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In order to improve the effect of tennis intelligent teaching, this paper combines the human skeleton node model to construct a
tennis intelligent teaching model. Aiming at the fact that there are errors in model identification and positional disturbances such
as friction which cannot be avoided in actual tennis teaching, an effective sliding mode control strategy based on disturbance
observer is presented. Moreover, this paper builds a simulation model through MATLAB/Simulink to verify the influence of
the three parameters of inertia, damping, and stiffness in the admittance model on the control performance. Then, this paper
combines the admittance control theory to analyze the difference between the active mode and the passive mode and the main
functions of the two control modes and constructs an intelligent simulation system. The experimental study shows that the
tennis intelligent teaching model based on the human skeleton node model has good effects in tennis action correction and
tennis-teaching effect improvement.

1. Introduction

The current tennis classroom teaching focuses on applica-
tion, understanding, and memory. The future classroom
teaching should be innovative, challenging, and advanced.
The athletic ability and sports foundation of the students
in the tennis option course are uneven. Most boys have
stronger athletic ability while girls are slightly weaker.
Therefore, it is recommended that teachers carry out more
personalized and innovative teaching methods and grasp
the differentiated characteristics of students’ athletic ability
to carry out teaching in accordance with their aptitude.
Teachers can use hierarchical teaching methods, heuristic
teaching methods, problem-oriented teaching methods, etc.
to improve the bilateral roles of teachers and students in tra-
ditional tennis teaching. At the same time, teachers can
establish a student-centered teaching method, which fully
reflects the main body status of students and cultivates stu-
dents’ thinking ability. At the same time, teachers can use
the convenient functions of modern educational information
technology to carry out mixed tennis teaching, by combining

various teaching platforms or teaching software. By allowing
students to watch tennis technology videos online, more
intuitive teaching can be achieved, so that students can more
thoroughly understand the principles of action learning and
more firmly grasp the learned knowledge.

Active learning and passive learning of tennis techniques
have very different learning outcomes. Passive learning
mainly imitates the basic skills of tennis through the
teacher’s explanation and demonstration and cannot make
the students understand the principle of action technology
very clearly. Active learning is mainly through the method
of self-learning and then taught by teachers in the process
of self-learning before and after class. In this learning pro-
cess, students can more thoroughly understand the princi-
ples of tennis action techniques, and it is easier to grasp
the key points and difficulties of teaching. There is also
greater clarity on the fallibility of tennis action technique.
Therefore, it is necessary to transform students learning
through traditional teaching; to a certain extent, it can culti-
vate students’ life-long sports-learning ability and lay a foun-
dation for students’ life-long sports activities. At present,
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more than 1/3 of colleges and universities in my country
have set up tennis elective courses. More than a quarter of
colleges and universities offer tennis sports options. Tennis
has played an active role in promoting college students’
physical health, developing lifelong physical exercise habits,
and cultivating sportsmanship. However, in the practice of
tennis teaching and research in colleges and universities, it
is found that the vast majority of students think that tennis
is difficult and cannot persist for a long time after learning.
The fundamental reason is that, on the one hand, compared
with small ball sports such as table tennis and badminton,
tennis has the characteristics of being difficult to get started
and slow to learn. With regard to the teaching method, the
practice content is single, the practice method is boring,
and the organization method is dominated by teachers,
which do not mobilize the autonomy and enthusiasm of
the students and do not give full play to the creativity and
initiative of the students. Therefore, in order to further pro-
mote the teaching of tennis sports optional courses in col-
leges and universities, help college students to master
tennis skills, and lay a good foundation for better develop-
ment of tennis in the future, this paper studies the tennis-
teaching methods in colleges and universities and provides
a useful reference for the teaching of tennis teachers in col-
leges and universities.

Based on the above analysis, intelligent tennis teaching
can solve most of the problems existing in the current
methods of tennis teaching. Therefore, this paper combines
the human skeleton node model to construct a tennis intel-
ligent teaching model to improve the effect of tennis intelli-
gent teaching and further improve the quality of tennis
teaching.

2. Related Work

Accurate skeleton information can also be used as important
spatial literature information for bone skinning in the subse-
quent process of automatic character modeling, improving
the accuracy of deformation drive establishment between
bones and model skin. At the same time, skeletons that con-
form to the laws of human kinematics are also in the process
of motion data loading. The basic requirements of the model
can make the model fit well the motion data obtained by
motion extraction and retain to the greatest extent the char-
acteristics of the original motion collected. Therefore, how to
extract accurate skeleton data from the three-dimensional
human body model and meet the requirements of motion
data attachment is an important part of completing auto-
matic character modeling [1].

The curve bones of a model often have hundreds of
nodes, so the whole looks like a curve. However, to apply
bones to motion rigs, you do not need so many points.
Therefore, it is one of the keys to extract joint bones from
curvilinear bones by downsampling the curvilinear bones
and extracting a smaller number of joint point sets suitable
for bone binding and motion data loading [2]. Downsam-
pling is a multirate digital signal processing technique or
the process of reducing the sampling rate of a signal, usually
used to reduce the data transmission rate or data size. In the

processing of curvilinear bones, the definition of downsam-
pling is extended to process curvilinear bones, while reduc-
ing the number of nodes of curvilinear bones, while
ensuring that key information is not lost [3]. The downsam-
pling of curved bones mainly extracts the points containing
important features in the bones. Among them, the connec-
tion point and the end point are the important point sets
that can reflect the characteristics of the model. For all
points in the model curve skeleton, they are classified
according to how many nodes the node has a connection
relationship with. The number 1 is the end point, the num-
ber 2 is the ordinary point, and the number more than 3 is
the connection point. Taking the human body as an exam-
ple, the joint points of the end of the hand, the end of the
foot, and the head are the end points, and the neck joint
and the hip joint are the connection points [4].

Software such as Kinect and Maya have their own stan-
dards, and in the face of different model types, the standard
changes may also be quite large. After completing the curve
skeleton extraction, the specific requirements of the key skel-
eton nodes that are sampled and retained are different in dif-
ferent application scenarios and model types [5]. In the
literature [6], the method of topology refinement is used to
gradually converge the surface of the model mesh; shrinking
to the limit, the surface is concentrated near the expected
skeleton node, and the center point in the tangential field
is sampled and connected to obtain the model skeleton. This
method has strong applicability and can obtain skeletons for
any type of model, but the number of nodes and topology in
the obtained skeleton will be affected by the shrinking pro-
cess of the surface structure of the model, and the number
and topology of nodes are random and redundant nodes
are too many. In [7], a method is proposed to use the geode-
sic distance as a processing function to construct the Reeb
graph of the model. This method does not complete the
downsampling extraction of the joint points of the model
but only completes the segmentation of the model and
obtains rough end points. It is used as the limb node of the
character model, and it lacks the supplementary nodes
required for the flexible movement of the three-
dimensional character. In the literature [8], the curved bones
extracted by the method based on distance transformation
are affected by the changes of the surface of the model.
When the surface features of the model are more complex,
the connectivity of the curves is poor, so the connectivity
of the obtained skeleton will also be poor. Only after calcu-
lating to connect the obtained skeleton can the key skeleton
nodes be obtained by sampling. Literature [9] uses the Vor-
onoi diagram to obtain the result of the model axis, which
needs to be pruned; the complexity of the algorithm is rela-
tively high; and it is difficult to downsample to a simple lin-
ear skeleton structure.

At present, the research methods of human gesture rec-
ognition mainly include statistical-based algorithms [10]
and grammar-based algorithms (Finite State Machine
(FSM), Context-Free Text (CFG)) [11]. Among the algo-
rithms for human pose research, template matching has bet-
ter recognition accuracy and robustness than other
algorithms, but the establishment of the model requires a
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large amount of data and the calculation of features is com-
plex [12]. Literature [13] proposed a static 3D gesture recog-
nition based on Kinect skeleton data. By obtaining the hand
angle feature vector to determine the posture template to be
measured, the posture to be measured and the posture tem-
plate are optimally matched. Due to the persistence of the
behavior time interval and the image and due to the influ-
ence of noise, each frame of image cannot be detected and
recognized in real time. Literature [14] proposed a real-
time multiperson human pose recognition based on the sim-
ilarity of parts. The algorithm adopts a bottom-up approach.
First, the key points of the human body are detected, and
then, a vector field is established to infer the key parts and
connect them. Finally, the deep-learning network structure
is used to construct a feature image set for attitude predic-
tion; however, this algorithm has certain limitations, only
considering the position information of the key points of
the limbs and ignoring the invariance of rotation and scale,
so the attitude can only be performed in the local area to
predict connections. Literature [15] proposes a Kinect ges-
ture control robot based on the convolutional neural net-
work and FastDTW, which extracts and processes the joint
information of each frame of the captured image from the
Kinect, establishes the derived images of all frames of gesture
actions, and uses joint training and personal training per-
formed with convolutional neural network (CNN) training,
and finally, the mobile robot system is added to the trained
system to control the movement of the robot according to
the classification results of the pose algorithm. Literature
[16] proposed the recognition of moving human behavior
based on video stream, using the interframe difference
method and the improved CV model algorithm to segment
the moving human body, detecting the contour curve of
the moving object, classifying the segmented contour with
weighted motion string, and constructing the action string.
Different weights are given to different poses at different
times, and finally, the abnormal behavior of global motion
information and local feature information is identified.

3. Human Skeleton Point Intelligent Model

We consider a second-order system as follows:

_x1 = x2,
_x2 = h xð Þ + g xð Þu:

(
ð1Þ

Among them, ∀x, gðxÞ ≥ gð0Þ > 0, gðxÞ, hðxÞ are
unknown nonlinear functions. The sliding mode control is
used to design a control rate so that the system represented
by (1) moves on the surface s = a1x1 + x2 = 0. The choice of
a1 can control the convergence speed of the system as xðtÞ
tends to 0 when time tends to infinity.

The main design problem is how to switch the trajectory
to the curve s = a1x1 + x2 = 0 and keep it. Differentiating the
curve, we can get

_s = a1 _x1 + _x2 = a1x2 + h xð Þ + g xð Þu: ð2Þ

If there is some known function ξðxÞ such that the fol-
lowing inequality holds

a1x2 + h xð Þ
g xð Þ

����
���� ≤ ξ xð Þ, ∀x ∈ R2: ð3Þ

We choose the Lyapunov function V = ð1/2Þs2 and
derive it to get

_V = s_s = s a1x2 + h xð Þ½ � + g xð Þsu ≤ g xð Þ sj jξ xð Þ + g xð Þsu: ð4Þ

We take

u = −β xð Þ sgn sð Þ: ð5Þ

Among them, βðxÞ ≥ ξðxÞ + β0, β0 > 0. Then, there is

_V ≤ g sð Þ sj jξ xð Þ − g xð Þ ξ xð Þ + β0½ �s sgn sð Þ = −g xð Þβ0 sj j ≤ −g0β0 sj j:
ð6Þ

Therefore, the motion trajectory of the controlled object
can reach the curve s = 0 in a limited time. Moreover, it can
be seen from (6) that the motion trajectory will not leave
once it reaches the curve. A typical phase diagram under
the sliding mode control is shown in Figure 1.

In the actual process, it is difficult to realize the high-
performance position tracking control of the robot due to
the existence of external disturbances. The disturbance
observer is an effective solution, and the disturbance
observer based on the following model is discussed.

H θð Þ€θ + C θ, _θ
� �

_θ +G θð Þ = T: ð7Þ

The unknown external disturbance existing in the two-
degree-of-freedom lower-limb exoskeleton system can be
collectively expressed as d ∈ R. Then, after considering the
disturbance, formula (7) can be expressed as

H θð Þ€θ + C θ, _θ
� �

_θ +G θð Þ = T + d: ð8Þ

That is,

d =H θð Þ€θ + C θ, _θ
� �

_θ +G θð Þ − T: ð9Þ

The basic idea of the disturbance observer is to compare
the difference between the actual output and the estimated
output of the system and use this difference to make real-
time corrections to the system estimate.

_̂d = L θ, _θ
� �

d − d̂
� �

= −L θ, _θ
� �

d̂ + L θ, _θ
� �

d = −L θ, _θ
� �

d̂

+ L θ, _θ
� �

H θð Þ€θ + C θ, _θ
� �

_θ +G θð Þ − T
h i

:

ð10Þ

Among them, d̂ represents the observation of the
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disturbance. In the actual process, it is generally impossible
to know the prior information of the differential of the inter-
ference term, but the change of the interference is often slow,
and it can be assumed that the differential term is 0, that is,

_d = 0: ð11Þ

The observation error is

e tð Þ = d − d̂: ð12Þ

That is,

_e tð Þ = _d − _̂d = −L θ, _θ
� �

d − d̂
� �

= −L θ, _θ
� �

e: ð13Þ

In the actual process, since it is difficult to obtain an

accurate acceleration signal by differentiating the speed sig-
nal of the robot, the observer shown in (10) cannot achieve
the predetermined effect in practical engineering. It is neces-
sary to design a more practical nonlinear disturbance
observer.

The auxiliary vector is

z = d̂ − p θ, _θ
� �

: ð14Þ

Among them, z ∈ R2, and the nonlinear vector pðθ, _θÞ is
the function vector to be designed. Differentiating the above
equation, we can get

_z = _̂d −
dp θ, _θ

� �
dt

: ð15Þ

Lðθ, _θÞ in formula (10) is given by

L θ, _θ
� �

H θð Þ€θ =
dp θ, _θ

� �
dt

=
dp θ, _θ

� �
dθ

dp θ, _θ
� �
d _θ

2
4

3
5 _θ

€θ

" #
:

ð16Þ

We obtain

_z = d̂ −
dp θ, _θ

� �
dt

= d̂ − L θ, _θ
� �

H θð Þ€θ: ð17Þ

Bringing (10) into (17), we get

_z = d̂ − L θ, _θ
� �

H θð Þ€θ = −L θ, _θ
� �

d̂ + L θ, _θ
� �

H θð Þ€θ
h

+ C θ, _θ
� �

_θ +G θð Þ − T� − L θ, _θ
� �

H θð Þ€θ = −L θ, _θ
� �

d̂

+ L θ, _θ
� �

C θ, _θ
� �

_θ +G θð Þ − T
h i

:

ð18Þ

Bringing (14) into (18), we get

_z = −L θ, _θ
� �

z + p θ, _θ
� �h i

+ L θ, _θ
� �

C θ, _θ
� �

_θ +G θð Þ − T
h i

= −L θ, _θ
� �

z + L θ, _θ
� �

C θ, _θ
� �

_θ +G θð Þ − T − p θ, _θ
� �h i

:

ð19Þ

To sum up, the nonlinear disturbance observer that does
not need the acceleration information of the disturbance sig-
nal can be designed in the following form:

_z = −L θ, _θ
� �

z + L θ, _θ
� �

C θ, _θ
� �

_θ + G θð Þ − T − p θ, _θ
� �h i

,

d̂ = z + p θ, _θ
� �

:

8><
>:

ð20Þ

S = 0

Figure 1: Typical phase diagram under sliding mode control.
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Figure 2: Observation results of the disturbance observer.
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Bringing (15), (16), and (20) into (13), we get

_e = _d − _̂d = − _̂d = − _z −
dp θ, θð Þ

dt
= L θ, _θ

� �
z

− L θ, _θ
� �

C θ, _θ
� �

_θ + G θð Þ − T − p θ, _θ
� �h i

− L θ, _θ
� �

H θð Þ€θ = L θ, _θ
� �

z + p θ, _θ
� �h i

− L θ, _θ
� �

H θð Þ€θ + C θ, _θ
� �

_θ + G θð Þ − T
h i

:

ð21Þ

Therefore, we get

_e = L θ, _θ
� �

d̂ − L θ, _θ
� �

d = −L θ, _θ
� �

d − d̂
� �

= −L θ, _θ
� �

e:

ð22Þ

That is,

_e + L θ, _θ
� �

e = 0: ð23Þ

Therefore, the observation error can be exponentially
approached to 0 by designing the function Lðθ, _θÞ.

For the following two-degree-of-freedom lower-limb
exoskeleton Lagrange dynamic model,

H θð Þ€θ + C θ, _θ
� �

_θ +G θð Þ = T + d: ð24Þ

Among them, H, C, and G represent the inertia matrix,
Coriolis matrix, and gravity matrix, respectively, and their
values can be obtained by the model identification method
described in Section 3. T is the control torque, and d is the
unknown disturbance.

θd is the expected command signal of the exoskeleton
joint, e = θd − θ is the error signal, and the designed sliding
surface is

s = _e + Ke: ð25Þ

Among them, K = diag ðk1, k2,⋯knÞ, ki > 0. The

−60 −40 −20 0 20 40 60

To
rq

ue
 (N

/m
)

−20

0

20

2.2
2.4

0 0.2 0.4

d1

𝜃1 (deg/s)

−60 −40 −20 0 20 40 60

To
rq

ue
 (N

/m
)

−10

0

10

80−80

2.2
2.4

0 0.2 0.4

d2

𝜃2 (deg/s)

Figure 3: Relationship between friction disturbance and joint speed.

0

20

40

60

0 5 10 15 20 25 30

A
ng

le
 (d

eg
/s

)

𝜃1d

𝜃1

70
90

Time (s)

0

20

40

60

0 5 10 15 20 25 30

A
ng

le
 (d

eg
/s

)

Time (s)

𝜃2d

𝜃2

−13.16
−13.18

Figure 4: Angle tracking of hip and knee joints.

5Wireless Communications and Mobile Computing



following Lyapunov functions are chosen:

V = 1
2 s

THs: ð26Þ

Derivating the above formula, we can get

_V = 1
2 s

T _Hs + sTH _s = 1
2 s

T _H − 2C
� �

s + sTCs + sTH_s = sT Cs +H_sð Þ:
ð27Þ

Differentiating (25) and bringing it into (27), we get

_V = sT Cs +H €e + K _eð Þ½ � = sT Cs +H €θd − €θ
� �

+HK _e
h i

= sT C _e + CKe +H€θd + C _θ +G − T − d +HK _e
h i

= sT C _e + CKe +H €θd + K _e
� �

+ C _θ + G − T − d
h i

= sT C _θd + Ke
� �

+H €θd + K _e
� �

+G − T − d
h i

:

ð28Þ

The control rate is

T = �H €θd + K _e
� �

+ �C _θd + Ke
� �

+ �G − d̂ + Γ sgn sð Þ: ð29Þ

Among them, �H, �C, �G represent the nominal value of H,

C, and G, respectively, which can be regarded as the identi-

fied data in practical engineering. H, C, and G represent

the actual physical parameters of the controlled object, and

there will be a certain error between the nominal value and

the actual value, which is taken as ΔH =H − �H, ΔC = C − �C

, ΔG = G − �G. d̂ represents the nominal value of unmodeled

disturbances such as friction, which is taken as Δd = d − d̂

and which is generally not available in practice and can be

resolved by disturbance observers, which will be discussed

below.
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Bringing (29) into (28), we get

_V = sT ΔC _θd + Ke
� �

+ ΔH €θd + Ke
� �

+G − Δd
h i

− Γ sj j:
ð30Þ

Among them, Γ = diag ðγ1, γ2,⋯γnÞðγi > 0Þ, and if we
take

γi > ΔCj jmax
_θd + Ke
��� ��� + ΔHj jmax

€θd + K _e
��� ��� + Δdj jmax + ΔGj jmax:

ð31Þ

Then, (31) can be guaranteed to be less than or equal to
0.

The following is a nonlinear disturbance observer for
the two-degree-of-freedom lower-extremity exoskeleton
described in (24) to estimate the unmodeled disturbance
d. The inertia matrix of the two-degree-of-freedom
lower-extremity exoskeleton can be written in the follow-

ing form:

H =
Φ 1ð Þ + 2Φ 3ð Þ cos θ2ð Þ Φ 2ð Þ +Φ 3ð Þ cos θ2ð Þ
Φ 2ð Þ +Φ 3ð Þ cos θ2ð Þ Φ 2ð Þ

" #
:

ð32Þ

Among them, Φð1Þ,Φð2Þ,Φð3Þ,Φð4Þ is the inertial
parameter of the exoskeleton, which is related to the phys-
ical parameters of the mechanical mechanism, motor, and
load. When the function pðθ, _θÞ in the observer (20) is
taken as

p θ, _θ
� �

= c
_θ1

_θ1 + _θ2

" #
: ð33Þ

Among them, c is the maximum velocity of the knee
joint, at which time the observer (20) is globally asymptot-
ically stable. The detailed derivation process is given
below.
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Figure 9: Influence of knee joint damping coefficient on reference
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According to formula (33), it can be known that

dp θ, _θ
� �
dt

= c
€θ1

€θ1 + €θ2

" #
= c

1 0
1 1

" #
€θ: ð34Þ

From formula (16), we can get

L θ, _θ
� �

H θð Þ€θ =
dp θ, _θ

� �
dt

= c
1 0
1 1

" #
€θ: ð35Þ

According to the structural characteristics of the exoskel-
eton, it can be known that the inertia matrix H is positive

definite and invertible. Therefore, by (35), we get

L θ, _θ
� �

=
dp θ, _θ

� �
dt

= c
1 0
1 1

" #
H−1 θð Þ: ð36Þ

According to the theory of matrix decomposition, we
can get

H =
1 1
0 1

" #
Φ 1ð Þ −Φ 2ð Þ Φ 3ð Þ cos θ2ð Þ
Φ 3ð Þ cos θ2ð Þ Φ 2ð Þ

" #
1 0
1 1

" #
: ð37Þ

Among them,

Φ 1ð Þ −Φ 2ð Þ Φ 3ð Þ cos θ2ð Þ
Φ 3ð Þ cos θ2ð Þ Φ 2ð Þ

" #
= �H: ð38Þ
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(b) The overall process of the PSO-SVM model

Figure 12: The intelligent teaching process of tennis based on the human skeleton node model.
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Then, we can get

H−1 =
1 0
−1 1

" #
�H−1 1 −1

0 1

" #
: ð39Þ

Therefore, (36) can be written as

L θ, _θ
� �

=
dp θ, _θ

� �
dt

= c�H−1
θð Þ

1 −1
0 1

" #
: ð40Þ

The Lyapunov function is

V e, θð Þ = eT �H θð Þe: ð41Þ

Differentiating the above formula, we get

dV e, θð Þ
dt

= ∂V e, θð Þ
∂e

_e + ∂V e, θð Þ
∂θ

_θ = 2eT �H θð Þ_e + eT �H _θ
� �

e:

ð42Þ

Through combining (23), we can get

dV e, θð Þ
dt

= −2eT �H θð ÞL θ, _θ
� �

e + eT �H _θ
� �

e: ð43Þ

According to the definition of �H, we can get

�H _θ
� �

=
0 −Φ 3ð Þ sin θ2ð Þ ⋅ _θ2

−Φ 3ð Þ sin θ2ð Þ ⋅ _θ2 0

" #
:

ð44Þ

Table 1: The tennis action correction effect of the tennis intelligent
teaching model based on the human skeleton node model.

Number Action correction

1 79.14

2 71.23

3 79.07

4 81.52

5 69.34

6 80.32

7 75.15

8 80.77

9 81.59

10 82.60

11 69.98

12 74.66

13 80.17

14 78.22

15 69.27

16 77.79

17 71.11

18 80.38

19 82.04

20 83.05

21 70.14

22 71.51

23 81.94

24 72.59

25 81.82

26 78.34

27 70.73

28 83.54

29 69.40

30 75.63

31 72.81

32 74.17

33 78.22

34 73.06

35 76.79

36 73.29

37 79.07

38 73.42

39 70.56

40 72.29

41 78.29

42 70.15

43 74.95

44 79.51

45 83.26

46 73.65

47 77.78

48 82.37

Table 1: Continued.

Number Action correction

49 83.92

50 72.54

51 72.08

52 69.83

53 75.87

54 76.45

55 80.92

56 73.26

57 77.11

58 78.33

59 76.42

60 79.14
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By combining (40), (43), and (44), we get

dV e, θð Þ
dt

= −2ceT
1 −1

0 1

" #
e

+ eT
0 −Φ 3ð Þ sin θ2ð Þ ⋅ _θ2

−Φ 3ð Þ sin θ2ð Þ ⋅ _θ2 0

2
4

3
5e

= −eT
2c −c +Φ 3ð Þ sin θ2ð Þ ⋅ _θ2

−c +Φ 3ð Þ sin θ2ð Þ ⋅ _θ2 2c

2
4

3
5e:
ð45Þ

In order to ensure that the differential of the designed
Lyapunov function is negative, it is necessary to ensure that
the second term of the above formula is positive definite.
From the judgment condition of the negative definite matrix,
it can be known that the main subforms of each order of the
matrix should be positive; that is, they should satisfy

2c > 0,

det
2c −c +Φ 3ð Þ sin θ2ð Þ ⋅ _θ2

−c +Φ 3ð Þ sin θ2ð Þ ⋅ _θ2 2c

" #
> 0:

8>><
>>:

ð46Þ

From the inequality equations of (46), we can get

c >Φ 3ð Þ _θ2 max: ð47Þ

Among them, _θ2 max represents the maximum value of
the knee joint velocity, which can guarantee (45) negative
definiteness, and the designed disturbance observer is glob-
ally asymptotically stable.

Based on the above discussion, for the two-degree-of-
freedom lower-extremity exoskeleton represented by (24),
it can be driven by the control rate shown in equation
(29). The unknown disturbance in the formula can be
observed and estimated by the disturbance observers (20)
and (33).

Table 2: Tennis-teaching effect of tennis intelligent teaching model
based on human skeleton node model.

Number Tennis teaching

1 83.02

2 75.05

3 82.90

4 77.92

5 85.26

6 86.16

7 79.51

8 77.09

9 80.30

10 80.57

11 79.68

12 77.92

13 84.74

14 76.65

15 87.98

16 85.57

17 75.64

18 83.90

19 75.98

20 82.97

21 77.91

22 74.88

23 76.26

24 87.95

25 87.87

26 74.60

27 74.47

28 83.25

29 74.01

30 74.66

31 85.39

32 79.96

33 83.39

34 77.09

35 80.68

36 83.60

37 79.88

38 81.54

39 81.15

40 79.40

41 76.05

42 84.89

43 83.21

44 81.17

45 84.20

46 83.68

47 76.37

48 80.02

Table 2: Continued.

Number Tennis teaching

49 81.99

50 76.26

51 79.70

52 85.02

53 86.63

54 75.74

55 80.14

56 87.30

57 77.04

58 80.99

59 86.34

60 75.53
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In order to verify the effect of the above-mentioned
adaptive synovial controller, a simulation model was built
using MATLAB/Simulink for numerical simulation verifica-
tion. The two-degree-of-freedom lower-limb exoskeleton
represented by (24) is driven using the control rate shown
in formula (29). The unknown disturbance d̂ in formula
(29) is estimated by the disturbance observers (20) and (33).

The specific parameters are set as follows. (24) can be
expressed in the form of (28), where Φð1Þ = 25:68,Φð2Þ =
6:91,Φð3Þ = 1:32,Φð4Þ = −11:68, ath = 0:38m, and

�H = 0:8 ∗H, �C = 0:8 ∗ C, �G = 0:8 ∗G, K =
200 0
0 30

" #
:

ð48Þ

Г takes the value according to (31), and it can be seen
from the calculation that c is 3000 in (33) to satisfy condition
(47). For the convenience of simulation verification, the dis-
turbance d is assumed to be the simplified friction model,
namely,

d =
z1 sgn _θ1

� �
+ k1 _θ1

z2 sgn _θ2
� �

+ k2 _θ2

2
64

3
75, ð49Þ

where z1 = 13, z2 = 10, k1 = 3, k2 = 2. The expected trajec-
tories of the hip and knee joints are taken as θ1d = 0:565 +
0:655 sin ð0:5πtÞ, θ2d = −0:925 + 0:695 cos ð0:5πtÞ,
respectively.

The simulation results are shown below. Figure 2 shows
the observation effects of the disturbance observers (20) and
(33). It can be clearly seen from the figure that the results of
the observer are basically consistent with the actual interfer-
ence, which proves the effectiveness of the proposed interfer-
ence observer.

Figure 3 shows the corresponding relationship between
joint friction and joint velocity, where the abscissa represents
the angular velocity of the joint, and the ordinate represents
the friction torque received by the joint. It can be seen from
the figure that the frictional force on the hip joint is greater
than that on the knee joint, and the direction of the frictional
force changes back and forth near the speed zero of the two
joints, which is in line with the actual law.

Figure 4 shows the angle following of the hip and knee
joints of the 2DOF lower-limb exoskeleton driven by the dis-
turbance observer-based sliding mode controller. It can be
clearly seen from the figure that under the action of the
given controller, the actual angle of the exoskeleton is basi-
cally the same as the expected angle, despite the difference
between the nominal model and the actual model, as well
as frictional disturbances. Among them, the error of the
hip joint is within 1 degree, and the error of the knee joint
is within 0.1 degree, which achieves a good follow-up effect.

Through numerical simulation experiments, the effec-
tiveness of the proposed sliding mode control based on dis-
turbance observer is effectively verified.

The concepts of impedance and admittance originate
from circuit theory, where voltage is usually referred to as
a potential variable and current is referred to as a flow vari-
able. The ratio of the potential variable to the flow variable is
defined as the impedance, and the ratio of the flow variable
to the potential variable is defined as the admittance. Con-
sidering that the dynamics of a mechanical system can often
be described by Newton’s second law, viscosity law, and
Hooke’s law, Hogan defines the impedance model of a
mechanical system as the following forms of mass, spring,
and damping:

MΔ€θ tð Þ + BΔ _θ tð Þ + KΔθ tð Þ = T int: ð50Þ

Among them, the first item on the left describes the rela-
tionship between acceleration and force, which is repre-
sented by the inertia matrix M. The second term describes
the relationship between velocity and force, which is charac-
terized by the damping matrix B, and the third term
describes the relationship between the position and force,
which is characterized by the stiffness matrix K . ΔθðtÞ repre-
sents the difference between the desired trajectory of the
joint and the reference trajectory:

Δθ tð Þ = θd tð Þ − θr tð Þ: ð51Þ

The transfer function of the impedance model can be
obtained by calculating the Laplace transform of formula
(50) as

T int sð Þ
Δθ sð Þ =M sð Þs2 + B sð Þs + K: ð52Þ

The natural frequency of the system is wn =
ffiffiffiffiffiffiffiffiffiffi
K/M

p
, and

the damping ratio is ξ = B/2
ffiffiffiffiffiffiffiffi
MK

p
.

By adjusting the impedance parameters M, B, and K , the
robot can have different interaction performance with the
environment. The impedance controller generally needs to
be used in conjunction with the force tracker; that is, the tor-
que tracking control of the joint needs to be realized before
the impedance control can be used. Impedance control is
generally used in contact-type applications such as welding
and painting. The control block diagram of the impedance
control is shown in Figure 5.

The controlled object in the admittance control is a
position-controlled exoskeleton system. The exoskeleton
system accepts force control information and outputs posi-
tion information, which is characterized by mechanical
impedance. The admittance controller and the impedance
controller are dual, the input is the force information, and
the output is the position information. According to formula
(52), the transfer function of the admittance controller can
be obtained:

Δθ sð Þ
T int sð Þ

= 1
M sð Þs2 + B sð Þs + K

: ð53Þ

Among them, Δθ represents the output of the
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admittance controller, which is used to correct the reference
trajectory θr to obtain the real desired trajectory θd of the
position controller. The control block diagram of the admit-
tance control is shown in Figure 6.

The most basic purpose of using the admittance control-
ler is to achieve the effect of man-machine following, so the
input force information of the admittance controller is the
interaction force between man and machine. The interactive
force information can be obtained by three-dimensional
force sensors installed on the exoskeleton. The size of the
trajectory correction output by the admittance model
depends on the choice of admittance parameters and the
magnitude of the interaction force between the human and
the machine, which reflects the movement intention of the
human body. Therefore, the compliant interaction between
humans and machines can be achieved by selecting appro-
priate admittance parameters. It can be seen from Figure 6
that the admittance controller needs to be used in conjunc-
tion with the position tracker; that is, the position tracking
control of the joint needs to be realized before the admit-
tance control can be used. In addition, existing experience
shows that the performance of the underlying positioner
largely determines the performance and stability of the
admittance control.

In order to study the influence of the admittance param-
eters M, B, and K on the control performance of the system,
the simulation experiments are carried out for exploration.
Since the exoskeleton is a human-machine integrated device,
in order to fully describe the human-machine interaction
performance of the entire system, the participation of the
human body is required. However, the actual human
dynamics modeling is very complicated. In order to not lose
generality, a light spring is used to characterize the dynamic
interaction performance of human muscles. The underlying
position controller adopts the backstepping controller
described in Section 2. In order to be closer to the actual sit-
uation, the reference trajectory θr is set within the con-
straints, and the exoskeleton dynamics model is selected.
The effects of inertia, damping, and stiffness on the control
performance of the system are studied by the control vari-
able method. The control block diagram of the entire simu-
lation is shown in Figure 7.

Taking the knee joint as an example, the influence of
three admittance parameters on the human-computer
interaction force is analyzed. The simulation results are
shown in Figures 8–10. It can be seen from Figure 8 that
the stiffness coefficient reflects the degree of adaptation of
the exoskeleton to the environment. The greater the stiff-
ness, the smaller the trajectory adjustment amount, but
the longer the corresponding adjustment time. The stiff-
ness coefficient reflects the “bounce” property of the exo-
skeleton. The greater the stiffness, the stronger the
mechanical sense of the exoskeleton. The stiffness is small,
and the flexibility of the exoskeleton is strong, indicating
that the exoskeleton is easily dragged by the environment
at this time. It can be seen from Figure 9 that the damp-
ing coefficient reflects the adaptation speed of the exoskel-
eton to the environment. The larger the damping
coefficient, the longer the adjustment time and the more

energy the system needs to consume. The damping coeffi-
cient reflects the characteristics of the “stickiness” of the
exoskeleton. The larger the damping, the greater the
damping force of the exoskeleton when the speed is fast.
The smaller the damping, the smaller the damping effect
when the exoskeleton is moving. It can be seen from
Figure 10 that the inertia coefficient reflects the “heavy
or not heavy” characteristics of the exoskeleton. The larger
the inertia coefficient, the more torque needs to be contin-
uously applied in the initial stage to change the state, and
a longer adjustment time is required after the state
changes. The smaller the inertia coefficient, the easier it
is to change the state of the exoskeleton. However, accord-
ing to formula (52), the change of the inertia coefficient
will lead to a drastic change of the natural frequency
and damping ratio, so it is not recommended to incorpo-
rate the inertia coefficient into the adjustable admittance
parameters in the actual admittance control.

In the simplified schematic diagram of human-
machine coupling shown in Figure 11, it can be seen that
the human exoskeleton is bound together by flexible
straps. Under passive control, the residual muscle strength
of the affected limb and the driving force of the exoskele-
ton act together to drive the human body and the exoskel-
eton to move.

The motion intention of directly reacting with the
human-computer interaction force is not reasonable
enough, and the following modified admittance model can
be considered, and (50) and (51) are revised and rewritten
as follows:

MΔ€θ tð Þ + BΔ _θ tð Þ + KΔθ tð Þ = αT int,
Δθ tð Þ = θd tð Þ − θr tð Þ:

(
ð54Þ

Among them, θd represents the desired trajectory of the
exoskeleton, that is, the input signal of the position control-
ler, and α represents the coefficient of the human-computer
interaction torque; that is, the modified interaction torque is
used to represent the human intention. θr represents the ref-
erence trajectory, that is, the reference trajectory that can be
dynamically designed by the medical staff according to the
tennis-teaching situation.

In order to simplify the dynamic model of human mus-
cles and simulate the actual interaction force in the simula-
tion, as shown in Figure 10, without loss of generality, the
dynamic interaction between the human body and the exo-
skeleton is expressed in the form of a spring damper.

T int = Khe θh − θeð Þ + Bhe
_θh − _θe

� �
: ð55Þ

Among them, T int = ½Thip ; Tkeen� represents the human-
computer interaction torque, which can be measured by the
three-dimensional force sensor in practice; θh ∈ R2×1 repre-
sents the human body angle; and θe ∈ R2×1 represents the
angle information of the exoskeleton, which can be mea-
sured by the encoder in practice. Khe ∈ R2×2 is the spring
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stiffness coefficient, and Bhe ∈ R2×2 is the damping
coefficient.

4. Intelligent Teaching of Tennis Based on
Human Skeleton Node Model

After processing the region-growing algorithm, the global
foreground image of the tennis player is obtained. The
athlete-centered background color removal is shown in
Figure 12(a). In order to build the PSO-SVM tennis-
training model, first, we need to extract the training set
and test set from the obtained raw data. Then, we carry
out a certain data analysis and preprocessing, use the train-
ing set to train the PSO-SVM network, and finally use the
obtained model to test and analyze the test data. The flow-
chart is shown in Figure 12(b).

On the basis of the above research, an experiment is
designed to test the model in this paper, and the tennis
action correction effect and tennis-teaching effect of the ten-
nis intelligent teaching model based on the human skeleton
node model are, respectively, verified, and the results shown
in Tables 1 and 2 are obtained.

From the above experimental research, it can be seen
that the tennis intelligent teaching model based on the
human skeleton node model has good effects in tennis action
correction and tennis-teaching effect improvement.

5. Conclusion

The teaching goal of tennis option courses in colleges and
universities is generally to let students learn and master
certain basic theoretical knowledge of tennis and learn
basic tennis-refereeing methods and game rules through
tennis teaching. Moreover, it hopes that students can mas-
ter basic physical exercise methods, improve health, and
enhance physical fitness through the study of tennis tech-
niques and tactics. At present, traditional teaching
methods are mostly used in the teaching of tennis optional
courses in colleges and universities; that is, through the
explanation and demonstration of tennis technical move-
ments by teachers, students follow the teaching process
of teachers to perform collective imitation exercises. In
this teaching process, teachers are the main body of teach-
ing activities, and students are in a state of passively
receiving knowledge. Under the background of talent
training in the new era, the reform of tennis-teaching
methods in colleges and universities is imminent. In this
paper, the construction of a tennis intelligent teaching
model is combined with the human skeleton node model.
The experimental research results show that the tennis
intelligent teaching model based on the human skeletal
node model has good effects in tennis action correction
and tennis-teaching effect improvement.
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