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Nonnegative matrix factorization (NMF) model has been successfully applied to discover latent community structures due to its
good performance and interpretability advantages in extracting hidden patterns. However, most previous studies explore only the
structural information of the network while ignoring the rich attributes. Besides, they aim at detecting densely connected
communities (also called community structures) and fail to identify general structures, such as bipartite structures and mixture
structures. In this paper, we research on general structure discovery and propose a new method GCDNMF (General
Community Detection based on Nonnegative Matrix Factorization), which integrates structural information and node
attributes through consistency module constraint to capture the community interactions. It can discover the general
community structures of nodes by iteratively updating the community-interaction matrix and the node-membership matrix.
We also introduce matrix initialization based on centrality and dispersion of nodes for center selection to reduce the sensitivity
of random initialization. Experimental results on real-world networks with a variety of characteristics validate the performance
of our approach, especially on networks with general structures. In addition, the associated initialization evaluations
demonstrate the effectiveness of our method in obtaining stable results.

1. Introduction

Many complex systems in the real world can be described as
networks, such as social networks, transportation networks,
and citation networks. Community structure is an essential
and common topological property in these networks. The
identification of community structure is a fundamental issue
in understanding network topology and functional modules,
and it has attracted the attention of many researchers [1–9].
A comprehensive review of existing community detection
methods can be found in the literature [10]. Furthermore,
with the rapid emergence of user-generated media(e.g.,
Microblog, WeChat, and Twitter), while structural connec-
tions between nodes indicate various interdependencies
between individuals or organizations [6], real-world net-
works also contain rich attribute information that character-
izes nodes and are referred to as attribute networks. As
revealed in previous work, informative node attributes can

help to find meaningful groups of users with similar inter-
ests, backgrounds, or purposes, which can further effectively
support applications in recommendation, sentiment analy-
sis, and user profiling [11]. Moreover, realistic complex net-
works often contain multiple structures, in addition to the
traditional community structure, also known as assortative
mixing, i.e., defined as a structure with tight intra-
community node links and sparse inter-community links,
such as the classical citation network Cora dataset; they also
contain multiple complex network structures, such as the
bipartite network [12] generated by the English lexical link
network Adjnoun, and mixture structures containing both
structures, also called disassortative mixing [13]. Mining
the various underlying structures and interaction patterns
between communities in a network is of great theoretical
and practical significance for understanding the function of
networks, discovering hidden patterns and predicting the
behavior of individuals in the network.
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In the past decades, several methods have been proposed
to detect communities in attributed networks. They are
mainly classified into modularity based methods [14, 15],
clustering based methods [16–20], random walk based
methods [21, 22], statistical inference models [13, 23, 24],
and matrix factorization based methods [3, 25–27]. Among
them, nonnegative matrix factorization (NMF) based
methods have attracted much interest due to their good per-
formance and strong interpretability. For example, Jia et al.
[28] developed a modularized trifactor matrix factorization
model Mtrinmf to exploit the topological and the modularity
information of the network. Zhang et al. [3] used the NMF
method to improve density peak clustering in community
detection. However, node attributes are not considered in
these models. To introduce node attributes, Jin et al. [29]
used the node attribute matrix to construct a NMF frame-
work for underlying community membership. Chen et al.
[27] proposed CDCN by combining node attribute informa-
tion and community structure information using the NMF
framework to identify communities with semantic annota-
tion. However, above attributed methods commonly
assumed that the community structure obtained from the
link structure is consistent with the community structure
obtained from node attribute mining. Hence, they embed
the structure and attribute into the same space and obtain
the common node community matrix. In this way, they typ-
ically aim to extract traditional communities that are assor-
tative, i.e. nodes are mostly connected with others in the
community. They may overlook intercommunity relation-
ship, making it difficult to exploit the generalized commu-
nity structures, including assortative communities,
disassortative communities, i.e. most connections are from
different communities(such as bipartite networks), or the
mixed community structures.

To address these issues, in this paper, we research on dis-
covering general structures and propose a new nonnegative
matrix factorization model named GCDNMF. It integrates
the structural information and node attributes of networks
through consistency module constraints to capture the inter-
actions between communities. By iteratively updating the
community-interaction matrix and node-membership
matrix, it captures the general community structures of
nodes. In addition, we initialize the initial matrix by the cen-
trality and dispersion of nodes to reduce the sensitivity
caused by random initialization. In summary, the innovation
of this paper is threefold:

(1) We propose a novel NMF-based model to detect
general structures in attribute networks, which natu-
rally combines structural connections and node
attributes into a joint decomposition model. To the
best of our knowledge, we are the first to model the
general structures using the NMF-based model.

(2) We propose consensus factorization to exploit gen-
eral communities by studying the consistency
between nodes and communities in terms of struc-
tural connections and node attributes. It is addressed
by alternately updating the community-interaction

matrix in the link structure and node-membership
matrix in the node attributes.

(3) Extensive experiments are conducted on benchmark
networks to demonstrate the effectiveness of our
proposed method by comparing it with the state-
of-the-art methods. The experimental results show
the superior performance of our model in detecting
general structures.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the related work on community detection
based on nonnegative matrix factorization. Section 3 pre-
sents our proposed GCDNMF model which integrates the
topological information and node attributes based on
consistent-model constraints. To verify the performance of
our method, several experiments are carried out in Section
4. Section 5 draws the conclusion and gives further
consideration.

2. Related Work

Nonnegative matrix factorization (NMF) has good capability
in extracting hidden patterns and structures from high-
dimensional data. Kumari et al. [30] pioneered a standard
community detection method based on NMF, which can
effectively mine the structural characteristics of the commu-
nity by quantifying the link relationships between nodes.
Owing to its advantages of simple implementation, innate
interpretability, and outstanding performance, it has become
a vital technique for community detection [31] and has
attracted much attention by researchers to improve the per-
formance of NMF-based community detection.

For directed and undirected networks classified accord-
ing to the directionality of edges, Kuncheva et al. [32] pro-
posed SNMF and ANMF to extract the intrinsic
community structures, respectively. Considering the modu-
larity information of the network, Jia et al. [28] presented a
trifactor NMF model that combines the modularity informa-
tion as a regularization term. To further capture the complex
underlying network structure effectively and preserve the
global and local structures, Li et al. [33] proposed a multi-
layer model based on NMF, which consists of an encoder
module and a decoder module. Li et al. [34] explored the
implicit association between nodes and presented a commu-
nity detection method based on SNMF. However, the above
conventional methods mainly explore the topology of the
network to obtain communities.

Some of the most recently developed state-of-the-art
methods use both topology and attribute to extract commu-
nities. Jin et al. [29] utilized the NMF technique to combine
the observed network structure and node attributes, but the
model does not focus on factorizing the node attributes
matrix and ignores the various implications of edges in
forming the community structure. Li and Liu [35] proposed
a trifactor nonnegative matrix factorization clustering
framework NMTF to combine three types of graph regular-
ization in social networks. This approach utilizes additional
content information to detect communities, and fails to
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explore the relationship between communities and this con-
tent. Tang et al. [36] proposed a weighted nonnegative fac-
torization method for attributed graph clustering, which
incorporates a weighting scheme to distinguish the impor-
tance of attributes. Jin et al. utilized both the community
structure matrix and the node attribute matrix in NMF
framework SCI [29]. Chen et al. [27] combined node attri-
bute information and community structure information in
the NMF framework to accurately find the relationships
between networks. Some recent research work focus on
building NMF model to learn low-dimensional representa-
tion of nodes for discovering communities in attributed net-
works [33, 37].

3. The GCDNMF Model

In this section, we present the proposed general community
detection method GCDNMF, which incorporates topologi-
cal information and node attribute in a collective NMF-
based model. It consists of three main parts: network struc-
ture modeling, node attribute modeling, and joint modeling.
Next, we describe each part in detail and give the optimiza-
tion method.

3.1. Problem Formulation. We denote a network as G = ðV ,
E, CÞ, where V is a set of n nodes, E is the set of edges
between nodes, and C is a set of attribute vectors. The n
nodes and their connections are interpreted by an adjacency
matrix A, if nodes i and j are connected, the corresponding
entry Aij = 1, otherwise Aij = 0. The attributes of nodes in
the network are represented by an attribute matrix C ∈
Rn×m, where m is the dimension of node attributes. Our pro-
posed method aims to partition the network G into k com-
munities by jointly decomposing the adjacency matrix A
and the attribute matrix C. In this paper, we summarize
the notations and their definitions in Table 1.

3.2. Modeling Network Structures. Community detection
refers to find those nodes with relatively close relationship
from a network and divide them into different communities.
The idea that the parts constitute the whole in the nonnega-
tive matrix factorization provides an effective solution to this

problem. To model the topological structure of nodes, we
improve the traditional NMF method and propose a three-
factor factorization method to decompose the adjacency
matrix A. The objective function can be expressed as:

min A −HGHT 2
F
s:t:H ≥ 0, G ≥ 0, ð1Þ

where H ∈ Rn×k is the community membership matrix, in
which Hij indicates the propensity of node i belonging to

community j; G ∈ Rk×k is the community relation matrix
and Gij is the probability of edges existing between commu-
nity i and community j. Intuitively, G is used as a measure of
the strength of relationships between communities. Com-
pared with the traditional NMF method, this method adopts
a trifactor decomposition instead of a two-factor decomposi-
tion. On the one hand, the trifactor NNF model is suitable
for both directed and undirected networks. More impor-
tantly, it has a clear physical meaning for H and G. The rela-
tion matrix G is further combined with node attribute
modeling to exploit the generalized community structure.

3.3. Modeling Node Attributes. In attribute networks, nodes
and their correlated attributes can be regarded as the rela-
tionship between documents and keywords. Using the bag-
of-words approach, the attribute matrix is denoted as C ∈
Rn×m, where n represents the number of documents and m
is the number of keyword features. Assuming that the docu-
ments consists of k clusters, based on NMF text clustering, C
can be decomposed into two nonnegative matrices Q ∈ Rn×k

and V ∈ Rm×k. We then have the following objective function
related to the node attributes:

min C −QVT 2
F
s:t:Q ≥ 0,V ≥ 0, ð2Þ

where Q is the probability distribution matrix between nodes
and communities, Qic represents the membership degree of
node i belonging to community c. V is the probability distri-
bution matrix between node attributes and communities,
and V jc indicates the propensity that community c can be
describe by keyword j. In this way, we can divide the

Table 1: Notations utilized in the paper.

Notations Descriptions

A Aij = 1 if there is an edge between nodes vi and vj; 0 otherwise

C Cij = 1 if node vi has attribute j; 0 otherwise

H Hic is the propensity of node vi belonging to community c

G Gij is the probability of edges between community i and j

Q Qic is the probability of node vi belonging to text cluster c

V V jc is the propensity of a node in cluster c having attribute j

V Set of nodes in a network

E Set of edges in a network

C Set of attributes in a network

k Number of communities
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communities by node attributes and obtain attribute com-
munity matrix Q, which indicates that nodes in the same
attribute community have a large attribute similarity.

3.4. Joint Community Detection Model. In the above two
subsections, the community detection results are obtained
from two perspectives of structural information and node
attributes, respectively. To ensure that the final result is con-
sistent, GCDNMF introduces a consistency module to
jointly formulate the above two aspects. Different from tra-
ditional methods that focus on embedding structures and
attributes into the common node-community space, we also
concentrate on the relationship matrix between communi-
ties. Intuitively, based on attribute community matrix Q,
we can further obtain the matrix describing the relationship
between communities in the attribute information by QTQ.
Specifically, each entry in QTQ portrays two communities
in which nodes have attribute similarity and indicates the
propensity of edges existing between two communities based
on attribute similarity.

Considering that the topology is consistent with the clus-
tering structure of the node attributes, the structure commu-
nity relation matrix G and the attribute community relation
matrix QTQ obtained are inclined to be approximated.

Therefore, we derive the following objection function:

min G −QTQ
 2

F
s:t:G ≥ 0,Q ≥ 0: ð3Þ

Then, we propose a weighted joint NMF-based frame-
work to integrate above objectives. Our goal is to minimize
the following optimization problem over H, G, Q, and V :

L = A −HGHT 2
F
+ α C −QVT 2

F
+ β G −QTQ
 2

F
,

s:t:H ≥ 0,G ≥ 0,Q ≥ 0, V ≥ 0,
ð4Þ

where α and β are positive weights to balance the structure/
attribute fusion and the strength of consistency constraint
on the community relationship.

3.5. Model Optimization. Since minimizing Eq. (4) with
respect to H, G, Q, and V is not convex in all variables
together, we utilize an alternating iterative updating scheme
to optimize the objective for convergence to a local mini-
mum. First, according to matrix properties TrðABÞ = TrðB
AÞ and TrðATÞ = TrðAÞ, the objective function can be
derived to the following form:

min
H,G,Q,V≥0

L = Tr AAT +HGHTHGTHT − 2AHGTHTÀ Á
+ αTr CQCT +QVTVQT − 2CVQTÀ Á
+ βTr GGT +QTQQTQ − 2GQTQ

À Á
:

ð5Þ

To optimize Eq. (5), w.r.t. H, G, Q, and V , four Lagrang-
ian multipliers are introduced, λH ∈ Rn×k, λG ∈ Rn×n, λQ ∈
Rn×k, and λV ∈ Rm×k. According to Karush-Kuhn-Tuck-
er(KKT) condition, which characterizes the necessary and
sufficient condition that the optimal solutions need to sat-
isfy:

λH ⊗H = 0, λG ⊗G = 0,

λQ ⊗Q = 0, λV ⊗V = 0:
ð6Þ

where ⊗ is the Hadamard product operator(like the opera-
tor ‘.∗’ in matlab), for example, ½A ⊗ B�ij = Aij:∗Bij. Thus, we
derive the Lagrange function:

min
H,G,Q,V≥0

L = Tr AAT +HGHTHGTHT − 2AHGTHTÀ Á
+ αTr CQCT +QVTVQT − 2CVQTÀ Á
+ βTr GGT +QTQQTQ − 2GQTQ

À Á
+ Tr λHH

TÀ Á
+ Tr λGG

TÀ Á
+ Tr λQQ

TÀ Á
+ Tr λVV

TÀ Á
:

ð7Þ

Setting partial derivatives of G, Q, V , and H to zero, we

Input: Adjacency matrix A;
Attribute matrix C;
Number of communities k;
Number of iterations iter;

Output: Community label li for each node i
1: initialize G, Q and V randomly
2: initialize H by K-rank-D
3: for t = 1 : iter do
4: G = G ⊗ ððHTAH + βQTQÞ/ðHTHGHTH + βGÞÞ
5: Q =Q ⊗ ððαCV + 2βQGÞ/ðαQVTV + 2βQQTQÞÞ
6: V =V ⊗ ðCTQ/ðVQTQÞÞ
7: H =H ⊗ ðAHGT/ðHGHTHGTÞÞ
8: end for
9: return li = argmaxr≤kHir

Algorithm 1: GCDNMF Algorithm.

Table 2: Details of the real-world network datasets utilized in the
experiments, where N , E, M, and K are the number of nodes,
edges, attributes, and communities, respectively, where ‘AVD’,
‘CC’, and ‘ASC’ represent the average degree, clustering
coefficient, and assortative coefficient.

Networks N E M K ‘AVD’ ‘CC’ ‘ASC’

Cora 2708 5429 1433 7 3.89 0.241 -0.065

Citeseer 3312 4732 3703 6 2.73 0.142 0.047

Cornell 195 304 1703 5 2.90 0.157 -0.241

Texas 187 328 1703 5 3.09 0.303 -0.250

Wisconsin 265 530 1703 5 3.18 0.278 -0.179

Washington 230 446 1703 5 3.54 0.197 -0.223
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have:

∂L
∂G

= 2HTHGHTH − 2HTAH + 2βG − 2βQTQ + λG = 0,

∂L
∂Q

= 2αQVTV − 2αCV + 4βQQTQ − 4βQG + λQ = 0,

∂L
∂V

= 2αVQTQ − 2αCTQ + λV = 0,

∂L
∂H

= 4HGHTHGT − 4AHGT + λH = 0:

ð8Þ

To eliminate Lagrangian multipliers by Eq. (7), we
obtain:

HTHGHTH −HTAH + βG − βQTQ
À Á

ij
Gij = 0,

αQVTV − αCV + 2βQQTQ − 2βQG
À Á

ij
Qij = 0,

VQTQ − CTQ
À Á

ij
Vij = 0,

HGHTHGT − AHGTÀ Á
ij
Hij = 0:

ð9Þ

From Eq. (9), we obtain the following updating formulas:

G =G ⊗
HTAH + βQTQ

HTHGHTH + βG
,

Q =Q ⊗
αCV + 2βQG

αQVTV + 2βQQTQ
,

V =V ⊗
CTQ

VQTQ
,

H =H ⊗
AHGT

HGHTHGT :

ð10Þ

3.6. Initialization of GCDNMF. Since the NMF-based
approach is sensitive to random initial values of the vari-
ables, to overcome this problem, the node membership
matrix H of our model is initialized based on our previously
presented work K-rank-D [38], which utilizes the centrality
and dispersion of the network to determine the cluster
centers.

To formulate the centrality of nodes in the network,
according to the algorithm in [38], by modifying the transi-
tion probability matrix P, where Pij = Aij/∑ jAij, we get the
centrality of nodes by:

�Pi = Pi +〠
j

exp −
d2ij
Pi

 !
, ð11Þ

where dij is the Euclidean distance between node i and node
j. The nodes with higher centrality are more likely to be
selected as the center points. What is more, as in real net-
works, the distance between community centers is usually

far from each other, to measure the degree of dispersion
among centers, a dispersion measurement by computing
the distance between node i and other nodes with higher
centrality is defined as:

δi = min
j:�Pj>�Pi

dij: ð12Þ

According to the centrality and dispersion of nodes for-
mulated as Eq. (11) and Eq. (12). The CV (comprehensive
value) of any node i in the network can be defined as:

CV ið Þ =
�Piδi

max
1≤i≤n

�Pi

À Á
max
1≤i≤n

�δi
À Á : ð13Þ

We sort the CV values of all nodes in descending order
and select the k node with the highest CV value as the center
of the network. Then we chose the k columns(corresponding
to the selected k centers) in the similarity matrix S = ðA + IÞτ
to obtain the initialized H matrix, where I is an n-dimen-
sional identity matrix and τ is the step length of signal prop-
agation, and we take this value as τ = 3 in this paper.

3.7. The GCDNMF Algorithm. Algorithm 1 outlines our pro-
posed GCDNMF. Taking the adjacency matrix A, the attri-
bute matrix C and the number of communities k as input,
after initializing the initial matrix, the membership matrix
of nodes H is obtained by iteratively update. Finally, the
community partition result of nodes is obtained by the max-
imum assignment. The GCDNMF algorithm is decreasing
with step 4 to step 7 and converges to a local optimum. Since
k≪ n, β, and α are constant, the complexity of updating G,
Q, V , and H is OðTðn2kÞ +mnkÞÞ for T iterations. With well
initialization based on centrality and dispersion of nodes,
GCDNMF can converge quickly and reduce required itera-
tions largely in partitioning nodes of a network. Generally,
100 iterations will give a promising performance.

4. Experimental Results and Analysis

In this paper, to verify the effectiveness of our proposed
method, we compared against the sate-of-the-art commu-
nity detection method based on NMF model. The average
results with 10 trials were recorded. All the algorithms were
ran on a PC with RAM:8.0GB, CPU: Intel i7-4600U, and
Platform: MATLAB 2014b.

4.1. Data Description. We used both synthetic and real-
world networks to test the effectiveness of our proposed
algorithm. The details of these datasets are given below,
and the detailed parameters of the data are given in Table 2.

(1) Cora the Cora dataset is a subset of the large Cora
citation dataset. It contains 2708 research papers
from seven subfields of machine learning. In this
network, each node is characterized by a 0/1-valued
word vector indicating the absence/presence of the
corresponding word from the dictionary, which con-
sists of 1703 unique words.
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(2) Citeseer the Citeseer dataset is a citation network of
computer science publications. It contains 3312 pub-
lications, each of which is labeled as one of 6 catego-
ries. Similar to Cora dataset, each publication is
described as one binary vector indicating the pres-
ence or absence of the corresponding word from a
dictionary of 3703 unique words.

(3) WebKB the WebKB dataset consists of 877 scientific
publications and 1608 links, which includes Web
page networks of four universities: Cornell, Texas,
Washington, and Wisconsin.

According to the block matrices of the networks, the first
two datasets are assortative mixing(traditional community
structure) as shown in Figure 1(a) taking the Cora dataset
as example, while the WebKB datasets is mixture structure,
which is neither assortative mixing nor disassortative mixin-
g(e.g.,bipartite structure or multipartitie structure) show in
Figure 1(b) taking the Washington dataset as example.

4.2. Evaluation Measurements. In this study, three com-
monly used metrics are used to measure the performance
of an algorithm, accuracy (ACC) [39], normalized mutual
information (NMI) [39], and Pairwise F-measure (PWF)
[40]. These metrics are defined as follows.

(1) Accuracy (ACC). Given node i, lpi is the assigned
label by an algorithm, and lti is the true label. The
accuracy is defined as the fraction of all nodes whose
predicted labels are the same with the true labels.
The ACC of a particular division of a network is
defined as follows:

ACC =
∑n

i=1δ lti, pmap lpi
À Á� �

n
, ð14Þ

where δðx, yÞ is a Kronecker function that the value is 1 if
x = y, otherwise, 0. pmapðlpiÞ is a permutation mapping func-
tion that maps the label lpi of node i to the corresponding
label in the ground-truth. n is the overall number of nodes
in a network.

(2) Normalized mutual information (NMI). The NMI is
defined by:

NMI C, C′
� �

=
−2∑K

i=1∑
K′
j=1nij log nijn/nCi nC′j

� �
∑K

i=1n
C
i log nCi /n

À Á� �
+ ∑K ′

j=1n
C ′
j log nC ′j /n

� �� � , ð15Þ

where C is the ground-truth cluster label, C′ is the computed
cluster label, K is the number of communities, nCi is the
number of nodes in the ground-truth community i, nC′j is
the number of nodes in the computed community j, nij is
the number of nodes in the ground-truth community i that
are assigned to the computed community j. In general, the
higher NMI, the better result an algorithm get.

(3) Pairwise F-measure (PWF). Let LT denote the set of
nodes having the same community label in the
ground-truth, and LS be the set of nodes in the same
community divided by a given algorithm. jXj is the
cardinality of X. The balanced PWF is the harmonic
mean of precision and recall. It is defined as follows:

PWF =
2 × precision × recall
precision × recall

, ð16Þ

where precision = jLS ∩ LT j/jLSj and recall = jLS ∩ LT j/j
LT j. The higher the PWF, the closer the division is to the
ground-truth.
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(a) Cora
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(b) Washington

Figure 1: The gray-scale images of community-relation matrices, namely, the block matrices of the networks. Each block represents the link
probabilities between the corresponding community pair, and darker colors of the blocks correspond to larger link probability.
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4.3. Experimental Results and Analysis. In this section, to
validate the effectiveness of GCDNMF for community
detection, in addition to comparing with structure based
nonnegtive matrix factorization methods, such as stdNMF,
ANMF, and Mtrinmf, we also compare with the state-of-
the-art NMF-based methods that combines structure and
attribute, like CDCN and SCI. In addition, we compare
GCDNMF with promising attributed clustering method
SA-cluster and probabilistic model PCL-DC (focusing on
traditional community detection) and GSB (aiming to
detect general community detection). What is more, we
compare the performance of GCDNMF with different ini-
tialization settings, where GCDNMF rand is with random
initialization and GCDNMF is with the centrality-based
initialization.

The average results of ten random trials are shown in
Table 3. From the table, we notice that GCDNMF perform
well on most of the datasets and achieves the best and

second-best on all metrics, ACC, NMI, and PWF. Further-
more, we have the following observations.

Different from the method only considering topology,
such as Mtrinmf, stdNMF, and ANMF, the method of inte-
grating topological connections and node attributes can sig-
nificantly improve the performance of community detection.
The best and second-best results are obtained by methods
that integrate two types of information. For instance, the
highest ACC score among the methods that focus on net-
work topology information is 0.455(stdNMF), and the best
ACC score among the methods that combine both the topol-
ogy and attribute is 0.565(GSB) on Texas dataset. Compared
with those methods, our method GCDNMF achieves 0.630.

Among all the comparison methods of structure and
attribute fusion, PCL-DC achieves the best results and
GCDNMF is second on Cora and Citeseer datasets. This is
in accordance with the original intention of PCL-DC, which
is mainly used for mining traditional community structures.

Table 3: Average comparison results of different methods, the best results are highlighted bold, and the second best are highlighted
underline.

Metric Algorithm Cora Citeseer Cornell Texas Wisconsin Washington

ACC

stdNMF 0.335 0.250 0.338 0.455 0.386 0.433

ANMF 0.381 0.263 0.324 0.423 0.322 0.374

CDCN 0.277 0.217 0.422 0.395 0.375 0.500

Mtrinmf 0.229 0.216 0.270 0.286 0.283 0.272

SCI 0.344 0.263 0.456 0.565 0.544 0.525

SA-cluster 0.233 0.264 0.415 0.401 0.404 0.491

GSB 0.335 0.284 0.456 0.597 0.536 0.366

PCL-DC 0.564 0.412 0.329 0.348 0.336 0.380

GCDNMF rand 0.434 0.233 0.378 0.494 0.388 0.457

GCDNMF 0.478 0.343 0.492 0.630 0.476 0.585

NMI

stdNMF 0.186 0.050 0.087 0.124 0.075 0.113

ANMF 0.245 0.066 0.105 0.165 0.069 0.103

CDCN 0.047 0.058 0.115 0.079 0.084 0.105

Mtrinmf 0.043 0.012 0.046 0.042 0.037 0.029

SCI 0.145 0.116 0.079 0.080 0.169 0.139

SA-cluster 0.047 0.117 0.064 0.082 0.101 0.077

GSB 0.207 0.085 0.122 0.265 0.157 0.068

PCL-DC 0.416 0.170 0.073 0.061 0.060 0.092

GCDNMF rand 0.287 0.037 0.108 0.182 0.081 0.130

GCDNMF 0.369 0.151 0.147 0.220 0.065 0.162

PWF

stdNMF 0.257 0.211 0.309 0.435 0.325 0.397

ANMF 0.359 0.251 0.283 0.391 0.288 0.327

CDCN 0.224 0.271 0.376 0.381 0.369 0.490

Mtrinmf 0.180 0.178 0.240 0.270 0.256 0.250

SCI 0.300 0.292 0.437 0.545 0.507 0.503

SA-cluster 0.233 0.264 0.415 0.401 0.404 0.491

GSB 0.258 0.232 0.402 0.570 0.507 0.296

PCL-DC 0.441 0.299 0.281 0.316 0.274 0.326

GCDNMF rand 0.372 0.222 0.331 0.478 0.345 0.415

GCDNMF 0.385 0.300 0.452 0.611 0.407 0.521
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But on the other four datasets with mixture community
structures, methods based on joint matrix decomposition
(such as GCDNMF and SCI) and statistical inference model
GSB have better performance. Specifically, compared with

PCL-DC, GCDNMF improve ACC and PWF by almost 20
% on Washington dataset. For the general community struc-
ture discovery, i.e., on the WebKB datasets (including Cor-
nell, Texas, Wisconsin and Washington), overall,
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(f) Wisconsin

Figure 2: Convergence curve of our proposed GCDNMF. The horizontal axis is the number of iterations, and the vertical axis is the
difference of the objective function values. The value of the vertical axis gradually decreases to close to 0, indicating that the algorithm
converges.
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GCDNMF and GSB have comparable effects, but GCDNMF
achieves the best on three of the four datasets in terms of
ACC and PWF. In addition, GCDNMF is able to extract tra-
ditional community structures better than GSB, such as on the
Cora and Citeseer datasets. This observation implies that
GCDNMF can capture more complex community structures,
which is shown in that it can not only discover traditional
community structures, but also detect mixture structures in

networks. This verifies the effectiveness of our proposed
GCDNMF by introducing consistency constraints to explore
the community-interaction between linkages and attributes.

4.4. Convergence and Stability Study. To solve the proposed
joint formulation, we adopt an iterative update technique.
In this subsection, we experimentally study the convergence
of our proposed GCDNMF. The convergence rate on six
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Figure 3: Results of GCDNMF with and without initialization on Citeseer and Texas datasets. The blue, red, and green lines represent the
ACC, NMI, and PWF, respectively, where the solid line is the result with our introduced initialization, and the dashed line is the result with
random initialization.
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Figure 4: The effect of parameter β and α.
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datasets are shown in Figure 2. From these figures, we can
see that our proposed GCDNMF converge within 50 itera-
tions on all datasets.

Further, we experimentally validate the effectiveness of
the initialization strategy in our work, and we compare the
performance of GCDNMF with random initialization. Due
to limited space, we take the Citeseer and Texas networks
as examples to test the results of GCDNMF with and with-
out initialization. As shown in Figure 3, the blue, red, and
green lines, respectively, reflect the results of ACC, NMI,
and PWF in ten iterations. The solid line is the results of
using initialization, and the dotted line is the result of with-
out initialization. From the figures, it can be noted that the
initialization mechanism significantly improves the stability
of the results. More specifically, the standard deviation of
ten-round results is 0.0006, 0.0002, and 1.07E-4, respec-
tively, in these three metrics with initialization strategy,
while the standard deviation without initialization strategy
is 0.025, 0.021, and 0.314. Additionally, we find that the
accuracy of network community detection is significantly
improved through the initialization strategy. Similarly, the
same conclusion can be obtained on other networks. In con-
clusion, the experimental results show that GCDNMF can
converge quickly while maintaining high community detec-
tion quality compared to random initialization.

4.5. Parameters Analysis. The GCDNMF model has two
hyperparameters: α indicates the contribution of the attri-
bute information to the community detection results, and
β controls the strength of consistency between community-
relation matrices derived from structure and attribute.
Because the results of different networks have similar tends,
here we demonstrate and analyze the performance effect of
hyper-parameters on Texas in experiments. We vary α and
β in range of f0:01,0:1,1, 10,⋯, 100g and observe the results
while holding the other parameter fixed. Figures 4(a) and
4(b) demonstrate the performance of GCDNMF when α =
1 and β = 1 and ranging the other parameter from 0.01 to
100, respectively. From the figures, we observe that
GCDNMF is sensitive to β and is relatively stable with differ-
ent settings of α when β fixed. Specifically, from Figure 4(a),
when β becomes larger, the performance of GCDNMF first
keeps rising slightly and then drops sharply at a certain
value. This indicates that too large β will introduce noise
by excessive consistency constraint from attribute clusters.
Therefore we suggest α to be 1 (with equal attention to struc-
ture and attribute information) and properly tune β in f
0:01,0:1,⋯, 50g so as to achieve a high performance.

5. Summary

In this paper, GCDNMF is proposed for general attribute
network community detection by exploring the consistency
relationship between node-community structures based on
structural connectivity and node attributes. By comparing
with several state-of-the-art methods, it is demonstrated that
the GCDNMF method has better performance in revealing
the general community structure for all benchmarks. In
addition, we demonstrate that GCDNMF has stable perfor-

mance after adopting initialization. However, there is still
space for improvements in future work. Interesting issues
include the proposed approach to overlapping community
detection and semisupervised general community detection.
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