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Link quality prediction is a fundamental component of the wireless network protocols and is essential for routing protocols in
wireless sensor networks (WSNs). Effective link quality prediction can select high-quality links for communication and
improve the reliability of data transmission. In order to improve the accuracy of the link quality prediction model and reduce
the model complexity, the link quality prediction model based on the light gradient boosting machine (LightGBM-LQP) is
proposed in this paper. Specifically, agglomerative hierarchical clustering and manual division are combined to grade the link
quality and obtain the labels of samples. Then, light gradient boosting machine (LightGBM) classification algorithm and Focal
Loss are used to estimate the link quality grades. In order to reduce the impact of data imbalance, Borderline-SMOTE is
employed to oversample the minority link quality samples. Finally, LightGBM-LQP predicts link quality grade at the next
moment with historical link quality information. The experimental results on data collected from a real-world WSNs show
that the proposed model has better prediction accuracy and shorter predicting time compared to related models.

1. Introduction

Wireless sensor networks (WSNs) are multihop self-organizing
networks that are composed of a large number of inexpensive
microsensor nodes [1]. WSNs are widely employed in military,
intelligent logistics, industrial security monitoring, and other
fields due to the comparatively low cost of sensor nodes and
the functions of communication, perception, and computing
[1–3].

Link quality prediction is the basis of topology control,
routing, mobile management, and other upper layer proto-
cols in WSNs, and it has a direct impact on communication
performance and network scale [4]. Indeed, during the com-
munication process, the wireless signal is affected by multi-
path interference, background noise, shadow fading, and
other factors [5]. This is the main reason for wireless link
quality fluctuations. There are many low-quality links in
WSNs. When a data packet fails to be delivered, WSNs will
resend it using the retransmission mechanism. Although this
approach ensures that the data packet is successfully sent,

the increased delay reduces the network’s overall efficiency.
It is a fact that efficient upper layer protocols require an
approach to avoid excessive retransmission on low-quality
links [6–8]. To cope with this issue, the routing protocols
of WSNs use various link quality prediction model (LQP)
to select the best available paths considering higher-quality
links, thereby preventing packet loss in advance [9]. The effi-
cient LQP can serve as the foundation for upper layer rout-
ing to select the optimum connection, ensuring data
transmission timeliness and stability for energy limited
WSNs.

In order to improve the accuracy of the LQP, reduce the
impact of data imbalance and decrease the complexity of the
LQP; a link quality prediction model based on the light gra-
dient boosting machine (LightGBM-LQP) is proposed. Spe-
cifically, the light gradient boosting machine (LightGBM)
algorithm is used to estimate and predict the link quality
because of its great training efficiency and high accuracy
[10]. Borderline-SMOTE is used to adjust the distribution
of the dataset to solve the problem of data imbalance.
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The main contributions of this paper are as follows:

(1) The link quality is graded by a combination of agglom-
erative hierarchical clustering and manually grading
(AHCMG), and then, an effective grading is made
according to the actual distribution of the samples

(2) Borderline-SMOTE and Focal Loss functions are used
to improve the accuracy of the link quality estimation
model based on the light gradient boosting machine
(LightGBM-LQE). By synthesizing new minority sam-
ples, Borderline-SMOTE is used to reduce interference
caused by data imbalance. Focal Loss function is used in
the estimation model training process to direct the
model’s attention on training error-prone link quality
samples and improve the accuracy

(3) A link quality prediction method based on LightGBM
regression algorithm is proposed. LightGBM-LQP is
designed to predict the link quality grade at the next
moment based on the results of the LightGBM-LQE.
The experimental results show that the proposed LQP
has better prediction accuracy and shorter predicting
time compared with other link quality prediction
models in single-hop WSNs

The rest of this paper is organized as follows: Section 2 sum-
marizes some related works in the field. Section 3 describes the
problem description and the process of our model, including
grading link quality, the construction of the LightGBM-LQE,
and the presentation of the LightGBM-LQP. Section 4 provides
the experimental results and discusses them, and Section 5 con-
cludes this paper.

2. Related Work

This section mainly introduces the recent research of link qual-
ity prediction. The LQP in WSNs can be divided into LQP
based on link characteristics, LQP based on statistics, and
LQP based on machine learning.

2.1. LQP Based on Link Characteristics. LQP based on link
characteristics mainly uses the physical layer parameters to
predict the link quality. The main physical layer parameters
include the link quality indicator (LQI), received-signal-
strength indication (RSSI), and signal-to-noise ratio (SNR).

Audéoud and Heusse [11] pointed out that using only
LQI as the input parameter of the prediction model is more
effective than using only RSSI as the input parameter. They
proposed a two-stage model: first, most of the links are
quickly determined as available or unavailable by LQI, and
then, the remaining links are tested to obtain their link qual-
ity. Instead of pursuing high prediction accuracy, the
method focuses on quickly determining whether the link
can be used. Fu et al. [12] proposed an abnormal link detec-
tion system RADIUS. In the case of rapid changes in RSSI,
by determining the Bayesian threshold, combined with
sliding time window data smoothing, distributed adaptation,
and other technologies, as much as possible distinguishing

good links and bad links, experiments showed that the sys-
tem can detect abnormal links and maintain stable errors.

Physical layer parameters are easy to obtain and can
quickly reflect changes in link quality. They have the advan-
tages of low cost and high agility and are often used for link
quality prediction. Although LQP based on link characteris-
tics provides a fast and inexpensive way to predict link qual-
ity, it is prone to overestimate link quality due to packet loss.

2.2. LQP Based on Link Statistics. LQP based on statistics
mainly uses statistics and other methods to predict link qual-
ity. The commonly used parameters include packet recep-
tion rate (PRR), required number of packets (RNP), and
expected transmission count (ETX).

Aiming at the problem of insufficient reliability of IEEE
802.15.4 link quality protocol in hospital environment,
Akbar et al. [13] proposed a link quality prediction method
based on fuzzy logic. First, the thresholds of LQI and RSSI
of different link qualities in different hospital environments
were obtained through experiments. Then, LQI, RSSI, and
error rate (ER) are used as input parameters to predict link
quality according to fuzzy logic rules.

LQP based on statistics mainly uses statistics and other
methods to analyze the relationship between link layer param-
eters and link quality and build a mapping model to predict
the link quality. However, the parameters of the data link layer
need to be obtained by sending many probe packets, resulting
in extra overhead and low real-time performance.

2.3. LQP Based on Machine Learning. LQP based on
machine learning mainly excavates the potential relationship
between input and output variables by machine learning
method and predicts the link quality with the constructed
model [14].

Feng et al. [15] proposed LQP based on extreme gradient
boosting (XGBoost-LQP) to predict the link quality grade at
the next moment. The correlation between hardware param-
eters and PRR was analyzed according to Pearson’s correla-
tion coefficient, and then, the input parameters of the model
were determined. Experiment results showed that the pur-
posed method makes better predictions in single-hop wire-
less sensor networks. Xue et al. [16] proposed LQP based
on the random vector functional link network (RVFL-
LQP) to predict link quality for WSNs in smart grid.
According to the characteristic analysis of the wireless link,
the original SNR sequence was decomposed into a time-
varying sequence and a random sequence. Then, a time-
varying link quality prediction model and a random link
quality prediction model are constructed, respectively. They
can predict the probability guarantee interval of SNR
according to the output results of the two models. The
experimental results showed that the method can effectively
predict the probability guarantee interval of SNR and reflect
the change of link quality and has high stability. Xu et al.
[17] proposed a new model, which adopts recurrent neural
network (RNN) to predict the LQI series, and then evaluated
the link quality according to the fitting model of LQI and
PRR. This method accurately mined the inner relationship
among LQI series with the help of short-term memory
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characteristics of RNN and effectively dealt with link fluctu-
ations. Experiments showed that the proposed method is
more suitable for low power wireless links with more
fluctuations.

LQP based on machine learning can effectively mine the
characteristics of training samples and deeply learn the

potential relationship between link quality parameters and
link quality. Compared with other methods, it has higher
accuracy and agility. It is important to note that most LQP
models based on machine learning are offline models rather
than online models. In other words, we train the model off-
line and then use the learned rules online. Therefore, the

Table 1: Summary of related work on link quality prediction.

Type Name Input Output Strength Weakness

LQP based on
link
characteristics

Two-
stage
model
[11]

LQI
Classify link as reliable

or weak
Quickly determining whether the

link can be used.
The remaining links need more

testing to be classified.

RADIUS
[12]

RSSI
Classify link as good

or weak
It can adapt to dynamic
environment changes.

The model accuracy is not high.

LQP based on
statistics

FLS [13]
LQI,
RSSI,
and ER

Classify link as very
low, low, medium, or

high

It defines a general guideline and
can be applied on other routing

protocols.
The model accuracy is not high.

LQP based on
machine
learning

XGBoost-
LQP [14]

RSSI,
LQI, and
SNR

Classify link as bad,
medium, or good

Data imbalance is addressed. The model has high overhead.

RVFL-
LQP [15]

SNR
Probability-

guaranteed interval
boundary of SNR

The dynamic stochastic features of
link quality are described.

The results of the model need to
further determine whether the link is

available.

RNN-
LQP [16]

LQI LQI
The temporal correlations of

physical layer parameter series are
considered.

The model has high time complexity.
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Figure 1: Block diagram of our methodology.
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time and resources consumed in the training of machine
learning methods can not affect the use of LQP in WSNs.
At present, LQP based on machine learning is the develop-
ment trend of link quality prediction in wireless sensor
networks.

Table 1 summarizes the related link quality prediction
models, including the type, name, input, output, strength,
and weakness of each model.

3. Modeling

In this section, we describe the link quality prediction prob-
lem in WSNs and introduce our methodology as well as
related steps.

3.1. Problem Description. Give P = fP1, P2,⋯,Ptg as the link
quality parameters sequence, where Piði = 1, 2,⋯,tÞ represents
the link quality parameters set at time i, which is a subset of f
RSSI, LQI, SNR, PRR, RNP, ETXg. Then, the link quality LQ
= fLQ1, LQ2,⋯, LQtg can be obtained by using LQ = f ðPÞ,
where LQiði = 1, 2,⋯,tÞ represents the link quality at time i
and f ð⋅Þ is the mapping function between link quality parame-

ters and link quality. The link quality prediction in WSNs is to
predict the link quality at the next moment based on the histor-
ical information of link quality within a period (sliding window
w). Specifically, the link quality prediction problem can be
defined as inputting a sequence LQi:i+w−1 = fLQi, LQi+1,⋯,
LQi+w−1g to predict LQi+w.

3.2. Our Methodology. In this paper, LightGBM is employed
to predict link quality. Notably, we use the link quality
grades to represent link quality. Firstly, agglomerative hier-
archical clustering and manual division are combined to
grade the link quality, and the labels of samples are obtained.
Then, we build LightGBM-LQE to estimate the current link
quality grade. Finally, LightGBM-LQP predicts the next link
quality grade by using historical link quality grades achieved
by LightGBM-LQE. Figure 1 shows the block diagram of our
methodology.

3.3. Grading Link Quality. In this paper, we use the link
quality grades to represent link quality. At present, link qual-
ity grade classification methods are mainly divided into hard
partition and soft partition. Hard partitioning is a method of

Input: D (link quality data set), k1(the number of clustering), k2(the number of link quality grades).
Output: Link quality grades.
1: Take each sample in the link quality sample set as a cluster;
2: Calculate Euclidean distance for cluster merging by usingED =Di −Dj;
3: When the number of clusters is reduced to k1, the agglomerative hierarchical clustering is changed to manual division;
4: According to the sample distribution among clusters, the distance between clusters, the link quality grade is manually graded into
k2 categories;
5: Rank link quality grade according to the average PRR of each cluster;
6: return: Link quality grades.

Algorithm 1: Grading link quality based on AHCMG algorithm.

Input:S′(Training sample set), Lmaj(majority class label), Lmin(minority class label).
Output: New training sample set S.
1: for every si in S′do
2: if the label of siin Lmaj

3: Put si into majority class sample set Cmaj

4: else
5: Put si into minority class sample set Cmin
6: for every pi in Cmindo
7: Calculate its m nearest neighbors from the whole training set;
8: Calculate the number of samples belonging to the majority class in m neighbor samples, denoted as m′ð0 ≤m′ ≤mÞ;
9: ifm/2 ≤m′ <m
10: Put pi into boundary sample set Cboundary ;
11: else
12: Put pi into safe sample set Csaf e;
13: for every qi in Cboundarydo
14: Synthesize the new minority samples by using (2);
15: Merge the synthesized minority sample with the original training
sample to generate a new training sample set S;
16: return: new training sample set S.

Algorithm 2: Borderline-SMOTE algorithm for data imbalance.
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grading link quality based on experimental results or prior
information. Soft partition mainly adopts a clustering algo-
rithm to grading link quality based on the link quality distri-
bution. Indeed, the hard partition method is straightforward,
but it is too subjective and coarse-grained. In this paper,
AHCMG is used to grade link quality.

Agglomerative hierarchical clustering is a density-based
clustering algorithm, which can solve nonspherical clusters
[18]. The AHCMG method is used to prevent the problem
of the link quality graded too finely. The specific steps are
shown in Algorithm 1.

3.4. Link Quality Estimation

3.4.1. Selection of Link Quality Parameters. The physical
layer parameters can be obtained quickly from the nodes

and are often taken as link quality estimation parameters.
RSSI can determine whether a link is in the transition region
quickly and accurately [19]. According to the mean and var-
iance of LQI, it can partially accurately and stably portray
the status information of link quality [20]. SNR cannot be
used to accurately evaluate link quality on its own, but it
can be used as an auxiliary parameter to improve the accu-
racy of the model [21].

A single physical layer parameter can only represent a
specific link characteristic and cannot fully represent the
link quality status. Therefore, we use multiple parameters.
In this paper, the mean and coefficient variations (CV) of
RSSI, LQI, and SNR are chosen as link quality parameters.
The CV of RSSI, LQI, and SNR are calculated by

CVi =
σ ið Þ
μ ið Þ , i ∈ RSSI, LQI, SNRf g, ð1Þ

where σðiÞ is the standard deviation of link quality
parameters in a period and μðiÞ is the mean of link quality
parameters in a period.

3.4.2. Minority Sample Oversampling. Research showed that
the width of the links with intermediate quality is significant,
ranging from 50% up to 80% of the transmission range [22],
which means that the link quality usually shows an unbal-
anced condition. Therefore, the dataset we collected is
unbalanced. Ali et al. [23] argued that in the classification

Training sample set
S = {(X, Y)}

Build the sample
sets through Goss

Sample subset S1 Sample subset S2 . . . Sample subset Sk

Calculate sample
gradient

Build classification tree Build classification tree Build classification tree

Classification tree T1 Classification tree T2

Combined voting of each
classification tree and get the

final link quality evaluation result

Classification tree Tk

. . .

Figure 2: Link quality estimation process based on LightGBM.

Table 2: The selection of experimental parameters.

Parameters Values

Transmission 31 dbm

Channel 26

Number of probe packets 30

Detection method Active detection

Packet rate 10 pcs/s

Test cycle 8 s
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of unbalanced samples, minority class boundary samples are
more likely to be misclassified. To cope with this issue,
Borderline-SMOTE is employed in this paper.

As an optimization of synthetic minority oversampling
technique (SMOTE) [24], Borderline-SMOTE [25] is a
minority samples oversampling method. Borderline-SMOTE

Node 1
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Node 5

Node 7 Node 8

Node 6

Node 4

Node 2

Sink

(a)

Node 1

Node 3

Node 5

Node 7

Node 8
Node 6 Node 4Node 2

Sink

(b)

Node 1
Node 3

Node 5

Node 7

Node 8

Node 6Node 4

Node 2

Sink

(c)

Figure 3: Experimental scenarios: (a) laboratory, (b) grove, and (c) parking.
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only uses minority samples on the boundary to synthesize new
samples, so as to improve the class distribution of samples. The
oversampling is calculated by

syntheticj = qi + rj × dj j = 1, 2,⋯,sð Þ, ð2Þ

where qi denotes the i‐th link quality boundary samples, s
denotes the number of link quality samples with qi linear inter-

polation among neighbors, dj denotes the distance between qi
and the neighbor j, and rj is a random number between 0 and 1.

The specific steps are shown in Algorithm 2.

3.4.3. Construction of the LightGBM-LQE. LightGBM is a dis-
tributed gradient boosting algorithm based on the decision tree
technique that is fast and high performance. It is an efficient
implementation of GBDT [26] that can be used for sorting, clas-
sification, and regression in machine learning problems.
LightGBM is a boosting algorithm that combines multiple weak
learners to obtain strong learners with high performance. In this
paper, classification and regression tree (CART) [27] is used as
the base learner to construct the LightGBM-LQE. The specific
process is shown in Figure 2.

LightGBM uses the gradient-based one-side sampling
(GOSS) [10] algorithm to sample k times from the dataset
and construct k sample subsets. The link quality samples in
each subset are different, and we constructed classification
trees for each subset separately. With LightGBM-LQE, the
estimated link quality is achieved by combining the results
of k classification trees.

GOSS is an algorithm that generates different sample
subsets based on the gradient of the link quality samples.
Note that samples with big gradients can participate in train-
ing almost every time by using GOSS, so the model pays
more attention to the big gradient samples. According to
GOSS algorithm characteristics, we use the Focal Loss [28]
to replace the original loss function of LightGBM. Focal Loss
can dynamically adjust the sample gradient according to the
training results. If the sample is easy to be classified
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Figure 4: Time series diagram of the PRR in three scenarios: (a) laboratory, (b) grove, and (c) parking.
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incorrectly, Focal Loss will increase the gradient of the sam-
ple so that it can participate in more training. Focal Loss is
calculated

FL Lið Þ = −αi 1 − pið Þγ log Lið Þ, ð3Þ

where Li is the classification probability of link quality, αi
represents a parameter between 0 and 1, and γ is the focus
parameter.

After k classification trees are obtained, the final output
result is generated by voting, which is calculated

H χð Þ = arg max
Y

〠
K

i=1
I hi χð Þ = Yð Þ, ð4Þ

where HðχÞ represents the final link quality estimation
grade, Y is the link quality grade, hiðχÞ is the classification
result of the i‐th classification tree, and Ið⋅Þ is the indicative
function.

0.878

0.757

0.927
0.875

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Accuracy Recall

Va
lu

e

Original data
Borderline-SMOTE processed data

(a)

0.922
0.877

0.931 0.894

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Accuracy Recall

Va
lu

e

Original data
Borderline-SMOTE processed data

(b)

0.915

0.772

0.953

0.815

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Accuracy Recall

Va
lu

e

Original data
Borderline-SMOTE processed data

(c)

Figure 6: Accuracy and recall comparison of different data processing methods in the three scenarios: (a) laboratory, (b) grove, and (c)
parking.
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3.5. Link Quality Prediction. According to the characteristic
that link quality shows strong temporal correlation in a short
term, we take the link quality grade time series obtained by
the LightGBM-LQE as input and use the sliding window
method to determine the length of the input sequence. Then,
multiple regression trees are trained to predict the link qual-
ity grade at the next moment.

The LightGBM regression algorithm is employed to con-
struct LightGBM-LQP which predicts the link quality at the
next moment. First, we calculate the gradient of each link
quality sample. Then, we sort the samples according to the
gradient. By retaining big gradient samples every time and
randomly sampling small gradient samples, we train differ-
ent regression trees through using different sample subsets.
Each regression tree selects the largest gain node for splitting
through the information gain formula during the training
process. The information gain is calculated by

V j dð Þ = 1
n

∑xi∈Al
gi + 1 − að Þ/bð Þ∑xi∈Bl

gi
� �

nj
l dð Þ

2

+
∑xi∈Ar

gi + 1 − að Þ/bð Þ∑xi∈Br
gi

� �

nj
r dð Þ

" #

,

ð5Þ

where n represents the number of link quality samples for
each leaf node, a represents the proportion of big gradient sam-
ples, b represents the proportion of random sampling, gi is the

gradient of the i‐th link quality sample, nj
lðdÞ is the total num-

ber of samples of the left child node, nj
rðdÞ is the total number of

samples of the right child node, and j is the j‐th node.
After M regression trees are built, the final prediction

result of the model is calculated by

Y
_

i =
∑k

j=1 f j xið Þ ∗ ωj

h i

M
, i = 1, 2,⋯,m, ð6Þ

where Y
_

i is the final prediction result, f jðxiÞ is the predic-
tion result of the j‐th tree, ωj is the weight of the j‐th tree,
and m is the number of test sets.

4. Experiment Setup and Analysis

TelosB nodes made by CrossBow are used to send and receive
packets [29], and the WSN link quality testbed (LQT) devel-
oped by our lab is used to collect the link quality parameters.
The experimental parameters of the LQT are shown in Table 2.

4.1. Model Evaluation. In our experiments, accuracy and recall
are taken to evaluate the performance of LightGBM-LQE; the
mean square error (MSE) and accuracy are applied to evaluate
the performance of LightGBM-LQP.

Accuracy is the most common evaluation metric of clas-
sification models. The higher the accuracy, the better the
performance of the classifier. The accuracy is calculated by

Accuracy =
TP + TN

TP + FP + FN + TN
, ð7Þ

where TP is the number of positive samples predicted to
be positive, FP is the number of negative samples predicted
to be positive, FN is the number of positive samples pre-
dicted to be negative, and TN is the number of negative sam-
ples predicted to be negative.

Recall is the percentage of predicted positive samples of
the actual positive samples. The recall is calculated by

recall =
TP

TP + FN
: ð8Þ

Smaller MSE means higher prediction accuracy and vice
versa. The MSE is calculated by

MSE =
1
N
〠
N

i=1
Yi − Y

_

i

� �2
, ð9Þ

where N represents the total number of samples in the

test set, Yi is the true value, and Y
_

i is the predicted value.

4.2. Experimental Scenarios and Data Analysis. Considering
the different interference factors, three scenarios with differ-
ent representative interference are selected for experiments,
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including laboratory scenario, grove scenario, and parking
scenario, as shown in Figure 3. In each scenario, 1 sink node
and 8 perception nodes are employed.

In the laboratory scenario, electronic communication
devices such as Wi-Fi and Bluetooth may cause neighboring
frequency interference and blocking interference, substan-
tially impacting communication quality. In addition, human
movement can disrupt communication between nodes. The
sequence diagram of PRR in the laboratory scenario is
shown in Figure 4(a). In general, the link quality of this node
is abnormally unstable, with most PRR falling below 20%.

In the grove scenario, the occlusion of trees, light refrac-
tion of leaves, outdoor temperature, and air humidity can
interfere with node communication. In addition, in this cir-
cumstance, the multipath effect is a major element influenc-
ing link quality. In Figure 4(b), we can find out that the PRR
is fluctuant and at approximately 30%.

The interference in the parking scenario is mainly gener-
ated by the movement of vehicles and vehicle-mounted
wireless devices. The characteristics of this kind of interfer-
ence are the spectrum width, noise intensity decreases with
the increase of spectrum, and the types of noise sources are
very random. As shown in Figure 4(c), the link quality is rel-
atively stable, with the exception of time 35-55 s. The link
quality declines dramatically in time 35-55 s mainly because
of vehicle passing.

4.3. Effectiveness of the Grading Link Quality Method. In this
subsection, the AHCMG method is compared to the hard
partition method and the agglomerative hierarchical cluster-
ing (AHC) method in three experimental scenarios to vali-
date the effectiveness of the grading link quality method.
Note that we calculate accuracy for the estimation model

under each grading method to compare the performance
of different grading link quality method.

As can be seen in Figure 5, the AHCMG method has
higher accuracy in all three experimental scenarios. In the
laboratory scenario, the accuracy of using AHCMG method
is 10% higher than the one of hard partition. In the grove
scenario, the accuracy of using AHC is the lowest, which is
only 80%. In the parking scenario, AHCMG method
achieves the highest accuracy in the three scenarios. It is
clear that grading link quality with AHCMG method is more
efficient.

4.4. Effectiveness of Imbalanced Samples Handling. For the
sake of improving the accuracy of the LightGBM-LQE on
imbalanced data, Borderline-SMOTE is employed to over-
sample the minority samples. In this subsection, recall and
accuracy are used to evaluate the effectiveness of imbalanced
samples handling.

Figure 6 shows the performance of LightGBM-LQE
before and after oversampling. As we can see, in the labora-
tory scenario, the overall performance of the LightGBM-
LQE is clearly improved, with accuracy increasing by 5%
and recall increasing by about 12%. After Borderline-
SMOTE processing, accuracy and recall increased by about
1% in the grove scenario. In the parking scenario, the accu-
racy and recall have increased by about 4%. We can con-
clude that oversampling the minority samples with
Borderline-SMOTE can effectively reduce the impact of data
imbalance and can improve the accuracy of the LightGBM-
LQE as well.

4.5. Effectiveness of LightGBM-LQE. In order to verify the
effectiveness of our estimation model, we compare the per-
formance of LightGBM-LQE with the link quality estimation
model based on wavelet neural network (WNN-LQE) [30],
the model based on support vector classification (SVC-
LQE) [31], and the model based on lightweight fluctuation
(LFI-LQE) [32] and take accuracy and recall as the evalua-
tion index. The comparison results are shown in Figures 7
and 8.

As shown in Figures 7 and 8, LightGBM-LQE has better
accuracy and recall in all three experimental scenarios. In the
laboratory scenario, it can be seen that LightGBN-LQE and
WNN-LQE have high accuracy as well as high recall, while
LFI-LQE and SVC-LQE have not bad accuracy with unsatis-
factory recall. This may be because the laboratory scenario is

Table 3: MSE and accuracy of prediction models in the three scenarios.

MSE Accuracy
Laboratory Grove Parking Laboratory Grove Parking

LightGBM-LQP 0.061 0.073 0.064 0.937 0.926 0.936

XGBoost-LQP 0.184 0.089 0.087 0.874 0.911 0.912

RVFL-LQP 0.079 0.084 0.071 0.930 0.916 0.929

RNN-LQP 0.093 0.086 0.077 0.911 0.914 0.923

SVR-LQP 0.085 0.086 0.074 0.915 0.914 0.926

GRU-LQP 0.090 0.084 0.072 0.918 0.916 0.928

Table 4: Predicting time of LQPs in the three scenarios.

Predicting time (s)
Laboratory Grove Parking

LightGBM-LQP 0.031 0.013 0.031

XGBoost-LQP 0.343 0.087 0.281

RVFL-LQP 0.296 0.078 0.187

RNN-LQP 1.147 0.146 0.657

SVR-LQP 0.398 0.056 0.296

GRU-LQP 0.941 0.103 0.559
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more complex, and LFI-LQE and SVC-LQE do not have
good performance, especially in the minority samples.

In the grove scenario, all models have the highest recall.
LFI-LQE, which has the lowest accuracy, also achieves a not
bad recall. This could be because the interference received in
the grove scenario is relatively simple and less. In the park-
ing scenario, all estimation models have high accuracy, while
the recall is unsatisfactory. In four models, LightGBM-LQE
has the best performance. This could be because the types
of noise sources are very random in the parking scenario.
The comparison of accuracy and recall shows that the per-
formance of LightGBM-LQE is superior to other estimation
models.

4.6. Determination of Sliding Time Window Size. In this sub-
section, MSE is used to determine the sliding time window
size. When different time window sizes are used, the MSE
of the LightGBM-LQP can be computed. We use a sliding
time window with a size ranging from 2 to 15 and choose
the window size with the best prediction accuracy.

It can be seen from Figure 9 that the MSE of the
LightGBM-LQP fluctuates with the change of the sliding
time window size. Therefore, the size of the sliding time win-
dow has an important impact on the link quality prediction
at the next moment. The prediction model has the best pre-
diction accuracy in the parking scenario in which the sliding
window size is 14. The best sliding window sizes in the lab-
oratory and grove scenarios are 14 and 5, respectively.

4.7. The Evaluation Performance of LightGBM-LQP. To ver-
ify the performance of the LightGBM-LQP, we conduct
comparative experiments with other LQPs using the same
datasets in three scenarios. The compared models include
XGBoost-LQP [15], RVFL-LQP [16], RNN-based model
(RNN-LQP) [17], support vector regression-based model
(SVR-LQP) [31], and gated recurrent unit-based model
(GRU-LQP) [33].

To verify the prediction effect of the LightGBM-LQP,
MSE and accuracy of LQPs in three scenarios are shown in
Table 3.

From Table 3, the comparison results show that the
LightGBM-LQP has the lowest MSE and the best accuracy
in three scenarios. Compared with XGBoost-LQP, SVR-
LQP, and RNN-LQP, LightGBM-LQP has a better perfor-
mance in all three experimental scenarios, especially in the
laboratory scenario. This may be because the laboratory sce-
nario contains more types of interference and is more com-
plex. RVFL-LQP is the second-best model. Compared with
LightGBM-LQP, the MSE of RVFL-LQP is increased by
0.5%~0.6%, and the accuracy is decreased by 0.7%~1%. In
three scenarios, both LightGBM-LQP and RVFL-LQP have
the worst effect in the grove scenario, probably because the
mutation of link quality is prone to occur in the grove sce-
nario, while LightGBM-LQP and RVFL-LQP mask these
mutations out. When the confidence level is 95%, the confi-
dence interval of the accuracy of the proposed approach is
[0.913, 0.961] in the laboratory scenario, [0.906, 0.946] in
the grove scenario, and [0.916, 0.956] in the parking
scenario.

4.8. The Time Complexity of LightGBM-LQP. Note that the
model proposed in this paper is an offline model. In order
to ensure the identical distribution of the training data and
actual data, the data collected in real scenarios is used to
train the model, and then, the trained model is deployed to
the WSN nodes for prediction. The time complexity of
LightGBM-LQP is Oð2 ∗M ∗ depthÞ, where M represents
the number of regression trees and depth represents the
depth of trees. In this paper, M is 100, and the maximum
depth of the tree is 6. Therefore, it is feasible to deploy the
trained model to the node.

Table 4 shows the predicting time of LQPs for the same
data to demonstrate the low complexity of LightGBM-LQP
in comparison with other models. As shown, LightGBM-
LQP has the shortest predicting time among the six LQPs.
The predicting time of XGBoost-LQP, RVFL-LQP, and
SVR-LQP is slightly longer than that of LightGBM-LQP,
while the prediction time of RNN-LQP and GRU-LQP are
much longer, which may be due to the fact that RNN-LQP
and GRU-LQP are deep learning models with higher
complexity.

5. Conclusion and Future Work

In this paper, a link quality prediction method LightGBM-
LQP is proposed. Firstly, the link quality is graded by
AHCMG to get the labels. Then, LightGBM classification
algorithm is used to estimate the current link quality grade.
In order to improve the estimation accuracy, Borderline-
SMOTE is used to synthesize new samples by using the
minority class samples on the boundary, so as to reduce
the impact caused by data imbalance. Meanwhile, Focal Loss
function is applied in the estimation model training process
to make the model focus on training error-prone link quality
samples. Finally, LightGBM-LQP predicts link quality grade
at the next moment with historical link quality information.
In three different experimental scenarios, compared with
XGBoost-LQP, SVR-LQP, etc., LightGBM-LQP has the best
performance. Therefore, the proposed LightGBM-LQP
could be a very promising approach for link quality
prediction.

LightGBM-LQP is an offline model that cannot respond
to the changes of the external environment. In the future, we
will focus on constructing an online model for link quality
prediction that is both simple and efficient. Batch learning
will be considered in the link quality prediction model to
improve the responsiveness of the model.

Data Availability

The excel data used to support the findings of this study
have been deposited in the github. The data can be obtained
in the following link: https://github.com/Azora-niu/Link-
Quality-Estimation-Prediction-Data-for-WSN.
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