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To tackle the difficulty and high cost of UAV positioning in a 5G disaster environment, this study proposes a multi-UAV
coordinated positioning algorithm based on a factor graph (MUAV-FGC). A factor graph model is designed for coordinated
positioning of the master-slave UAVs. In the positioning process, the influence of the speed and heading errors of the UAV on
the positioning accuracy was analyzed, and the expected and variance values of the variables were used as the information
transmitted between the factors. The error of the cooperative positioning algorithm was derived based on the factor graph. The
coordinated positioning of multiple drones and the positioning accuracy improved. The simulation results show that,
compared with the traditional extended Kalman filter (EKF) algorithm, the proposed MUAV-FGC positioning algorithm
reduces the mean positioning and root mean square error by approximately 18.86% and 17.54%, respectively, thus proving its
effectiveness.

1. Introduction

In recent years, various types of natural disasters affecting a
wide area have occurred frequently, causing huge losses to life
and property. With the continuous maturity of 5G technology
and the research and development of 6G technology in the
future [1], the advanced technology represented by UAV is
more and more applied to the field of disaster prevention,
reduction, and disaster relief and emergency management
[2–4], which opens the “eye of the air” for disaster prevention,
reduction, and disaster relief. In the event of a severe natural
disaster, the drone can quickly cross the mountain and river
barriers and get to the disaster site unaffected by the informa-
tion interruptions and traffic obstructions; obtain the disaster
information through photography, video, or other remote
sensing methods; and provide accurate information for emer-
gency rescue and relief in a timely manner [5, 6]. Thus, drone
technologies present substantial technical advantages. When
performing missions, drones need to be able to accurately

determine their own location to successfully perform tasks
such as disaster situation detection, search and rescue, and
delivery of rescue supplies [7, 8] at the correct location in sce-
narios including nuclear disasters, where investigation and
rescue by humans is not possible. Therefore, at present,
obtaining information on the precise location of the UAV
has become one of the most significant core technologies to
be developed and improved [9, 10].

The traditional methods of obtaining the position of the
UAVs primarily include the global positioning system (GPS)
[11–13] and inertial navigation and positioning system (INS)
[14–16]. Although the GPS positioning system has the advan-
tages of globalization and real time, the signal could be easily
blocked by obstructions (such as high mountains and valleys
and remote areas). Moreover, electromagnetic interference,
which affects its position accuracy, can easily occur. If the
drone cannot receive the GPS signals or if the frequency
update of the GPS signal could not meet the requirements of
the aircraft to update the information, the drone will lose its
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position. Conversely, INS has the advantages of small size, low
cost, and independent positioning without relying on external
information [17]. However, when an INSmoves in a large area
for a long time, the error of pose estimation will accumulate
over time, leading to positioning, and the error increases
sharply and deviates significantly from the actual position.
When drones are used for disaster relief, they are often
required to work for long hours in harsh environments, such
as remote mountain areas. Thus, the GPS and INS systems
cannot meet the requirements of drone positioning.

At present, scholars at home and abroad have conducted
a significant amount of research on the positioning of UAVs
[18–20]. Padhy et al. [21] proposed a model for autonomous
navigation and collision avoidance of drones in corridor
environments where GPS cannot be located; detailed exper-
iments were conducted in different corridors to prove the
effectiveness of the experimental plan. Zhang et al. proposed
an autonomous navigation and positioning method for
UAVs based on electric field array detection [22]. Their
experiments showed the positioning effect of the positioning
algorithm, and the positioning error was within the range of
the user error; therefore, this positioning algorithm had
good usability and application value. Liu et al. [23] proposed
an interactive multimodel positioning algorithm based on a
robust Cuban Kalman filter and analyzed the performance
of the UAV positioning and navigation algorithm. These
positioning methods are only for single UAV positioning
research, and there is no research on multi-UAV coordi-
nated positioning. However, in disaster environments, mul-
tiple UAVs often work collaboratively; thus, coordinated
positioning is required to improve the positioning accuracy.
Therefore, the coordinated positioning of multiple drones
has become a crucial issue that must be addressed.

Regarding the research on multi-UAV colocation [24–29],
Sivaneri and Gross [30] proposed a UAV colocation algorithm
in a global navigation satellite system (GNSS) environment,
which uses a platform where the satellite signals are interfered,
except for on the ground level, for navigation. However, the
limitations of the ground control station technology posed a
problem. Meyer et al. [31] proposed a sigma point belief prop-
agation positioning algorithm, which uses sampling points to
characterize the state and can quickly perform collaborative
positioning; this method is more suitable for indoor position-
ing and navigation and does not consider the use of measure-
ment information devices such as satellites. However, a large
number of coordinated drones lead to a large computational
load, which remains an issue yet to be solved. Vetrella et al.
[32] proposed a collaborative positioning method that inte-
grates inertial, magnetometer, available satellite pseudo-range,
cooperative drone position, and monocular camera informa-
tion, which effectively improves the positioning performance
of the drone swarm under the GPS-constrained conditions.
However, a large number of sensors were used. Wan et al.
[33] designed a dynamic nonparametric belief propagation
algorithm to obtain the UAV location information, but the
amount of calculation was large, and only a two-dimensional
space was simulated, which is not suitable for large-scale clus-
ter UAV use. Fan et al. [34] proposed a multi-AUV colocation
method based on factor graphs and product algorithms.

Experimental results show that, its positioning accuracy is bet-
ter than those of the extended Kalman filter (EKF) and
unscented Kalman filter (UKF) algorithms; however, it is a
centralized processing method. The aforementioned algo-
rithms consider the difficulty of UAV positioning under con-
ditions such as limited GNSS signals. However, problems such
as the inability to eliminate the constraints of the ground con-
trol station and the requirement of a large number of sensors
remain, making such methods unsuitable for use in disaster
environments. The human-machine coordinated positioning
does not consider the influence of the speed and heading
errors of the drone on the positioning accuracy during flight.
In response to the above problems, this paper proposes a
multi-UAV colocation algorithm based on a factor graph
(MUAV-FGC). The main contributions of the algorithm are
as follows:

(1) Analyzed the problem of multi-UAV colocation
error in a disaster environment, proposed a multi-
UAV factor graph colocation algorithm, and
designed a factor graph model of the master-slave
UAV coordinated location

(2) Analyzed the influence of the UAV’s speed and
heading error on the positioning accuracy during
the positioning process. In the factor graph model,
the variable expectation and variance are used as
the information transmitted between the factors
and deduced the factor graph-based cooperative
positioning algorithm error

(3) Finally, a simulation experiment was established and
compared with the traditional UAV EKF positioning
algorithm. The results show that the MUAV-FGC
algorithm proposed in this study significantly
improves the positioning accuracy [35]

2. Analysis of Multi-UAV
Coordinated Positioning

2.1. Multi-UAV Colocation Model. The cooperative position-
ing model of multiple UAVs is shown in Figure 1. The
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Figure 1: Multi-UAV coordinated positioning model.

2 Wireless Communications and Mobile Computing



Cartesian coordinate system is established with the UAV
transmitting base station B as the origin. In the figure,
MUAV is the main UAV, and UAV is the UAV to be posi-
tioned. In the positioning process, it is assumed that the
position of the main UAV is accurate, that is, the main
UAV is an airborne 5G base station, and the position infor-
mation of the main UAV is obtained by 5G data communi-
cation between the UAV and the main UAV.

The three-dimensional motion model of UAV can be
expressed as

x = v cos β cos α,
y = v cos β sin α,
z = v sin β,

ð1Þ

where ðx, y, zÞ, v, and ðα, βÞ represent the position coordi-
nates of the slave drone, speed of the slave drone, and head-
ing angles, respectively.

If the speed of the drone at time k, the measured hori-
zontal heading angle, and the vertical heading angle are vk,
α, and β, respectively, then the position of the drone at time
k is ðxk, yk, zkÞ, and the position of the drone at time k − 1 is
ðxk−1, yk−1, zk−1Þ, and Δt is sampling periods; thus, the fol-
lowing three-dimensional discrete motion model for the
UAV can be obtained:

xk = xk−1 + vΔt cos β cos α,
yk = yk−1 + vΔt cos β sin α,
zk = zk−1 + vΔt sin β:

ð2Þ

The slave and master drones communicate with each
other to obtain the relative position information. The calcu-
lation equation for the relative distance information is

d =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xk − xmkð Þ2 + yk − ymkð Þ2 + zk − zmkð Þ2

q
, ð3Þ

where ðxmk , ymk , zmk Þ represents the position of the main drone
at time k.

2.2. Positioning Error Analysis. According to the three-
dimensional motion model of the slave drone, the speed
and heading position of the slave drone measured at time
a are as follows:

x−a = xa−1 + v−aΔt cos α−a cos β−
a ,

y−a = ya−1 + v−aΔt cos α−a sin β−
a ,

z−a = za−1 + v−aΔt sin α−a :

ð4Þ

v−a and α−a , β−
a represent the measured value of the

drone’s speed and heading angles at time a; x−a , y
−
a , and z−a

represent the a priori estimate of the position in the x, y,
and z directions at time a, respectively; xa−1 ya−1 and za−1
represent the true value of the position in the x, y, and z

directions at time a − 1, respectively. The speed and heading
angle can be further expressed as

v−a = va + ~va,
α−a = αa + ~αa,

β−
a = βa + ~βa,

ð5Þ

where va represents the true speed of the slave drone at time
a and ~va represents the speed error of the slave drone at time
a. αa, βa represents the true heading angles from the drone

at time a, and~αa, ~βa represents the heading errors from the
drone at time a. Substituting equation (5) into equation
(4), we can obtain

x−a = xa−1 + Δt va + ~vað Þ cos βa + ~βa

� �
cos αa + ~αað Þ,

y−a = ya−1 + Δt va + ~vað Þ cos βa + ~βa

� �
sin αa + ~αað Þ,

z−a = za−1 + Δt va + ~vað Þ sin βa + ~βa

� �
:

ð6Þ

On expanding equation (6), we obtain

x−a = xa−1 + Δt va + ~vað Þ
�
cos βa cos ~βa cos αa cos ~αa

− cos βa cos ~βa sin αa sin ~αa

− sin βa sin ~βa cos αa cos ~αa
+ sin βa sin ~βa sin αa sin ~αa

�
,

y−a = ya−1 + Δt va + ~vað Þ
�
cos βa cos ~βa sin αa cos ~αa

+ cos βa cos ~βa cos αa sin ~αa

− sin βa sin ~βa sin αa cos ~αa
− sin βa sin ~βa cos αa sin ~αa

�
,

z−a = za−1 + Δt va + ~vað Þ sin βa cos ~βa + cos βa sin ~βa

� �
:

ð7Þ

Assuming that the speed and heading errors are infini-
tesimal, then

sin ~αa = ~αa,
cos ~αa = 1,
~va~αa = 0,
sin ~βa = ~β,

cos ~βa = 1,

~va~βa = 0:

ð8Þ
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Substituting equation (8) into equation (7), we can
obtain

x−a = xa−1 + Δt
h
va
�
cos βa cos αa − ~αa cos βa sin αa

− ~βa sin βa cos αa + ~αa
~βa sin βa sin αa

�
+ ~va cos βa cos αa

i
,

y−a = ya−1 + Δt
h
va
�
cos βa sin αa + ~αa cos βa cos αa

− ~βa sin βa sin αa − ~αa
~βa sin βa cos αa

�
+ ~va cos βa sin αa

i
,

z−a = za−1 + Δt va sin βa + ~β cos βa

� �
+ ~va sin βa

h i
:

ð9Þ

From equation (9), it can be concluded that the coordi-
nate position error is directly proportional to the speed
error; it is also positively correlated with heading angle error.
It can be seen that both the speed and heading error will
have an impact on the positioning, resulting in unmanned
machine positioning error increases. Therefore, based on
the above analysis, this article introduces an analysis of the
speed and heading angle errors in the positioning process.

3. Multi-UAV Factor Graph
Colocation Algorithm

3.1. Colocation Analysis of Factor Graph. Assuming that the
UAV cannot receive the location information of the main
UAV at time a, after a period of time, the location informa-
tion of the main UAV is received at time k. At this time, the
posterior position estimation from time a to time k is diffi-
cult to calculate, which easily leads to complicated speed
and heading errors. Therefore, assuming that the amount
of time from time a to time k is short, then

~v = ~va =⋯ = ~vk,
~α = ~αa =⋯ = ~αk,
~β = ~βa =⋯ = ~βk:

ð10Þ

Accordingly, the error δxa, δya, δza of the coordinate
position at time a can be written as

δxa = x−a − xa = Δt
h
va
�
−~αa cos βa sin αa

− ~βa sin βa cos αa + ~αa
~βa sin βa sin αa

�
+ ~va cos βa cos αa

i
,

δya = y−a − ya = Δt
h
va
�
~αa cos βa cos αa

− ~βa sin βa sin αa − ~αa
~βa sin βa cos αa

�
+ ~va cos βa sin αa

i
,

δza = z−a − za = Δtva~βa cos βa + Δt~va sin βa,

ð11Þ

where x−a , y−a , z−a represent a priori estimates of xa, ya, za,
respectively. Because no position information is received
from time a to time k, an a priori estimation is used to
express the position as follows:

x−k = xk + δxa+1+⋯+δxk,
y−k = yk + δya+1+⋯+δyk,
z−k = zk + δza+1+⋯+δzk:

ð12Þ

Substituting equation (11) into equation (12), we obtain
equation (13) as

x−k = xk + ~v
h
Δt cos βa+1 cos αa+1 ⋯ +cos βk cos αkð Þ

− ~α Δtva+1 cos βa+1 sin αa+1+⋯+Δt cos βk sin αkð Þ
− ~β Δt sin βa+1 cos αa+1+⋯Δt sin βk cos αkð Þ
+ ~α~β Δt sin βa+1 sin αa+1+⋯Δt sin βk sin αkð Þ,

y−k = yk + ~v
h
Δt cos βa+1 sin αa+1 ⋯ +cos βk sin αkð Þ

+ ~α Δtva+1 cos βa+1 cos αa+1+⋯+Δt cos βk cos αkð Þ
− ~β Δt sin βa+1 sin αa+1+⋯Δt sin βk sin αkð Þ
− ~α~β Δt sin βa+1 cos αa+1+⋯Δt sin βk cos αkð Þ,

z−k = zk + ~v Δt sin βa+1+⋯+Δt sin βkð Þ
+ ~β va+1Δt cos βa+1+⋯+vkΔt cos βkð Þ:

ð13Þ

For representation, the coordinate position error δxk, δ
yk, δzk at time k can be written as

δxk = ~vδx~vk + ~αδx~αk + ~βδx
~β
k ,

δyk = ~vδy~vk + ~αδy~αk + ~βδy
~β
k ,

δzk = ~vδz~vk + ~βδz
~β
k :

ð14Þ

It can also be rewritten as

δxk

δyk

δzk

2664
3775 =

δx~vk δx~αk δx
~β
k

δy~vk δy~αk δy
~β
k

δz~vk 0 δz
~β
k

266664
377775

~v

~α

~β

2664
3775,

~v

~α

~β

2664
3775 =

δx~vk δx~αk δx
~β
k

δy~vk δy~αk δy
~β
k

δz~vk 0 δz
~β
k

266664
377775
−1

δxk

δyk

δzk

2664
3775:

ð15Þ
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When the master-slave drone is colocated, the position
update needs to be calculated after subtracting the corre-
sponding estimation error from the measured value of the
speed and heading:

x−k = xk−1 + v−k − ~vk′
� �

Δt cos β−
k − ~β

−
k

� �
,

cos α−k − ~α−kð Þ,
y−k = yk−1 + v−k − ~vk′

� �
Δt cos β−

k − ~β
−
k

� �
,

sin α−k − ~α−kð Þ,
z−k = zk−1 + v−k − ~vk′

� �
Δt sin β−

k − ~β
−
k

� �
:

ð16Þ

According to equation (14) and the UAV’s three-
dimensional discrete motion and relative distance model,
make the information transfer between its variables can be
obtained, as demonstrated in Figure 2.The rectangular and
elliptical boxes in the figure represent function and factor
nodes, respectively.

3.2. Procedure of the Factor Graph Colocation Algorithm. As
shown in Figure 2, the multi-UAV factor graph colocation
algorithm is used to calculate the mean and variance of the
transfer between the variable and function node. The specific
steps are as follows:

3.2.1. Initialization. Initial state before colocation:

x̂−k = x0,
σ2x̂−k = σ2

x0
,

ŷ−k = y0,
σ2ŷ−k = σ2

y0
,

ẑ−k = z0,
σ2ẑ−k = σ2z0 :

ð17Þ

3.2.2. Update of A Priori Estimate x̂−k , ŷ−k , ẑ−k . At noninitial
time, dead reckoning can be performed according to equa-
tion (2). μv and σ2v are the expected speed and variance,
and μα, σ2

α and μβ, σ2β are the expected heading and variance,
respectively. Because the speed is not related to the heading,
cov ðv, αÞ = 0
cov ðv, βÞ = 0

(
, we can obtain the following formula:

μx̂−k = μx̂−k−1 + Δtμv
cos μβ − σ2β cos β

2

 !
cos μα − σ2α cos α

2

� �
,

μŷ−k = μŷ−k−1 + Δtμv
cos μβ − σ2β cos β

2

 !
sin μα − σ2

α sin α

2

� �
,

μẑ−k = μẑ−k−1 + Δtμv
sin μβ − σ2β sin β

2

 !
,

σ2x̂−k = σ2x̂k−1 + cos μβΔtσv
� �2

− μv sin μβΔtσ
2
β

� �2� �
� sin μαð Þσ2α + cos μβΔtσv

� �2
− μv sin μβΔtσ

2
β

� �2� �
· cos μαð Þ − σ2α cos μαð Þ

2

� �2

+ sin μαð Þσ2
αμ

2
v

cos μβ

� �
− σ2β cos μβ

� �
2
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Figure 2: Multi-UAV factor graph colocation algorithm.
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σ2ŷ−k = σ2
ŷk−1

+ cos μβΔtσv
� �2

− μv sin μβΔtσ
2
β

� �2� �
� cos μαð Þσ2

α + cos μβΔtσv
� �2

− μv sin μβΔtσ
2
β

� �2� �
· sin μαð Þ − σ2α sin μαð Þ

2

� �2

+ cos μαð Þσ2αμ2v
cos μβ

� �
− σ2β cos μβ

� �
2

24 352

,

σ2ẑ−k = σ2ẑk−1 + sin μβΔtσv
� �2

− μv cos μβΔtσ2
β

� �2
:

ð18Þ

3.2.3. First Update of x̂−k , ŷ−k , ẑ−k . At this time, x′, z′, y′ after
the coordinate transformation (Figure 2) have not been cal-
culated, and the variable nodes xk, yk, zk and x̂−k , ŷ−k , ẑ−k are
equal:

xk = x̂−k ,
yk = ŷ−k ,
zk = ẑ−k :

ð19Þ

3.2.4. First Update of x̂−k , ŷ−k , ẑ−k . To avoid the collision of the
coordinate axes of the master and slave drones and to pre-
vent the resultant large calculation errors, the coordinates
of the master and slave drones are converted once in the
function node to obtain xk′ , yk′ , zk′ and xk′m, yk′m, zk′m.

xk′ = xk cos θy cos θz − sin θx sin θy sin θz
	 


− yk cos θx sin θz + zk
	
sin θy cos θz

+ sin θx cos θy sin θz


,

yk′ = xk cos θy sin θz + sin θx sin θy cos θz
	 


+ yk cos θx cos θz + zk
	
sin θy sin θz

− sin θx cos θy cos θz


,

zk′ = xk −cos θx sin θy
	 


+ yk sin θx

+ zk cos θx cos θy,

xk′m = xmk cos θy cos θz − sin θx sin θy sin θz
	 


− ymk cos θx sin θz + zmk
	
sin θy cos θz

+ sin θx cos θy sin θz


,

yk′m = xmk cos θy sin θz + sin θx sin θy cos θz
	 


+ ymk cos θx cos θz + zmk
	
sin θy sin θz

− sin θx cos θy cos θz


,

zk′m = xmk −cos θx sin θy
	 


+ ymk sin θx

+ zmk cos θx cos θy,

ð20Þ

where θx, θy , and θz are the angle of rotation along the x-, y-,
and z-axes, respectively.

3.2.5. Δxk, Δyk, Δzk Update. The role of function nodes B, C,
and D is to convert the relative and absolute position infor-
mation. Therefore, the function probability density of these
function nodes transferred to node Δxk, Δyk, Δzk is

N Δx, xk′m − μxk′
, σ2xk

� �
,

N Δy, yk′m − μyk′
, σ2

yk

� �
,

N Δz, zk′m − μzk′
, σ2zk

� �
:

ð21Þ

Owing to d2 = Δx2k + Δy2k + Δz2k, the probability density
function passed from the function node E to the variable
node can be expressed as

N Δxk,±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2k − μΔxk

� �2r
,

μΔxk

� �2
σ2xk + d2kσ

2
dk

d2k − μΔxk

� �2
0B@

1CA,

N Δyk,±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2k − μΔyk

� �2r
,

μΔyk

� �2
σ2yk + d2kσ

2
dk

d2k − μΔyk

� �2
0B@

1CA,

N Δzk,±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2k − μΔzk

� �2r
,

μΔzk

� �2
σ2
xk
+ d2kσ

2
dk

d2k − μΔzk

� �2
0B@

1CA:

ð22Þ

3.2.6. Second Update of xk′ , yk′ , zk′. The probability density of
the function nodes B, C, and D transfer function to ðxk′ , yk
′ , zk′Þ is

N xk′ , xk′m − μΔxk , σ
2
Δxk

� �
,

N yk′ , yk′m − μΔyk , σ
2
Δyk

� �
,

N zk′ , zk′m − μΔzk , σ
2
Δzk

� �
:

ð23Þ

3.2.7. Second Update of xk, yk, zk. After calculation and fin-
ishing, the updated function probability density of ðxk, yk,
zkÞ is as follows:

xk ~N xk, μxk , σ
2
xk

� �
,

yk ~N yk, μyk , σ
2
yk

� �
,

zk ~N zk, μzk , σ
2
zk

� �
,

1
σ2
xk

= 1
σ2
x̂−k

+ 1
σ2
xk′ ′

,
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1
σ2yk

= 1
σ2ŷ−k

+ 1
σ2
yk′ ′

,

1
σ2zk

= 1
σ2ẑ−k

+ 1
σ2
zk′ ′

,

μxk = σ2xk

μx̂−k
σ2x̂−k

+
μxk′ ′

σ2
xk′ ′

0@ 1A,

μyk = σ2
yk

μŷ−k
σ2ŷ−k

+
μyk′ ′

σ2
yk′ ′

0@ 1A,

μzk = σ2xk
μẑ−k
σ2ẑ−k

+
μzk′ ′

σ2
zk′ ′

0@ 1A,

ð24Þ

where μxk′ ′
, μyk′ ′, μzk′ ′ and σ2

xk′ ′
, σ2

yk′ ′
, σ2

zk′ ′
are the information

transferred to xk, yk, zk after xk′ , yk′ , zk′ coordinate conversion.
The coordinate conversion process is as follows:

3.3. Error Analysis of Factor Graph Colocation Algorithm.
The error formula can be rewritten as

δxk

δyk

δzk

2664
3775 =

δx~vk δx~αk δx
~β
k

δy~vk δy~αk δy
~β
k

δz~vk 0 δz
~β
k

266664
377775

~v

~α

~β

2664
3775,

~v

~α

~β

2664
3775 =

δx~vk δx~αk δx
~β
k

δy~vk δy~αk δy
~β
k

δz~vk 0 δz
~β
k

266664
377775
−1

δxk

δyk

δzk

2664
3775:

ð26Þ

In the case of colocation, the position update needs to be
calculated after subtracting the corresponding estimation
error from the measured value of the speed and heading as
follows:

x−k = xk−1 + v−k − ~vk′
� �

Δt cos β−
k − ~β

−
k

� �
cos α−k − ~α−kð Þ,

y−k = yk−1 + v−k − ~vk′
� �

Δt cos β−
k − ~β

−
k

� �
sin α−k − ~α−kð Þ,

z−k = zk−1 + v−k − ~vk′
� �

Δt sin β−
k − ~β

−
k

� �
,

ð27Þ

where

~vk′ = ~vk−1′ + ~vk−1, ~vk−1 = 0
~αk′ = ~αk−1′ + ~αk−1, ~αk−1 = 0
~βk
′ = ~βk−1′ + ~βk−1, ~βk−1 = 0

8>><>>: ; therefore, the expecta-

tion and variance values can be expressed as follows:

μ~vk′
= μ~vk−1′

+ μ~vk−1 ,

σ2
~vk′
= σ2

~vk−1′
,

μ~αk′
= μ~αk−1′

+ μ~αk−1
,

σ2
~αk′

= σ2
~αk−1′

,
μ~βk

′ = μ~βk−1′ + μ~βk−1
,

σ2
~βk
′ = σ2~βk−1′

:

ð28Þ

After receiving the measurement information of the
main drone from the drone at time a and performing error
estimation, δx~va = 0, δx~va is used as the starting point of δx~vk
for the next update. At this time, the expectation and vari-
ance of δx~va are both 0. Subsequently, δx~vk after time a can
be recursively expressed as δx~vk = δx~vk−1 + Δt cos βk cos αk;
however, because the actual value of β, α cannot be deter-

mined, it is represented by bβ , bα , that is,
bαk = α−k − ~αk′ ,

μbα k
= μα−k

− μ~αk′
,

σ2bα k
= σ2α−k

+ σ2
~αk′
,

bβk = β−
k − ~βk′ ,

μbα k
= μβ−

k
− μ~βk′ ,

σ2bβ k

= σ2
β−k
+ σ2~βk

′ :

ð29Þ

xk

yk

zk

2664
3775 =

cosθycosθz − sinθxsinθysinθz cosθxsinθz sinθycosθz + sinθxcosθysinθz
cosθysinθz + sinθxsinθycosθz cosθxcosθz sinθysinθz − sinθxcosθycosθz

−cosθxsinθy sinθx cosθxcosθy

2664
3775
−1

xk′

yk′

zk′

2664
3775: ð25Þ
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Further, the expectation and variance of δx~vk can be
expressed as

μδx~vk
= μδx~vk−1

+ Δtμ
cos bβ k

μcos bα k
,

σ2δx~vk
= σ2δx~vk−1

+ Δt2 σ2
cos bβ k

σ2
cos αk + σ2

cos bβ k

μ2 + σ2
cos bα k

μ2
cos bβ k

� �
:

ð30Þ

Similarly, the expressions of δy~vk, δz~vk, δx~αk , δy~αk , δz~αk , δx
~β
k

, δy~βk , δz
~β
k and the corresponding expectations and variances

can be obtained as follows:

δx~vk = δx~vk−1 + Δt cos bβk cos bαk,

δy~vk = δy~vk−1 + Δt cos bβk sin bαk,

δz~vk = δz~vk−1 + Δt sin bβk,

μδx~vk
= μδx~vk−1

+ Δtμ
cos bβ k

μcos bα k
,

σ2δx~vk
= σ2δx~vk−1

+ Δt2
�
σ2
cos bβ k

σ2cos bα k

+ σ2
cos bβ k

μ2cos bα k
+ σ2cos bα k

μ2
cos bβ k

�
,

μδy~vk
= μδy~vk−1

+ Δtμ
cos bβ k

μsin bα k
,

σ2δy~vk
= σ2

δy~vk−1
+ Δt2

�
σ2
cos bβ k

σ2sin bα k

+ σ2
cos bβ k

μ2sin bα k
+ σ2sin bα k

μ2
cos bβ k

�
,

μδz~vk
= μδz~vk−1

+ Δtμ
sin bβ k

,

σ2δz~vk
= σ2

δz~vk−1
+ Δt2σ2

sin bβ k

,

δx~αk = δx~αk−1 − v̂kΔt cos bβ sin bα ,
δy~αk = δy~αk−1 + v̂kΔt cos bβ cos bα ,
δz~αk = 0,

μδx~αk
= μδx~αk−1

− Δtμ
cos bβ k

μsin bα k
,

σ2
δx~αk

= σ2δx~αk−1
+ Δt2

�
σ2
cos bβ k

σ2
sin sbα k

+ σ2
cos bβ k

μ2sin bα k
+ σ2sin bα k

μ2
cos bβ k

�
,

μδy~αk
= μδy~αk−1

+ Δtμ
cos bβ k

μcos bα k
,

σ2
δy~αk

= σ2
δy~αk−1

+ Δt2
�
σ2
cos bβ k

σ2cos bα k

+ σ2
cos bβ k

μ2cos bα k
+ σ2cos bα k

μ2
cos bβ k

�
,

μδz~αk
= 0,

σ2
δz~αk

= 0,

δx
~β
k = 0,

δy
~β
k = 0,

δz
~β
k = δzk−1 + v̂kΔt cos bβk,

μ
δx

~β
k

= 0,

σ2
δx

~β
k

= 0,

μ
δy

~β
k

= 0,

σ2
δy

~β
k

= 0,

μ
δz

~β
k

= μ
δz

~β
k−1

+ Δtμ
v̂k cos bβ k

,

σ2
δz~αk

= σ2
δz

~β
k−1

+ Δt2σ2
v̂k cos bβ k

:

ð31Þ

Equation (32) presents the updated formula of ~v−k , ~α−k , ~β
−
k .

~v−k = ~vk−1,
~α−k = ~αk−1,
~β
−
k = ~βk−1:

ð32Þ

If the slave drone does not receive the position informa-

tion of the master drone at time k, then

~v−k = ~vk

~α−k = ~αk

~β
−
k = ~βk

8>><>>: , and the

expected variance can be expressed as follows:

μδxk = μy−k
− μxk ,

σ2
δxk

= σ2x−k
+ σ2xk ,

μδyk = μy−k
− μyk ,

σ2δyk = σ2
y−k
+ σ2yk ,

μδzk = μz−k
− μzk ,

σ2
δzk

= σ2z−k
+ σ2zk :

ð33Þ
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As shown in Figure 2, the information of the variable
node δx~vk is obtained by the variable nodes δx~vk−1, ~αk, and
~βk through the function node, which can be expressed as
Nðδx~vk, μδx~vk , σ

2
δx~vk

Þ. In addition, the information of the vari-

able node δy~vk is obtained by the variable nodes δy~vk−1, ~αk,
and ~βk through the function node, which can be expressed
as Nðδy~vk, μδy~vk , σ

2
δy~vk

Þ. Further, for the variable node δz~vk, its

information is obtained by the variable nodes δz~vk−1, ~αk,
and ~βk through the δy~αk−1~αkNðδz~vk, μδz~vk , σ

2
δz~vk

Þ function node,

which can be expressed as Nðδz~vk, μδz~vk , σ
2
δz~vk

Þ.
The information of the variable node δx~αk is obtained by

δx~αk−1, ~αk, and ~vk through the function node, which can be
expressed as Nðδx~αk , μδx~αk , σ

2
δx~αk

Þ; the information of the vari-

able node δy~αk is obtained by δy~αk−1, ~αk , and ~vk through the
function node, which can be expressed as Nðδy~αk , μδy~αk , σ

2
δy~αk

Þ
; and the information of the variable node δz~αk is obtained
by δz~αk−1, ~αk, and ~vk through the function node, which can
be expressed as Nðδz~αk , μδz~αk , σ

2
δz~αk

Þ.
Furthermore, the information of the variable node δx

~β
k is

obtained by δx
~β
k−1,

~βk, and ~vk through the function node,
which can be expressed as Nðδx~βk , μδx~βk , σ

2
δx

~β
k

Þ; the informa-

tion of the variable node δy
~β
k is obtained by δy

~β
k−1,

~βk, and
~vk through the function node, which can be expressed as N

ðδy~βk , μδy~βk , σ
2
δy

~β
k

Þ; and the information of the variable node

δz
~β
k is obtained by δz

~β
k−1,

~βk, and ~vk through the function

node, which can be expressed as Nðδz~βk , μδz~βk , σ
2
δz

~β
k

Þ.
The information passed from the function nodes ~vk−1,

~αk−1, and ~βk−1 to variable nodes ~vk, ~αk, and ~βk can be

expressed as Nð~vk, μ~vk , σ2~vkÞ, Nð~αk, μ~αk , σ2~αkÞ, and Nð~βk, μ~βk
,

σ2~βk
Þ, respectively.

The information transferred from the function nodes F,
G, and H to the variable nodes δxk, δyk, and δzk can be rep-
resented as Nðδxk, μδxk , σ2δxkÞ, Nðδyk, μδyk , σ2δykÞ, and Nðδzk
, μδzk , σ

2
δzk

Þ, respectively. The information transferred from
function node I to the variable node ~vk can be represented
as Nð~v+k , μ~v+ , σ2~v+Þ, the information transferred to ~αk can be
represented as Nð~α+k , μ~α+ , σ2

~α+Þ, and the information trans-

ferred to ~βk can be represented as Nð~β+
k , μ~β

+ , σ2~β+Þ.
The a priori estimate of ~vk and the information passed

from function node I to the variable node ~vk can be com-
bined to obtain the posterior estimate of ~vk at time k:

μ~vk = σ2
~vk

μ~v−k
σ2~v−k

+
μ~v+k
σ2
~v+k

 !
,

σ2~vk =
σ2
~v−k
⋅ σ2~v+k

σ2
~v−k
+ σ2~v+k

:

ð34Þ

Similarly, the posterior estimates of ~αk and~βk are

μ~αk
= σ2~αk

μ~α−k
σ2~α−k

+
μ~α+k

σ2
~α+k

 !
,

σ2
~αk
=

σ2~α−k ⋅ σ
2
~α+k

σ2
~α−k
+ σ2~α+k

,

μ~βk
= σ2

~βk

μ~β
−
k

σ2~β−
k

+
μ~β

+
k

σ2
~β
+
k

0@ 1A,

σ2~βk
=

σ2
~β
−
k
⋅ σ2~β+

k

σ2~β−
k
+ σ2~β+

k

:

ð35Þ

4. Simulation Results and Analysis

The movement of the drone was simulated in MATLAB to
verify the feasibility of this algorithm. The simulation condi-
tions were as follows: five UAVs were moving in an area of
1000m × 600m × 300m. The position of the main UAV is
accurately determined. The slave UAVx and main UAV
communicate with each other, and the slave UAV obtains
the location and observation information from the main
UAV. Figure 3 illustrates the initial position of the slave
and main UAV.

In the experiment, the MUAV-FGC algorithm estimates
the speed error of the slave UAV, as shown in Figure 4. The
abscissa in the figure represents time (s), and the ordinate is
the speed error estimate (m/s). The figure depicts that, as the
experiment progresses, the speed error continues to accumu-
late. The estimated average speed error from the UAV was
0.0644m/s during the experiment time of 600 s. Therefore,
the speed error must be compensated during the positioning
process to improve positioning accuracy.

In the experiment, the MUAV-FGC algorithm estimates
the dead angle error of the slave UAV, as shown in Figure 5.

240

250

220

200

200
150

200
250

300

180

160

140
300

Slave UAV
Main UAV

Figure 3: Initial position of the drone.
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In the figure, the abscissa represents the time of the experi-
ment (s), the ordinate represents the dead-end angle error
(°), the curve with “∗” is the horizontal dead-angle error
curve, and the curve with “⚪” is the vertical dead angle curve.
As shown, the vertical dead-angle error fluctuates between
-0.2°and 0.2°, and the horizontal dead-angle error stabilizes
at approximately -0.58°after 400 s. In addition, the error of
the dead angle will affect the positioning; therefore, it is nec-
essary to compensate for the heading angle error in the posi-
tioning process to improve the positioning accuracy.

Figure 6 presents the positioning error curves of the
MUAV-FGC and the extended Kalman algorithms. In the
figure, the abscissa represents the time (s), the ordinate rep-
resents the positioning error (m), the curve with “∗” is the
positioning error curve of the MUAV-FGC algorithm used
in this study, and the curve with “⚪” is the positioning error
curve of the EKF algorithm. As shown in Figure 6, the

MUAV-FGC algorithm curve is below the EKF algorithm
curve, indicating that the average positioning error of the
MUAV-FGC algorithm is smaller than that of the EKF algo-
rithm. Thus, the positioning accuracy of the MUAV-FGC
algorithm is higher than that of the EKF algorithm. This is
because the EKF algorithm does not estimate and compen-
sate for the speed and heading errors, resulting in a high
positioning error, whereas the MUAV-FGC algorithm sig-
nificantly reduces the positioning error.

Figure 7 demonstrates the mean and root mean square
values of the positioning error of the EKF and FG algorithms
in the experiment. The root mean square and mean values of
the EKF algorithm are 16.47 and 5.09, whereas those of the
MUAV-FGC algorithm are 13.58 and 4.13, respectively.
The positioning error of the MUAV-FGC algorithm was
found to be smaller than that of the EKF algorithm. Com-
pared with the EKF algorithm, the mean positioning and
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Figure 4: Speed error estimation results.
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root mean square errors of the MUAV-FGC algorithm was
reduced by approximately 18.86%, and 17.54%, respectively.

5. Conclusion

In this study, we addressed the problem of multi-UAV colo-
cation in a disaster environment, proposed a multi-UAV
factor graph colocation algorithm, and derived formulas
for speed and heading angle. In the factor graph model,
the expectation and variance of variables are used as the
information transferred between factors, and the process of
error estimation algorithm based on the factor graph is
derived. Based on the simulation experiment results, the
average positioning error and root mean square error of
the MUAV-FGC algorithm are reduced by approximately
18.86% and 17.54%, respectively, along with providing a bet-
ter positioning performance, compared to the EKF
algorithm.
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