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Absorption and scattering of propagated microwave radio signals by atmospheric variables, particularly rainfall, remained a major
cause of propagation attenuation losses and service quality degradation over terrestrial communication links. The International
Telecommunications Union Radio (ITU-R) reports and other related works in the literature provided information on
attenuation due to rain and microwave propagation data. Such propagation attenuation information in the tropical region of
Nigeria is destitute, especially at lower radio waves transmission frequencies. Therefore, this study addresses this problem by
employing 12-year rainfall datasets to conduct realistic prognostic modeling of rain rate intensity levels. A classification of the
rainfall data into three subgroups based on the depth of rainfall in the region is presented. Additionally, an in-depth estimation
of specific rain attenuation intensities based on the 12-year rainfall data at 3.5GHz is demonstrated. On average, the three
rainfall classes produced rain rates of about 29.27mm/hr, 73.71mm/hr, and 105.39mm/hr. The respective attenuation values
are 0.89 dB, 1.71 dB, and 2.13 dB for the vertical polarisation and 1.09 dB, 1.20 dB, and 2.78 dB for the horizontal polarisation
at 0.01% time percentage computation. Generally, results indicate that higher rain attenuation of 12% is observed for the
horizontal polarisation compared to the vertical polarisation. These results can provide valuable first-hand information for
microwave radio frequency planning in making appropriate decisions on attenuation levels due to different rainfall depths,
especially for lower frequency arrays.

1. Introduction

In designing and deploying meaningful Earth-space terres-
trial radio and microwave network-based communication
systems, several attenuation effects owing to different atmo-
spheric conditions need to be examined [1, 2]. The effects
due to scattering, absorption, and depolarization by hydro-
meteors (e.g., snow, ice, sleet, and water droplets in clouds,

precipitation, etc.) and atmospheric gases are considered at
different transmission frequencies around the 11GHz band
[3, 4]. Due to heavy rainfall depth and fade, attenuation
can damage signal propagation and reception at the user ter-
minal [5, 6]. It can also cause short-term and long-term
impairments in radio signal communication links [7–9].
Adverse atmospheric weather conditions (bad weather) due
to different raindrops can absorb microwave-range signals
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in both terrestrial point-to-point and Earth-space satellite
communication systems [10–13]. Thus, resulting in substan-
tial path loss and severe degradation in signal coverage and
quality of service [14–21]. In order to address this problem,
estimating rain rate attenuation will enable terrestrial radio
and microwave network planners to determine the type of
diversity techniques to explore to combat or compensate
for it during and after antenna deployment [22–25].

The knowledge of specific attenuation influenced by
different rainfall drop sizes/depths and other weather-
related issues is essential for efficient fade management
processes. For instance, predictive quantification of rainfall
attenuation impacts is critical to determining the requisite
tracking speediness of fade moderation. The atmospheric
earth surface comprises different layers with different char-
acteristic features, properties, and structures. The tropo-
sphere, a vital component of the homosphere, is the

most crucial sublayer for radio frequency engineers han-
dling space terrestrial radio channels [26–28]. Studies on
hydrometeors impacts, mainly due to rainfall intensity on
propagated electromagnetic signal waves in recent decades,
have been reported. Results indicate enormous path loss
owing to high traffic and congestion issues in terrestrial
cellular communication networks operating at lower
higher frequency bands [22].

Several reports on rain attenuation impacts on commu-
nication systems are detailed in [22, 29–36]. In particular,
the work in [29] presented a predictive analysis of rainfall
attenuation and their probable influence on propagated
microwaves for Uttarakhand, a tropical region in India. Sim-
ilar rain attenuation modeling, but based on practical mea-
surements of different rainfall drop sizes, is reported in
[30] for the same region. Predictive analysis of rain attenua-
tion and rain rate for satellite-based communication using
TURKSAT in the Ku Band Beacon has been investigated
[31]. Rain attenuation studies at microwave propagation fre-
quencies over Malaysia environment using ITU-R, Ajayi
model, and Global Crane Model are presented in [32]. The
authors [33, 34] provide detailed rainfall attenuation distri-
bution statistics over the wireless link at a higher microwave
frequency in Japan and Korean territories. Specific practical
attenuation measurement and modeling-based investigation
approaches to rainfall intensity effects conducted in different
countries are presented [35–44].

In recent literature, reconfigurable intelligent surface-
(RIS-) based techniques for mitigating interference are gain-
ing widespread popularity. RIS has been a candidate tech-
nology for the beyond 5G and 6G wireless networks. RISs
can help improve the efficiency and performance of wireless
communication networks [45, 46]. RISs are designed with
passive materials to tackle interference in harsh and
unfriendly environments [47]. In RIS deployment, wireless
signals are transmitted from the transmitter to the receiver
at a minimal loss [48, 49]. On the other hand, real-time con-
trol of the reflection amplitude and phase shift of RISs can
present huge implementation issues [50]. In order to address
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Figure 1: CDF statistical distribution of rain rates due to different rainfall depth.
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Figure 2: Raindrop size distribution evaluation with model 1.
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this problem, machine learning, deep learning, and federated
learning models are currently proposed [51–53]. Testing and
training data acquisition will limit machine learning-based
RIS techniques [54, 55].

While a number of the reported attenuation studies are
due to rain and microwave propagation data, such propaga-
tion attenuation levels information in the tropical region of
Nigeria is still missing in the existing literature, especially
at lower radio waves transmission frequencies. To this end,
this study is designed to fill the gap in the open literature.
In particular, the key contributions of the paper are as
follows.

(i) We carried out realistic prognostic modeling of rain
rate intensity levels based on 12-year experimental
rainfall datasets

(ii) We classified the rainfall data into three clear
groups based on the depth of rainfall in the region

(iii) We estimated specific rain attenuation intensities
in-depth on the 12-year rainfall data at 3.5GHz
microwave radio frequency

(iv) Establish the connection between the raindrop size
and rain rate values

The remaining part of this paper is prepared as follows.
The theoretical framework is defined in Section 2. The mate-
rials and methods comprising the study location, source of
rainfall datasets collection method, and the stepwise proce-
dure are briefed in Section 3. Section 4 presents the results
and discussions, and a concise conclusion is drawn in Sec-
tion 5.

2. Theoretical Framework

2.1. Specific Attenuation Model Based on Rec. ITU-R P.838-3
Power-Law. Specific attenuation SrðdB/kmÞ due to rainfall
depth over a terrestrial communication channel can be artic-
ulated using the power-law relationship, which combines the
propagation path length Lpath (km) and rain rate Rrðmm/hrÞ
given in equation (1), where γ is defined in equation (2) [22,
30]:

Sr = γLpath, ð1Þ

where

γ = β Rrð Þα: ð2Þ

The propagation path length Lpath (km) can be obtained
by multiplying the real channel length (l) with a distance
parameter, d, and it is expressed in the following equation
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Figure 3: Raindrop size distribution evaluation with model 2.
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[28, 56]:

d = 1
0:477l0:633R0:073ν

r f 0:123c − 10:579 1 − exp −0:024lð Þð Þα
,

ð3Þ

where ν indicates the specific attenuation regression
constant.

The modeling parameters β and α can be obtained from
the scattering calculation method in combination with curve

fitting given in the following equations [30]:

log β = 〠
4

j=1
xj exp −

log f c − yj
z j

 !2" # !
+mk log f c + zk,

ð4Þ

log α = 〠
5

j=1
xi exp −

log f c − yi
zi

� �2
" # !

+mn log f c + zn:

ð5Þ
The rain attenuation ApðdBÞ exceeded at time percent, p

in the range of 0.001–1% is expressed as given in the follow-
ing equation:

Ap = A0:01
p

0:01
� �–t1–t2n A0:01ð Þ–β 1–pð Þsin θÞ

, ð6Þ

where θ is the elevation angle and the time t1 and t2 are
defined in the following equations, respectively.

t1 = 0:655 + 0:033 ln pð Þ, ð7Þ

t2 = 0:045: ð8Þ
The expression in equation (2) defines the popular

power-law Rec. ITU-R P.838-3 for specific rain attenuation
modeling.

2.2. Rain Drop Size Distribution Modeling and Connection
with Rain Rate. Rainfall occurrence primarily expresses the
wide-ranging formation of raindrop sizes [57–60]. Raindrop
size distribution (DSD) describes the composition or

Figure 6: Specific attenuation due to very heavy rainfall at different
path lengths.
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different path lengths.
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formation variant of diverse raindrop sizes (number) based
on their diameter (D). Information on predictive modeling
of DSD is vital for the robust evaluation and classification
of radio and microwaves propagation effects in space. It also
provides valuable information on the general microphysics
composition of the precipitation phenomenon [61, 62].

There are many DSD models in the literature to analyse
and evaluate rainfall events. In this paper, the two most pop-
ular ones with simplified computation convolution are con-
sidered, both of which are tagged model 1 and model 2 as
described in equations (9), (10), (11), and (12).

N Dð Þ =NiD
a exp −ΛsD

b
� �

, ð9Þ

Ni = 1:76 × 106R−1:2
r , ð10Þ

Λs = 10R−0:31
r , ð11Þ

where NðDÞ indicate the raindrop size number, with Ni
andΛs being the modeling intercept parameter and slope
parameter. a and b are also NðDÞ modeling parameters
where Rr and D indicate the raindrop diameter and rain rate.
For a = 0 and q = 1, the expression in (1) turns

N Dð Þ =Ni exp −ΛsDð Þ: ð12Þ

While equation (4) explains the popular model devel-
oped by Marshall and Palmer [63] for raindrop size model-
ing, equation (1) describes the general form of the raindrop
size model developed by proposed Ulbrich [64] to take into
account a larger range of D values.

3. Materials and Methods

This section describes the study area, data collection
method, and the methodology employed in this study.

3.1. Study Area. Kogi state, a midcentral (middle belt) zone
of Nigeria, is a case study for the research work. Kogi, which
connotes “River” in the Hausa language, houses a confluence
town, where River Niger and Benue meet. The region holds a
tropical climate with inconstant dry and rainy seasons in
duration, timing, and severity. Despite the region’s relatively
irregular dry and rainy seasons, the total annual rainfall
depth varies between 805mm and 1767mm. It is a tropical
region of Nigeria with low humidity of about 30% in the
dry season and high humidity of approximately 70% during
the wet season [65, 66]. The rainy wet season of the region
usually brings cooler weather, mainly due to cloud cover
increase that most time acts as a blockage to the intense
tropical sunshine. However, during afternoons, this season
can be as hot and humid due to the surrounding rocky soils
and the riverine nature of the area. During dry seasons, the
sun shines over the expanse with little or no blockades from
the atmosphere, thus making the season in the region a
period of hot and warm temperature conditions [67]. But
in the mid-dry season, which is usually around December/
January, the hot sun’s rays are partly blocked by the Harmat-
tan haze and dust, which often results in lower temperatures.
Its annual temperature is ranged between 27.7°C and 37.7°C
in the wet and dry seasons. The average daily vapour pres-
sure and wind speeds are 26Hpa and 89.9 km/hr.

3.2. Data Collection. The 12-year rainfall datasets explored
for this study were acquired with support from the Lokoja
zone of the Nigerian Meteorological Agency (NIMET). It is
the primary agency of the Nigerian government equipped
with relevant meteorological facilities to collect the bulk of
daily, monthly, and yearly data on weather and climate data.
The agency has branches located in the 36 state capitals,
Nigeria. The 12-year rainfall datasets ranged from 1st Janu-
ary 2008 to 31st December 2020. The datasets comprised
the bulk of daily, monthly, and yearly rainfall amounts.
Remarkably, such long-term datasets were engaged to thor-
oughly examine and make known the steadiness of the
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bearing effect of the rainfall amount and their attenuation
level effects in the study location, especially about micro-
waves radio frequency cellular communication links.

3.3. Stepwise Procedure. This work employs a practical based
stepwise method to actualize the research aim. The practical
based stepwise methodology is highlighted:

(i) Obtain the rainfall data and its related modeling
parameters

(ii) Convert the rainfall data to rain rate using the
expression in the following equation

Rr = Lm
60
T
, ð13Þ

where T and Lm indicate the rainfall time interval in min
and rainfall depth in mm. The Rr defines the rain rate.

(iii) Explore the theoretical specific framework for the
rain attenuation model, provided in detail in Sec-
tion 2

(iv) Engage the calculated rain rate values with the
power-law ITU-R model [56] (see equation (2))
to determine the specific attenuation levels for
the study location

(v) Compute the rain rate intensity attenuation levels
for different time percentages in the range of
0.001–1% (see equation (6))

(vi) Examine the effect of different microwave radio
propagation path lengths on the specific attenua-
tion levels

(vii) Establish the connection between the rain rate
values and the specific attenuation values

(viii) Examine the effect of different horizontal and ver-
tical polarisation on specific attenuation levels

(ix) Establish the connection between the raindrop size
and rain rate values

4. Results and Discussions

The specific attenuation results are presented and discussed
in this section. The results are obtained using a combination
of the acquired 12-year rainfall dataset together with the
ITU-R power law-based model and the rain rate conversion
models, as expressed in equations (1), (2), (3), and (4). All
the graphical results displayed (Figures 1–11) are plotted
using MATLAB. First, the rainfall datasets were divided into
three components based on their depth amount in mm.
These include heavy, heavy, and extremely heavy, ranging
from 10-59mm, 60-89mm, and 90-130mm. The heavy rain
depth falls from October to November, while very heavy and
extremely heavy rains are obtained between April to June
and July to September. Figure 1 and Table 1 display the
cumulative distribution of the computed rain values due to
the three classes of rain depths. The three rainfall classes
produced average rain rates of about 29.27mm/hr,
73.71mm/hr, and 105.39mm/hr during the investigation.
Higher rain depths result in larger rain rate intensities from
Table 1 and vice versa. For example, while heavy rain depth
produced a 59.18mm/hr maximum rain rate, 100.57 and
122.15 maximum rain rate values were attained due to very
heavy rain and extremely heavy rain depths. Similarly, while
heavy rain depth recorded a 12.28/hr minimum rain rate,
60.36 and 80.50 minimum rain rate values were achieved
for the very heavy rain and extremely heavy rain depths.

Employing models 1 and 2, Figures 2 and 3 display the
resultant logarithm sales of DSDs versus linear values of D
for the three different rain rate classes averaged over 12
months. The significant difference between models 1 and 2
is that the latter considers more modeling parameters and
a more extensive range of D values than the former, as
revealed in equations (12) and (9). The results in the two
graphs indicate that more significant rain rates values are
composed of a higher dimension of raindrop diameters than
lower rain rates. Remarkably, both DSD results attained
maximum divergence at higher raindrop diameters.

Table 1: Statistics of rain rates due to different rain depth.

Statistics
Rain rate due

to heavy
rainfall

Rain rate due to
very heavy
rainfall

Rain rate due to
extremely heavy

rainfall

Mean 29.27 73.71 100.39

Minimum 12.28 60.36 85.50

Maximum 59.18 100.57 122.15

Moment 12.28 60.36 85.50

Kurtosis 2.90 2.25 1.13

Skewness 0.71 0.56 -0.10
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Figures 2 and 3 suggest that NðDÞ depends on rain rates and
D and other climatic parameters like rainfall type.

Figure 4 provides graphical information on the connec-
tion between raindrop size and rain rate at diameter D = 1
mm and D = 2mm, respectively. A gradual increase in rain
rate (intensity) at lower values is seen in the graph as the dis-
tribution rainfall sizes become higher and more expansive.
However, the gradual increase becomes slower and tends
to logarithm stability at larger peak rain rate values of 100-
120mmh−1. This trend may suggest that the N ðDÞ may
reach an equilibrium state at higher rain rates. Attaining
an equilibrium state at higher rain rates agrees with the
results of other authors in [68–71] that a peak NðDÞ value
is attained in correspondence with specific rain rates,
wherein the raindrop sizes either become stable or fall subse-
quently. It is also clear from Figure 4 that the NðDÞ results
are mainly dependent on D sizes and the model engaged
for its distributive analysis.

Figures 5–7 display the prognostic specific attenuation
versus rain rate values at different path lengths for heavy,
heavy, and extremely heavy rainfall depths. For higher rain-
fall rate values at higher path lengths, the aggregate atmo-
spheric attenuation also rises steadily with heavy, very
heavy, and extremely heavy rainfall depths. Higher rainfall
depths lead to higher attenuation of propagated microwaves
radio signals due to more signal scattering and absorption
between the communication paths.

Figure 8 displays the computed rain-specific attenuation
levels against different communication path lengths and rain
depth for the study location. A quick observation from
Figure 8 shows almost a direct relationship between specific
attenuation levels and the communication path lengths. This
trend indicates that increased communication paths between
the transmitter and receiver would yield higher attenuation
values due to path obstructions, especially where scattering
and rain absorption are key components.

Figure 9 shows the computed rain-specific attenuation
levels against frequency at different rain depth amounts for
the study location. A key observation from Figure 9 shows
a noticeable rise in attenuation values between 1 and
2GHz and then drops a little as the frequency range
increase. This trend reveals that signal transmission at
higher frequencies would undoubtedly be more degraded
by rain attenuation in the investigated area. Higher attenua-
tion values were observed in Figure 9 for higher rainfall
depths, which can be ascribed to more signal scattering
and absorption as the raindrop increases.

Now, consider Figures 10 and 11 that display the rain
attenuation amount computed at different percentages of
time for horizontal and vertical polarisations under the
three rain depth classes, respectively. The rain attenuation
decreases gradually for higher time percentages, stretching
up to 0.89 dB, 1.71 dB, and 2.13 dB for vertical polarisation
and 1.09 dB, 1.20 dB, and 2.78 dB horizontal polarisation,
respectively. These values show that higher rain
attenuation is observed for horizontal polarisation com-
pared to vertical polarisation. Specifically, horizontal
polarisation has a higher 12% attenuation value than ver-
tical polarisation.

5. Conclusions

Signal propagation at different radio waves and microwave
carrier frequencies in terrestrial point-to-point and Earth-
space satellite communication links is greatly influenced by
precipitation, principally rain. Thus, attenuation effects
based on different atmospheric conditions must be investi-
gated and quantified for effective design and efficient deploy-
ment of communication links. The current contribution
explores a 12-year rainfall dataset to conduct realistic prog-
nostic modeling of rain rate amount and specific rain atten-
uation intensity levels at 3.5GHz. The atmospheric
attenuation-based predictive modeling has been achieved
by combining the ITU-R model with the experimental 60-
minute intervals of rainfall data measured from 2008 to
2020. The rainfall datasets were classified into three compo-
nents based on their depth amount in mm. These are heavy
rain, very heavy rain, and extremely heavy rain, all of which
ranged from 10-59mm, 60-89mm, and 90-130mm, respec-
tively. On average, the three rainfall classes produced rain
rates of about 29.27mm/hr, 73.71mm/hr, and 105.39mm/
hr, respectively. The corresponding attenuation values are
0.89 dB, 1.71 dB, and 2.13 dB for vertical polarisation and
1.09 dB, 1.20 dB, and 2.78 dB horizontal polarisation, and
both occurred at 0.01% time percentage computation. Our
future work would focus on optimizing the projected rain
rate models for improved performance.
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