effective if sufficient train-
ing data exist.

Based on the prediction of traffic network parameters by
a cyclic neural network, the congestion state of the spatial
traffic network is identified to predict the overall situation
of the traffic network. Figure 4 presents the temporal and
spatial congestion situation and prediction model. The
model consists of two parts: the time feature extraction of
the traffic network using GRU and the congestion feature
extraction of the traffic network using CNN.
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Figure 3: Third-order tensor diagram of spatial traffic data at a specific time point.
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5. GRU Model for Multistep Prediction of
Traffic Flow

The first part of the prediction model uses the GRU of the
neural networks to predict the network traffic parameters.
Due to the congestion of the road network, more common
evaluations of the road network traffic state parameter
should be considered. Thus, a tensor is extracted from mul-
tiple parameters based on the road traffic data in time and
space. And the corresponding parameters of the time series
and the parallel GRU-assisted multistep iterative method
are used to extract the time characteristics of the data for
multistep prediction of the traffic parameters. The predicted
traffic parameters will be used to identify the congestion
state of the traffic network.

GRU is a variant of the long short-term memory (LSTM)
neural network. It maintains the effectiveness of LSTM while
having a simplified structure [17]. It merges the input gate
and the forget gate in LSTM to form an update gate. GRU
only contains an update gate and a reset gate. The update
gate mainly determines the amount of hidden layer informa-
tion from the previous time step that can be transferred
directly to the current time step. The reset gate determines
how much hidden layer information from the previous time
step contributes to generating the current storage. Like

LSTM, GRU contains a gated unit that regulates the infor-
mation flow inside the unit. GRU replaces the original self-
updating storage state unit with a hidden state, which makes
GRU more effective in data training.

Let the data be fxt ∈ℝn, yt ∈ℝmgTt=1, where xt represents
the input at time t and T is the length of the time series. The
calculation of GRU is mainly to output the hidden state of
each unit and the hidden state hjt of the j-th GRU at time
t, as shown in Equation (5), where f is a linear transforma-
tion of the input vector X = fx1, x2,⋯,xTg. The GRU algo-
rithm contains four important parts.

hjt = f ht−1, xtð Þj: ð5Þ

Considering the basic time interval of the congestion
evaluation and the time rule of the continuous expansion
of traffic congestion, the time delay m of the model is deter-
mined. In addition, for the values of a, b, and c in the pre-
dicted congestion state, the three time steps a, b, and c
correspond to the prediction results in this part; that is, the
traffic parameter values of time steps a, b, and c after the cur-
rent time step can be predicted using historical data.

Details of the algorithm are as follows:
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Figure 4: Frame diagram of space-time congestion prediction model.
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(Step 1) Identify the traffic situation according to three
common parameters: the average speed, flow,
and time occupancy.

(Step 2) Extract the tube fibers (i.e., traffic parameter
time series) of each among e sections from the
third-order tensors corresponding to the three
traffic parameters, determine the GRU model
parameters m, a, b, and c, and group the time
series of each section according to the model
delay m.

(Step 3) Extract the front section of each time interval
Δt from the third-order tensors corresponding
to the three types of traffic parameters.

(1) Step 3.1: with a statistical interval of 15
minutes, judge the operation level of each
section jointly according to the three traffic
parameters.

(2) Step 3.2: set k = 15/Δt, and calculate the
mileage percentage of road sections run-
ning at grade 5 in the k frontal sections.

(3) Step 3.3: calculate the percentage of road
network congestion mileage in 15 minutes
by weighting the number of car kilometers.

(4) Step 3.4: according to the rules in Table 1,
map out the corresponding road network
traffic status of each group in the historical
data.

(Step 4) Use the GRU traffic parameters to predict, and
estimate a group of data test sets for each sec-
tion of the road network.

(1) Step 4.1: initialize the number of units and net-
work structure, j = 1, and the input vector X =
fx1, x2,⋯,xTg in each group of data in the
training set.

(i) Step 4.1.1: determine the input of the j-th GRU.

(ii) Step 4.1.2: calculate and execute the reset gate rjt in
the j-th cell according to Equation (6), where Wr
represents the input weight vector, Ur represents
the cyclic weight vector of the reset gate, Br repre-
sents the bias vector, xt represents the input vector
at time t, and σ represents the sigmoid activation
function ðσðZÞ = 1/ð1 + e−zÞÞ.

rjt = σ Wrxt +Urht−1 + brð Þj: ð6Þ

(iii) Step 4.1.3: calculate and execute the candidate state
~h
j
t in the j-th unit according to Equation (7), where

tanh represents the hyperbolic tangent function
(tanh ðzÞ = ðe+z − e−zÞ/ðe+z + e−zÞ) and ⊙ represents
vector multiplication.

~h
j
t = tanh Wxt +U rt ⊙ htð Þ + bsð Þj: ð7Þ

(iv) Step 4.1.4: calculate and execute the update gate zjt
in the j-th GRU according to Equation (8), where
Wz represents the input weight vector, Uz repre-
sents the cyclic weight vector of the update gate, bz
represents the bias vector, xt represents the input
vector at time t, and σ represents the sigmoid activa-
tion function.

zjt = σ Wzxt +Uzht−1 + bzð Þj: ð8Þ

(v) Step 4.1.5: obtain the output hjt of the j-th GRU using
the following equation:

hjt = 1 − zjt
� �

hjt + zjt~h
j
t: ð9Þ

(vi) Step 4.1.6: set j = j + 1; if j < = the number of units,
repeat Step 4.1.2.

(2) Step 4.2: establish the training model according to
Step 4.1, and obtain the estimated value from the
group execution in the test set.

(3) Step 4.3: repeat Step 4.1 twice and obtain the corre-
sponding estimate for each parameter.

Obviously, traffic data are time-dependent, and previous
traffic flow states may still have a long-term influence on
the current state. In order to have a prior grasp of the traffic
congestion situation, it is necessary to determine the
deployment of emergency plans some time ahead of the
forecast time. To ensure the reservation time of decision
and the prediction accuracy, a multistep iteration method
is adopted, as shown in Equation (10), where m represents
the embedding dimension of the data, the left side of each
equation is the GRU input, the right side represents the
predicted output value, and xi represents the i-th row vector
of matrix B, fb1,i, b2,i,⋯,be,ig. Because traffic parameters
contain many types, Xv , Xq, andXo represent the average
speed, traffic, and time occupancy data, respectively.
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X t −m + 1ð Þ = xt , xt−1,⋯,xt−m+1gð Þ⟶ x̂t+1,

X t −m + 2ð Þ = x̂t+1, xt ,⋯,xt−m+2gð Þ⟶ x̂t+2,

X t −m + gð Þ = x̂t+g−1, xt+g−2,⋯,xt−m+h
�� �

⟶ x̂t+g:

ð10Þ

The forward propagation output in model training is
shown in Equation (5). The error term of each gated unit
is calculated using backpropagation. When t = T , the error
of the GRU unit j + 1 is reversely transmitted as δjT , and

when t ∈ ½0, TÞ, δjT can be expressed as in the following
equation:

δjT =
Δδj+1t , t = T ,
∂E
∂hjt

= Δδj+1t + Δδjt+1, t ∈ 0, T½ �,

8><
>: ð11Þ

where E is the sample loss, which can be obtained from the
loss function at all times.

According to Equation (11) and the gating unit process,
the error at each time-step can be computed as in Equation

(12), where δg,t = δt ⊙ zt ⊙ ð1 − ~h
2
t Þ, δt,t = δs,t ⊙ ðUht−1Þ ⊙ rt

⊙ ð1 − rtÞ.

δt−1 = Δδj+1t−1 + δz,tUz + δs,t ⊙ rtð ÞU + δt ⊙ 1 − ztð Þ: ð12Þ

Equations (13), (14), and (15) can be computed by accu-
mulating the gradient at each time step, and the updated
weight and bias gradient can be obtained.

ΔUz = 〠
T

t=1
δz,tht−1,

ΔUr = 〠
T

t=1
δr,tht−1,

ΔU = 〠
T

t=1
δs,tht−1,

8>>>>>>>>>><
>>>>>>>>>>:

ð13Þ

ΔWz = 〠
T

t=1
δz,txt−1,

ΔWr = 〠
T

t=1
δr,txt−1,

ΔW = 〠
T

t=1
δs,txt−1,

8>>>>>>>>>><
>>>>>>>>>>:

ð14Þ

Δbz = 〠
T

t=1
δz,t ,

Δbr = 〠
T

t=1
δr,t ,

Δbs = 〠
T

t=1
δs,t:

8>>>>>>>>>><
>>>>>>>>>>:

ð15Þ

The posterior transfer error term is calculated by the
partial derivative of the loss function, as shown in

δj−1t =
∂E
∂hj−1t

= δz,tWz + δr,tWr + δs,tWð Þ ⊙ f ′ hj−1t

� �
: ð16Þ

6. CNN Model to Identify Regional
Traffic Congestion

Since the traffic data tensor is compressed and extracted as
an image, CNN should be a good choice as they are suitable
for images. The principle of CNN is inspired by the human
visual nervous system. Their basic structure includes an
input layer, convolutional layer, pooling layer, fully con-
nected layer, and output layer.

The second part mainly identifies the traffic states of the
road network and refines the classification of the daily traf-
fic congestion levels according to the original daily evalua-
tion rules. Taking a time unit of 15 minutes as the
investigation benchmark, the temporal and spatial traffic
jam state characteristics of the whole road network are
identified based on the predicted parameters to predict the
temporal and spatial traffic jam situation. Multiparameter
traffic data images are formed through the prediction data,
and red, green, and blue spatial traffic data are allocated
according to different traffic parameters. The three channels
are superposed to form RGB images. It is beneficial to use
the CNN method for images, particularly to predict the net-
work traffic state represented by multiple traffic parameters.
According to the classification of the traffic network con-
gestion state corresponding to the 15-minute traffic conges-
tion index in Section 2, the category which is identified by
yðtÞ is set to 5.

Since the traffic data tensor is compressed and extracted
as an image, CNN should be a good choice as they are suit-
able for images. The principle of CNN is inspired by the
human visual nervous system. Their basic structure includes
an input layer, convolutional layer, pooling layer, fully con-
nected layer, and output layer.

(1) Convolution layer: the convolution operation mainly
carries out feature abstraction of the input image and
iterates some features extracted by every single layer
through the multilayer superposition to obtain the
complex features of the image. In the CNN, each
convolution layer is composed of several convolution
units, and the parameters of each convolution unit
are optimized using the backpropagation algorithm.
The basic formal expression of the convolution layer

8 Wireless Communications and Mobile Computing



is shown in Equation (17), where f is an activation
function, l represents the current layer, Mj repre-
sents the corresponding convolution window
checked at the j-th convolution, K represents the
convolution kernel, and b is the bias of the current
layer.

xlj = f 〠
i∈Mj

xl−1j Kl
ij + blj

 !
: ð17Þ

(2) Pooling layer: pooling operation performs the
aggregation of space or feature types and reduces
spatial dimension; that is, in a small area, a specific
sample value is taken as the input value, as shown
in Equation (18), where downðÞ is a sampling func-
tion, β represents the multiplier parameter of the
current layer, and b is the bias of the current layer.
Generally, features with large dimensions are
obtained after the convolution layer. The features
are split into several regions, and their maximum
or average values (i.e., maximum pooling or average
pooling, corresponding to the sampling function)
are taken to obtain new features with small dimen-
sions to reduce the parameters of the whole neural
network.

xjl = f βl
jdown xl−1j

� �
+ blj

� �
: ð18Þ

(3) Fully connected layer: each fully connected node is
connected with all the features of the previous layer,
and all the extracted features are integrated. The full
link layer based on the classification task is mainly
responsible for training a classifier. The learned fea-
tures are used as the inputs, and the output is the
classification results.

The proposed CNN-based algorithm is as follows:

(Step 1) Calculate and execute the estimated value of the
road network prediction according to Equation
(4), extract the road section form as dsqrtðeÞe
× dsqrtðeÞe matrix N ′, and superpose the
matrix N ′ corresponding to the three parame-
ters to obtain the traffic state image of the road
network.

(Step 2) Use the superimposed traffic state images
obtained from the test set data grouping to
identify the traffic state of the road network
using CNN.

(1) Step 2.1: initialize the weights of the network,
determine the network hierarchy, and set the

number of the labels (identified categories) to
5 according to the traffic network congestion
classification.

(i) Step 2.1.1: according to the network hierarchy, pass
the input data through the convolution layer, the
pooling layer, the fully connected layer, and the
softmax layer to obtain the output value.

(ii) Step 2.1.2: calculate the error between the output
value of the network and the target value.

(iii) Step 2.1.3: when the error is greater than the
expected value, transmit the error back to the net-
work, and successively obtain the error of each
layer; if the error is equal to or less than the
expected value, go to Step 2.2.

(iv) Step 2.1.4: update the weights according to the
obtained errors and return to Step 2.1.2.

(2) Step 2.2: obtain the training model according to
Step 2.1, and execute the superimposed traffic
state images derived from the test set data
grouping to classify the road network traffic
state.

(Step 3) Output the road network traffic state classifica-
tion; that is, obtain the road network traffic
states through the forecast data.

7. Evaluation of the Algorithm

This section describes the implementation details and result
analysis of the proposed method.

7.1. Instance Dataset. The traffic detection dataset of a
medium-sized city in China is selected for model verifica-
tion. The dataset contains the traffic detection data for each
section from December 1 to December 31, 2014 (2763066
detection records). There are traffic detection records of
484 sections (one-way driving) in the road network. The
overall topology of the road network is shown in Figure 5.
First, the example dataset required by the experiment is
extracted from the original traffic database using MySQL
software. The dataset records, including the section ID, col-
lection time, associated intersection, associated direction,
average speed, traffic flow, and time occupancy, are obtained
by screening. The instance dataset is divided into two parts:
a training set and a test set. The dataset of the first 25 days of
the instance dataset is used as the training set, and the data-
set of the other six days is used as the test set.

Each type of traffic parameter in the data record is
extracted from the actual data and stored in an independent
data file. Each independent parameter dataset extracted is
screened and eliminated by the verification method in traffic
data preprocessing. Considering the influence of traffic lights
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on urban road intersections, the time interval for fetching
the fusion data when preprocessing the dataset is 5 minutes.
The changes in the weighted adjacency matrix of the traffic
flow parameters of the urban transportation network are
shown in Figures 6–8. In the selected experimental dataset,
the average traffic speed, traffic flow, and time occupancy
rate changes at 50 intersections on December 1 were
obtained from 6:00 to 7:30.

7.2. Experimental Programme Design. To evaluate the effec-
tiveness of the temporal and spatial congestion prediction
model based on the proposed GRU-CNN method, the
model is verified according to the two structural parts in
the model design.

The first part of the model predicts the parameters of
each section of the traffic network, and the accuracy of the
prediction determines the reliability of the subsequent traffic
jam state prediction. To verify the accuracy of the prediction
part in the model, the model is compared with common
prediction methods, such as the autoregressive integrated
moving average (ARIMA) method, the support vector
machines (SVM), and the recurrent neural networks
(RNN). For all the methods, considering the basic time
interval of the congestion evaluation and the time law of
the continuous expansion of traffic congestion, the changes
in the traffic parameters in the first 30 minutes of the pre-
dicted time are used to predict the future values. In the eval-
uation of the algorithm, the average absolute percent error is
selected to evaluate the prediction performance, mainly to
compare the average absolute percent error of the predicted
traffic flow parameter data for each group of data in the test
set. The average absolute percent error is the average value
of the absolute percent error, as shown in Equation (19),
which can better reflect the actual proportion of the pre-
dicted difference.

MAPE = 1
m
〠
m

i=1

yi − ~yi
yi

����
����, ð19Þ

where yi represents the true value of the i -th road section
corresponding to the test data group, ~yi represents the

parameter predicted value of the i -th road section corre-
sponding to the test data group, and m is the number of
road sections in the experimental road network.

The second part of the model mainly identifies the over-
all state of the transportation network, extracts the images
with multiparameter predicted values, and uses each group
of the corresponding images as the input. To evaluate the
classification accuracy, the model is compared with other
common classification methods, such as the fuzzy clustering
means (FCM), K-nearest neighbors (KNN), and support
vector machines (SVM).

In addition to accuracy, precision, sensitivity, and speci-
ficity are also selected for model evaluation. The relevant
definitions are shown in Equations (20)–(23). Among them,
TPi represents the number of samples that are classified as i;
TNi is the number of samples classified as not i that are
identified as the number of samples that are classified as
not i; FPi represents the number of samples classified as
not i that are identified as being classified as the number of
samples of i; FNi is the number of samples classified as i that
are recognized as samples of other classifications.

Accuracyi =
TPi + TNi

TPi + TNi + FPi + FNi
, ð20Þ

Precisoni =
TPi

TPi + FPi
, ð21Þ

Sensitivityi =
TPi

TPi + FNi
, ð22Þ

Specificityi =
TNi

TNi + FPi
: ð23Þ

7.3. Model Parameters. Python and Tensorflow are used to
train and test the proposed framework. In the first part of
the model, since the concentration time interval of the
selected experimental data is 5 minutes, the time lag is set
to m = 6 based on the extraction of the historical data.
According to the model setting ða, b, cÞ = ð1, 2, 3Þ, since the
data time interval is 5 minutes, the traffic parameters are
predicted 5, 10, and 15 minutes after the input time. The
training set and test set are grouped into one group every
30 minutes from the daily data; i.e., 283 groups of data are
extracted for the daily traffic parameters of the network
structure.

In the second part of the model, according to the actual
road network extraction data, the first layer input in the con-
volution process is determined from the traffic data tensor
(RGB image) of the multiparameter data combination. The
settings of the convolution process are shown in Table 2.

The training process of the model relies on a forward
propagation and a backpropagation step to achieve optimi-
zation. The forward propagation transmits hierarchical fea-
ture information, and the backpropagation updates the
weights and bias vectors. The forward propagation computes
the output of the GRU neural network (Equation (6)). The
backpropagation of the GRU neural network uses the partial
derivative of the loss function to calculate the backward

Figure 5: A structure diagram of the example city road network
topology.
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Figure 6: Weighted adjacency matrix diagram of road section speed in the urban transportation network.
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Figure 7: Weighted adjacency matrix diagram of traffic flow of road sections in the urban transportation network.
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passing error term and the weight gradients and uses the
weight gradients to update the weights using the gradient
descent method. The forward propagation of the convolu-
tional layer in the CNN model outputs xlj = ReLUð∑xl−1j Kl

ij

+ bljÞ. There is no activation function in the pooling layer.
In forward propagation, this model selects the maximum
pooling to compress the input. In the forward propagation
of the output layer, the softmax activation function is used
to calculate the classification probability. The backpropaga-
tion of the CNN is the same as above. The loss function
measures the deviation between the network predictions

and the actual values. The smaller the loss function is, the
more robust the model is. In the proposed method, the
cross-entropy cost function is used as the loss function,
and the gradient descent method is used to modify the opti-
mized parameter values for the loss function so that the loss
function tends to lower the error during the training process.

7.4. Experimental Results. The spatiotemporal traffic data
tensors based on tube fibers are used to calculate the data
of the training and test sets. Figure 9 shows the space traffic
data tensor image for all the sections in the urban traffic
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Figure 8: Weighted adjacency matrix diagram of time occupancy of road segments in the urban transportation network.

Table 2: CNN model structure based on multiparameter traffic data images.

Layers Layer name Channel Filter size Output

0 Input layer 3 22 × 22

1 Convolutional layer
16
16
—

3 × 3 × 3
2 × 2
—

20 × 20 × 16
10 × 10 × 16

2 Maximum pooling layer
32
—

3 × 3
—

8 × 8 × 32

3 Incentive (ReLU)
64
64
—

3 × 3
2 × 2
—

6 × 6 × 64
3 × 3 × 64

4 Convolutional layer — — 576 × 1

5 Incentive (ReLU) — — 192 × 1

6 Convolutional layer — — 60 × 1

7 Maximum pooling layer — — 5 × 1
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network on December 1 for a duration of 24 hours.
Figure 9(a) shows the average velocity data corresponding
to the red channel of the image. Figure 9(b) shows the traf-
fic flow data corresponding to the green channel of the
image. Figure 9(c) shows the shared data corresponding to
the blue channel image transportation time. Figure 9(d)
shows the spatiotemporal traffic data tensor image of the
three channels.

According to the scheme design in this section, the data
of 484 one-way traffic sections in the experimental dataset
are first verified for the prediction model of the traffic flow
parameters. The prediction effects of the proposed model
are compared with the ARIMA, SVM, RNN, and LSTM out-
put for the same experimental data. According to the test set
data for each type of traffic parameter, the corresponding
traffic parameter prediction values of 5min, 10min, and
15min are predicted, and the average absolute percent error
of each group of data for each type of traffic parameter
(including the average speed, traffic flow, and time occu-
pancy according to the model design) is calculated.

The MAPE boxplot diagram of the experimental statisti-
cal data of each parameter is shown in Figure 10. The subfi-
gures in the three rows in Figure 10 present the linear box

diagram of the average absolute percent error of the predic-
tions on the test set data for each section for the average
speed, traffic flow, and time occupancy, respectively. In the
evaluation of each traffic parameter, the predicted and eval-
uated MAPE values are counted according to the prediction
results at 5min, 10min, and 15min. Figures 10(a), 10(d),
and 10(g) correspond to the linear box diagram of the aver-
age absolute percent error of the 5min prediction results.
Figures 10(b), 10(e), and 10(h) correspond to the linear
box diagram of the average absolute percent error of the pre-
diction result at 10 minutes. Figures 10(c), 10(f) and 10(i)
correspond to the linear box diagram of the average absolute
percent error of the prediction result at 15 minutes.

It can be found from the comparison of the statistical
graphs that the experimental overall error fluctuation of
the cyclic neural network-based method is less than that of
the ARIMA and SVMmethods, and the overall experimental
error of the 5min prediction is lower than that of the longer
prediction times. The following is a detailed analysis of the
effects of the cyclic neural network models. The experimen-
tal data of the RNN, LSTM, and GRU methods are com-
pared. The MAPE data of the 5min prediction show that
there is no significant difference among the three types of
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Figure 9: Spatiotemporal traffic data tensor images extracted from instance data.
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traffic parameter data of the cyclic neural network models
when they are predicted using the three methods. In fact,
most of the methods in the cyclic neural network class are
applicable. Compared with the MAPE data at 10min and
15min, the cyclic neural network method has better predic-
tion stability than the RNN method when using the three
methods to predict the three traffic parameters, which means
both LSTM and GRU have advantages in prediction. From
the perspective of the forecast duration and the category of
the predicted traffic parameters, the method used in this
model has the most stable fluctuation range of the average
absolute percent error predicted by the actual traffic time
series data, and thus, the proposed method is practical.

The CNN model is trained using the training set. It is
then used on the test set to predict and extract the multipa-
rameter traffic data image. The road network traffic state is
predicted by the CNN image prediction algorithm. The
images extracted from the predicted multiparameter traffic

data are shown in Figure 11. In that figure, 144 groups of
22 × 22 × 3 images with the size of 22 × 22 × 3 are composed
of the superposition of the 15min prediction parameters
corresponding to 144 × 3 groups of data on December 29
in the test set.

The experiment is designed according to the hierarchical
parameters of the model, and the images extracted from the
multi-parameter traffic prediction data are used to predict
the states of the traffic congestion types. The accuracy, preci-
sion, sensitivity, and specificity of each state prediction are
evaluated. The second part evaluates the results of the first
part of the model. This method is combined with the
FCM, KNN, and SVM methods to predict the traffic status
instantly. Using the FCM model in [18], the clustering cen-
ters of the flow [19 34 52 42 37] (Veh/min), speed [22 41 34
23 13] (km/h), and time occupancy [7 15 30 41 72] (%) are
selected according to the experimental data. The member-
ship degrees of the corresponding five types of road network
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Figure 10: MAPE boxplot diagram of the experimental data.
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traffic states are [0.72 0.1 0.09 0.06 0.03], [0.24 0.6 0.1 0.04
0.02], [0.11 0.21 0.55 0.1 0.03], [0.02 0.08 0.1 0.65 0.15],
and [0.02 0.14 0.09 0.19 0.56]. The KNN model in [19] is
applied to set the number of adjacent points between 5 and
20. Based on the experimental data, the number of adjacent
points is set to 15. The SVM model in [20] is used with the
optimized RBF kernel function parameter of 2.4 and the
penalty coefficient of 11.7. Figures 12(a)–12(d) present the
confusion matrix corresponding to the test set for the
CNN model, the FCM model, the KNN model, and the
SVM model, respectively.

The confusion matrix reflects the classification perfor-
mance of the model. The diagonal in the matrix is high-
lighted in cyan, where the values indicate the numbers of
correct classifications and the corresponding percentages.
The rows and columns corresponding to the other labels
are the numbers and percentages of the row classifications
assigned to the column classification, respectively. The dis-

criminant rate and misjudgment rate of each classification
correspond to the grey cells in each row and column. The
data in the lower right corner of the matrix are the overall
accuracy and misjudgment rate of all state classifications of
the model. Taking Figure 12(a) as an example, the numbers
of the correctly classified traffic conditions of the five road
networks are 730, 333, 257, 136, and 88, with the corre-
sponding percentages of 43.0%, 19.6%, 15.1%, 8.0%, and
5.2%, respectively. In this section, the accuracy rate and mis-
judgment rate of the traffic status judgment of the whole
road network using the model are 90.9% and 9.1%,
respectively.

By comparing all the confusion matrices, the overall
accuracy of the KNN and SVM models is 1.3%, and that of
the FCM and SVM models is 0.3%, while the CNN model
produces the highest overall accuracy. In the comparison
of the misjudgment rate of road network traffic conditions,
although the number of misjudgment types accounts for a

Figure 11: Image of multiparameter traffic data extraction based on the predicted values.
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small proportion, the misjudgment types of the CNN and
FCM models are close to the original categories. In contrast,
the misjudgment types of the KNN and SVM models are
more scattered, indicating serious category misjudgment.
This shows that the model proposed herein achieves better
stability in the identification of road network traffic states.
Among the comparison results of the four models, in the
classification of moderate congestion and severe congestion,
the misjudgment rate obtained by each model is high, which
is due to the relatively small proportion of the training set
data in this category in the actual network classification.

8. Conclusions

The prediction results of the overall experimental parame-
ters show that the spatiotemporal congestion situation pre-
diction model based on GRU-CNN can predict the traffic
parameters of the whole network with a highly accurate
judgment of the traffic situation. Compared with other
models, the accuracy of the road network traffic state (i.e.,
the road network traffic situation) of the proposed model
is improved, and the proposed model is more robust. Due
to the limitation of collecting data samples, the current
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Figure 12: The confusion matrix of each model.
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model is developed with insufficient training data. Its perfor-
mance should be improved when more data are collected.

This manuscript is part of the supporting technology for
the prediction of spatiotemporal traffic data in the analysis
of urban traffic network dynamics. This study takes the
whole urban traffic network as the analysis object and uses
deep learning technology to extract the characteristics of
the network to predict the congestion situation.

Using an urban traffic network model and traffic data
tensors, this study determines the space-time state matrix
of the dynamic road network and predicts the road network
congestion situation from the perspectives of time and space.
From the point of view of the time dimension, there is a
strong correlation in the traffic time series, and the gated
cycle unit neural network is used to predict the traffic net-
work parameters using historical data. From the perspective
of space, the locations where congestion often occurs are
fixed, so the CNN is used to identify the congestion state
of the spatial traffic network based on the predicted values
of the overall situation. Effectively predicting the trend of
traffic network operation is helpful for planning the deploy-
ment of traffic control and releasing early warnings and
guidance information.

The study is mainly based on the specific road network
data and traffic detection data of a medium-sized city, so
the main results of the research are limited to the road net-
work of medium-sized cities. There are a large number of
complex interchanges in the road network structure in large
cities. Since there is no data information corresponding to
large-scale cities, the conclusions of this study cannot be
extended to the traffic problems of large-scale cities. In the
next stage, we will combine the previous research conclu-
sions, aiming at the prediction of traffic congestion areas
and fully considering the congestion avoidance mechanism
when providing corresponding route recommendations to
travelers. This is to alleviate the congestion level of the over-
all traffic network and improve the efficiency of the traffic
flow in road network operation.

Data Availability

The traffic detection dataset of a medium-sized city in China
is selected for model verification. The dataset is provided by
the project sponsor, and it is confidential. The dataset con-
tains the traffic detection data of each road section from
December 1 to December 31, 2014 (2763066 detection
records), with 484 sections (one-way driving) in the urban
road network.
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