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Error detection and accuracy estimation in automated speech recognition (ASR) systems act a vital part in the design of
human-computer spoken dialogue systems, as recognition error can hamper accurate systems in understanding the end
user intentions. The major aim is to identify the errors in an utterance, and therefore, the dialogue manager can provide
proper clarifications to the user. Therefore, the design of accurate error detection and accuracy determination techniques
becomes essential in the ASR system. With this motivation, this paper presents a novel artificial intelligence-enabled
accuracy estimation and error detection technique for the English speech recognition system (AIEDAE-ESRS). The goal of
the AIEDAE-ESRS technique is to perform three actions such as confidence estimation, out-of-vocabulary (OOV) word
identification, and error type categorization. In addition, the AIEDAE-ESRS technique performs different levels of
preprocessing including sampling of input speech signal, bandpass filtering, and noise removal. Besides, a new deep neural
network with hidden Markov model- (DNN-HMM-) based speech recognition technology is designed, which also aims to
estimate the accuracy and error. Finally, the hyperparameters of the DNN-HMM model can be optimally chosen by the
use of flower pollination algorithm (FPA) and thereby accomplished improved recognition performance. In order to
demonstrate the better performance of the AIEDAE-ESRS technique, a series of simulations were conducted and the
results are examined under varying aspects. English voice recognition system’s accuracy estimation and error detection
were made possible using artificial intelligence (AIEDAE-ESRS). There are three steps in the AIEDAE-ESRS method:
confidence estimation; identifying out-of-vocabulary words (OOV); and categorizing mistake types. The simulation results
reported the enhanced performance of the AIEDAE-ESRS methodology over current advanced approaches. Our AIEDAE-ESRS
methodology outperforms existing methodologies by a factor of ten. The simulation results demonstrated that the AIEDAE-ESRS
methodology outperformed previous approaches in terms of efficiency. The improved experimental results indicated that the
AIEDAE-ESRS technique produced superior results across a variety of measures.

1. Introduction

The speech signal is one of the essential and common ways
of communicating between people. In these communica-
tions, the speaker’s emotion performs an important role in
the transfer of concept in such a way that a change in the
emotions may result in distinct translations of speech [1].
Therefore, to make effective communication between man
and machine, speech emotion recognition (SER) is becom-
ing a hot research topic. In the selection of important fea-
tures, together with accurate SER system, an effective way

to decrease the data dimension is needed [2]. With the con-
tinued growth of science and technology, the global village is
shrinking, and the usage of English has become increasingly
widespread. The development of artificial intelligence
computers that could understand English speech will signif-
icantly encourage the new experience and complete intelli-
gence of human life and work eventually [3]. The speech
emotion recognition (SER) system is built on CNNs and
RNNs that have been trained on a database of emotional
speech. Our primary objective is to offer a SER approach
that is based on concatenated CNNs and RNNs and does
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not rely on any typical hand-crafted features. The literature
on speech emotion recognition (SER) has employed a variety
of approaches to extract emotions from signals, including
numerous well-known speech analysis and classification
techniques. Recently, deep learning approaches have been
presented as a possible replacement for classic SER tech-
niques. Language interaction and intelligent English speech
recognition systems (SRS) affect their study and work life,
as well as have promotion significance and extensive appli-
cation in areas like language promotion, military, and educa-
tion. Now, there are multiple implementation methods and
system designs for SRS. There are different kinds of classifi-
cation, primarily separated into specific-and nonspecific-
persons SRS, continuous and isolated word SRS, embed-
ded/server SRS, small vocabulary, and large vocabulary
SRS. In everyday life, people’s natural speech is depending
on the speaker’s need to break at the end of a sentence or
add punctuation, and other parts could be continuously pro-
nounced [4].

In the earlier SRS, the isolated word phonetic systems
were based primarily on single words or characters [5].
Depending on the way the acoustic method is developed,
we could separate SRS as specific- and nonspecific-person
recognition. Specific-person recognition implies that the
user needs to input a massive number of pronunciations
and train recognition in advance. The nonspecific-person
is that afterward the scheme is developed, the user does
not need to input the trained information before and could
recognize directly [6]. The deep learning (DL) method has
different areas of application, and several achievements have
been found. Another area where DL is effectively used is
automated SRS. In automated SRS, better language and
acoustic methods are integrated [7]. The SRS problems
involve time-series data. In several fields, such as read con-
tinuous speech where usually the speech is recorded under
clean conditions, the outcomes are satisfied with an error
rate under 5%. Since in another field that has high speech
differences, like distant conversational speech (meeting) or
video speech, the outcomes are still not satisfactory exhibit-
ing 50% of an error rate [8].

To handle these problems and improve the perfor-
mances of inaccurate ASR systems, the automated correc-
tion and detection of the transcript error could be the only
choice in some cases [9], especially while tuning the ASR
systems by itself is impossible (for example, the system is
purchased as a black box) or the manual correction is incon-
venient or even impractical as in the case where the
transcriptions are not the ultimate objective of the systems
(for example, question answering, machine translation, and
information retrieval systems). In that respect, ASR classifi-
cation and error detection are also called confidence
estimation [10]. The more commonly studied method is fea-
ture-based, where classification is constructed by the feature
generated from distinct sources (that is, decoder and nonde-
coder characteristics) to differentiate the accurately from the
inaccurately identified word.

This paper presents a novel artificial intelligence-enabled
accuracy estimation and error detection technique for the
English speech recognition system (AIEDAE-ESRS). The

AIEDAE-ESRS technique intends to accomplish three
actions such as OOV word identification, confidence estima-
tion, and error type categorization. Furthermore, the
AIEDA-ESRS technique’s architecture incorporates a deep
neural network with hidden Markov model- (DNN-HMM-)
based speech recognition model. Furthermore, the flower pol-
lination algorithm (FPA) is used to fine-tune the DNN-HMM
model’s hyperparameters. Flower pollination algorithm (FPA)
is a nature-inspired metaheuristic algorithm that replicates the
pollination activities of blossoming plants. The implementa-
tion of several FPA variants based on tweaks, parameter
adjustment, and hybridization with other algorithms is
addressed in this article. The design of FPA for hyperpara-
meter optimization of the DNN-HMM model shows the
novelty of the work. The experimental result analysis of the
AIEDAE-ESRS technique takes place using benchmark data-
set and investigated the results under several aspects.

2. Literature Review

In Alhamada et al. [11], the usage of DL in SRS was exam-
ined and an appropriate DL framework has been was recog-
nized. A technique using CNN is employed to improve the
efficiency of SRS. Han et al. [12] examined the efficacy of dif-
ferent DL-based acoustic models for conversation telephone
speech, especially CNN-bLSTM, bLSTM, and TDNN sys-
tems. They estimated this model on research test sets, like
recordings, Switchboard, and CallHome from a real-time
call center applications. In Blaise. O. Yenke et al., due to
the large variety of applications and interfaces or computing
equipment that can enable speech processing, automatic
speech recognition (ASR) is a very active research subject.
It is true that well-resourced languages outnumber underre-
sourced languages in most applications. It is evident that
ASR may be used to enhance illiterate people’s languages.
Starting with a small vocabulary is one way to construct an
ASR system for underresourced languages. Assertive speech
recognition (ASR) with a limited vocabulary recognizes
words or sentences in small groups.

Grozdić et al. [13] extended a method for whispered
SRS that is the most difficult challenge in ASR. Specifically,
because of the profound variances among acoustic features
of whispered and neutral speech, the efficiency of conven-
tional ASR system trained on neutral speech greatly
reduces once whisper is used. Misbullah et al. [14] investi-
gated the efficiency of SRS for dysarthric speakers using
time delay DNN. Furthermore, examine the system
performances by integrating dysarthria and normal speech
corpus. Lastly, well-tuned hyperparameter of DNN struc-
ture gives potential outcomes on English dysarthria and
Mandarin speech.

Ogawa and Hori [15] explored three kinds of ASR error
detection processes, that is, OOV word recognition, error
type classification (ETC), and confidence estimation, and
also evaluated the detection rate from the ETC result. The
simulation result shows that the DBRNN considerably out-
performs conditional random field (CRF). Ogawa et al.
[16] presented detection accuracy estimation method based
on ETC. The ETC is an extension of confidence estimate.
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In ETC, all the words in the detection outcomes (detected
word sequence) for the targeted speech information are cat-
egorized into three classes: insertion error (I), substitution
error (S), and correct recognition (C).

3. Materials and Methods

In this study, an effective AIEDAE-ESRS technique has been
developed for the error detection and accuracy evaluation in
SRS. The AIEDAE-ESRS technique involves three major
processes, namely, preprocessing, DNN-HMM-based speech
signal recognition, and FPA-based hyperparameter tuning.
The utilization of the FPA helps to properly alter the hyper-
parameter of the DNN-HMM model which assists in signif-
icantly boosting the detection performances. Figure 1
demonstrates the overall working procedure of the suggested
AIEDAE-ESRS technique.

3.1. Level I: Speech Signal Preprocessing. The speech input is
the original voice signal gathered by the voice tool; the pre-
processing method chiefly consists of three factors: antialias-
ing bandpass filtering, eliminating the noise effect, and
sampling the input original voice signal; the feature extrac-
tion method extracts the reflection in the voice. The acoustic
parameter of the speaker’s key features primarily includes
short-term average zero-crossing rate, cepstrum, short-
term energy, and linear prediction coefficient. In the recog-
nition phase, the speech feature parameter is attained, and
the test template is made. In the test, the template is matched
with the reference template as per some discriminative rules
(i.e., semantic and grammar rules), later in the training
phase, the feature parameter is processed for establishing a
reference model, and the better reference template is

attained as the detection outcome. Better matching results
are closely associated with the matching template, quality
of speech feature parameter, and speech technique.

3.2. Level II: Design of DNN-HMM-Based Speech Signal
Recognitions. In traditional DNN-HMM-based recognition,
the probability is modelled by GMM under the maximal
probability condition. Such potential models are constrained
because GMM is statistically ineffective to model informa-
tion that lies on or near a nonlinear in the data space. To
conquer this limitation, we proposed a DNN-HMM method
for recognizing speech, in which the outputs of the DNN are
given to the HMM as substitute for the GMM. GMM simu-
lates the observed probability distribution of a feature vector
in the presence of a phone. It establishes a sound foundation
for determining the “distance” between a phone and the
audio frame being observed. The GMM is a probabilistic
model capable of simulating normally distributed subpopu-
lations. GMM’s components are all Gaussian distributions.
A statistical Markov model (HMM) is a sort of hidden Mar-
kov model. When the data is continuous, a Gaussian distri-
bution is used to represent each hidden state.

3.2.1. Overview of Hidden Markov Models. The HMM is a
statistical Markov method where the algorithm that has been
modelled is presumed as a Markov model using unobserved
(hidden) state. An HMM, denoted by = ðA, B, πÞ, contains
the subsequent element:

(1) The amount of states in the system represented as Q,
the number of states represented by S = fs1, s2,⋯,
sQg, and qt the states at time t

Preprocessing phase

Training dataset Testing dataset

DNN–HMM based recognition

Performance evaluation

Confidence estimation

OOV word detection

CSI classification

Deletion error detection

Classification accuracy

Avarage F–score

Normalized cross
entropyParameter tuning

(Flower pollination algorithm

Input: Training dataset

Figure 1: Overall process of AIEDAE-ESRS technique.
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(2) A = faijg, the transition state likelihood distribution

aij = P qt+1 = sj ∣ qt = si
� �

, 1 ≤ i, j, ≤Q ð1Þ

(3) B = fbiðOtÞg, the observation probability, in which
biðOtÞ signifies the likelihood of observing Ot at state
si:B is denoted as a finite mixture:

bi Otð Þ = 〠
M

m=1
cimℵ Ot , μim,Uimð Þ, 1 ≤ i ≤Q ð2Þ

Let cim be the mixture coefficients for mth mixture in state si,
as well as ℵ elliptically symmetric density or log-concave,
with covariance matrix Uim and mean vector μim for mth
mixture element in i state

(4) π = fπig, the first state distribution, in which
πi = Pðq1 = siÞ,1 ≤ i ≤Q

In order to apply HMM, two issues must be resolved:

(i) Learning issue: assuming a collection of ground truth
X (represent as trained set), the learning process
detects the group of variables λ∗ = fA∗, B∗, π∗g;
therefore, λ∗= arg maxλPðX ∣ λÞ that detects the
model parameter that well fits the trained set. The
forward-backward method is utilized for calculating
ðX ∣ λÞ [17]. It finds the model parameter that best fits

the training data. In order to compute ðX ∣ λÞ, the
forward-backward approach is used

(ii) Decoding issue: assuming a λ parameter and a series
of new observation O = ðO1,O2,⋯,OTÞ (represent
as testing set), the decoder process is determined as

P O ∣ λð Þ = max
q1,⋯,qT

πq1

YT
t=2

p qt ∣ qt−1ð Þbqt Otð Þ ð3Þ

In the event of speech recognition, train C HMM
fλc, ðc = 1,⋯, CÞg for C discrete class. For novel speech
input O,

c∗ = argmax1≤c≤CP O ∣ λcð Þ, ð4Þ

with PðO ∣ λcÞ estimated from the Viterbi model.

3.2.2. Structure of DNN-HMM Model. The main variation
among GMM-HMM and DNN-HMM is the utilizing of
GMM (rather than DNN) to evaluate the observation
probability. We employ the DNN for modelling pðqt ∣ 0tÞ;
the following probabilities of the parameters provided the
vector 0t , i.e., feasible, while pðqtÞ is easier for estimating
from a first state-level position of the trained set. Figure 2
depicts the framework of DNN technique.

3.3. DNN-HMM Training Process. The thoroughly trained
procedure for recognition is given below:

Hidden layer 1 Hidden layer 2

Input layer

Output layer

Figure 2: DNN structure.
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(a) For all the classes cðc = 1,⋯, CÞ, a GMM-HMM λc
with Q state is instructed by the training sentence
of parameter c

(b) For all the sentences O = ðO1,O2,⋯,OTÞ in trained
set c, the Viterbi model of GMM-HMM as per Equa-
tion (3) is executed on λc to attain an optimum state
sequence ðqc1,⋯, qcTÞ, and all the states qct are allotted
a label Liði ∈ ð1,⋯, C ×QÞÞ [18]

(c) Each training sentence and labelled state sequence is
utilized as input to train a DNN, where output is the
previous probability of the C ×Q output unit. The
DNN is executed by BP model using (i) unsuper-
vised pretraining or (ii) the discrimination
pretraining

3.4. DNN-HMM Recognition Process. In the detection proce-
dure, for input sentence O=ð01, 02,⋯, 0TÞ, one must evalu-
ate the likelihood pðO ∣ λcÞ for all the classes c and attain
the last recognition results as per Equation (4). In GMM-
HMM, this likelihood is attained by the Viterbi model using
Equation (3).

In DNN-HMM, adapt the subsequent process to esti-
mate the likelihood ðO ∣ λcÞ.

(a) The input structure O is initially inputted to DNN,
obtaining the previous probability
fpðLi ∣ otÞgi=1,⋯,C×Q as output. Next, previous proba-
bilities pðqt = Sck ∣OtÞ are attained from ðLi ∣ otÞ,
through representing the label Li to the k and c, as
follows

(b) As per the Bayesian principles, estimate the possibil-
ity pðot ∣ qtÞ as

p Ot ∣ qtð Þ = p qt ∣Otð Þp Otð Þ
p qtð Þ ð5Þ

Input: Objective function f ðxÞ
Population initialization: Flower/Pollen gamete with arbitrary solutions;
Determine the optimal solution g∗ in the primary population;
Represent a switching possibility p ∈ [0, 1];
while (t<Maximum_iterations) do

for i =1:n (every n flower in the population) do
if rand < p then

Draw a (d dimension) step vector L from a Levy delivery;
Apply global pollination;

Else
Draw ϵ from a similar distribution in ½0, 1�;
Apply local pollination;

End
Determine new solutions;
When better solutions are obtained, updating it in population;

End
Compute the present optimum solutiong∗;

End

Algorithm 1: Pseudocode of FPA

Table 1: Result analysis of AIEDAE-ESRS technique with existing
approaches.

Classifier Accuracy NEC Average F-score

Confidence estimation

CRF 0.8433 0.3630 0.7847

DNN 0.8445 0.3660 0.7854

DURNN 0.8496 0.3820 0.7923

DULSTM 0.8503 0.3820 0.7925

DBRNN 0.8552 0.4040 0.8009

AIEDAE-ESRS 0.8819 0.4410 0.8302

OOV word detection

CRF 0.9429 0.3050 0.7046

DNN 0.9402 0.2700 0.6789

DURNN 0.9432 0.3140 0.7034

DULSTM 0.9442 0.3120 0.7014

DBRNN 0.9460 0.3480 0.7212

AIEDAE-ESRS 0.9708 0.3720 0.7497

CSI classification

CRF 0.8213 0.3400 0.6302

DNN 0.8197 0.3160 0.5964

DURNN 0.8250 0.3400 0.6206

DULSTM 0.8255 0.3380 0.6199

DBRNN 0.8333 0.3810 0.6560

AIEDAE-ESRS 0.8579 0.4120 0.6796

Deletion error detection

CRF 0.9625 0.1850 0.6411

DNN 0.9645 0.1770 0.6332

DURNN 0.9645 0.1950 0.6397

DULSTM 0.9646 0.1920 0.6392

DBRNN 0.9645 0.2430 0.6626

AIEDAE-ESRS 0.9921 0.2640 0.6909
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In this process, the previous probabilities of each state
ðqtÞ is estimated from (occurrence of) the trained set, and
pðOtÞ is allocated a constant because the feature vector is
considered independent of one another [19].

(c) For all the models λc, the Viterbi model is executed
to estimate the prospect pðO ∣ λcÞ. But, the likelihood
bqt ðOtÞ is substituted with pðot ∣ qtÞ estimated by
Equation (5)

3.5. Level III: Design of FPA-Based Hyperparameter Tuning.
The FPA is used to effectively adjust the DNN-HMM
model’s hyperparameter settings. The abiotic pollination is
discussed as well as induced in a flower pollination approach

in the optimization. Pollination challenges encompass a dif-
ficult process in plant generation theory. The pollen gamete
and bloom are more likely to provide a consistent solution to
the optimization challenge. The advantages of FPA are listed
below. FPA, unlike GA, HS, and PSO, provides a simple flo-
ral analogy with lightweight computationally based control
parameters (that is, switch conditions, p). It also provides a
balanced diversity and intensity of solution through the
adaptation of levy flight (random walks punctuated by larger
leaps) and switch conditions, which are utilized to transition
between intensive local search and global search.

Flower constancy was identified as a precise solution
that might be differentiated. In the case of global pollina-
tion, the pollinator transports pollen from a great distance

1.0

0.8

0.6

0.4

Accuracy NEC Avg. F–score

Co
nfi

de
nc

e e
sti

m
at

io
n

CRF

DBRNN
DURNN

DNN
DULSTM
AIEDAE–ESRS

Figure 3: Confidence estimation analysis of AIEDAE-ESRS technique.
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Figure 4: OOV word detection analysis of AIEDAE-ESRS technique.
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to a more suitable location. In another example, local pol-
lination was carried out inside a smaller region of a
unique bloom in shade water [20]. Global pollination is
carried out through a possibility known as switch proba-
bility. Pollination occurs all across the world when a polli-
nator transports pollen from vast distances to higher
fitting. Global pollination is accomplished by the use of a
probability known as switch probability. In a tiny area of
a unique bloom, local pollination is carried out in water
shade. Pollinators like bees are vital to the sexual repro-

duction of about ninety percent of wildflowers. Ecosystems
depend on these plants to function. They provide food,
shelter, and other resources for many animal species,
including humans. Once the stage was removed, local pol-
lination is substituted. In FPA technique, the following 4
rules are used (also shown in Algorithm 1):

(1) Cross and live pollination is called global pollina-
tion as well as the carrier of pollen pollinator
apples the LF
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Figure 5: CSI classification analysis of AIEDAE-ESRS technique.
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Figure 6: Deletion error detection analysis of AIEDAE-ESRS technique.
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(2) Abiotic and self-pollination are represented as local
pollination

(3) Pollinators are insects, i.e., able to develop flower
constancy. It is determined as the possibility of two
employed flowers

(4) The transmission of local and international pollina-
tion is handled by switch possibility

Therefore, the first and second rules are given by

xt+1q = xtp + γ × L λð Þ × g∗ − xtp
� �

, ð6Þ

in which xtp is the pollen vector at iteration t; g∗ indicates a
present solution from present generated outcomes; γ = a
indicates the level factor to control phase size; and L denotes
pollination power, which is related with a step-size of levy
allocation. The LF is calculated as a collection of random
computations that have the duration of all the leaps and
use the levy likelihood distribution function with infinite
variation. Following that, L represents a levy distribution:

L ∼
λ × Γ λð Þ × sin πλ/2ð Þ

π
× 1
S1 + λ

S≫ S00, ð7Þ

in which ΓðλÞ is the basic gamma function.
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Figure 7: Accuracy graph analysis of AIEDAE-ESRS technique.

Loss graph – MIT dataset

0.4

0.3

0.2

Epochs

100 200 300 400 500 600 700 8000

Training loss
Validation loss

0.5

0.6

0.7

Lo
ss

 p
er

 ep
oc

h

Figure 8: Loss graph analysis of AIEDAE-ESRS technique.

8 Wireless Communications and Mobile Computing



In the event of local pollination, the second and third
rules are formulated as

xt+1p = xtp + ε xtq − xtk
� �

, ð8Þ

in which xtq and xtk are 2 pollens from several blooms on the
same plant, if xtq and xtk come from the same species and are
chosen from a homogenous population; this is represented
as local random walks and is included by a standard distri-
bution in zero and one [21].

FF acts as an important part of the optimization prob-
lem. It estimates a positive integer to represent how better
the candidate solution is. In the work, classification error
rate is considered as a minimalizing FF. The poorer solu-
tions have high fitness scores and the richer solutions have
less fitness scores.

fitness χið Þ = Classifier Error Rate χið Þ
=
number of misclassified instances

Toral number of instances
∗ 100:

ð9Þ

4. Experimental Validation

In this study, the experimental result analysis of the
AIEDAE-ESRS technique takes place using the MIT lecture
English speech corpus, called MIT dataset [22]. The MIT
corpus includes speech information from invited talks and
systematic university classes. The length of a lecture exist
between 45 and 90 minutes. First, the error detection result
analysis of the AIEDAE-ESRS technique takes place under
deletion error detection, confidence estimation, OOV word
detection, and CSI classification in Table 1.

Figure 3 exhibits the comparative result analysis of the
AIEDAE-ESRS technique with existing methods under con-

fidence estimation. The figure reported that the AIEDAE-
ESRS technique can accomplish effectual outcomes with
the increased values of accuracy, average F-score (AFS),
and normalized cross entropy (NCE). It is noticed that
the CRF and DNN models have shown least performance
with the minimal values of accuracy, NEC, and AFS. In
line with this, the DURNN, DULSTM, and DBRNN
techniques have resulted in moderately closer accuracy,
NEC, and AFS values. However, the AIEDAE-ESRS tech-
nique has outperformed the other techniques with the
higher accuracy, NCE, and AFS of 0.8819, 0.4410, and
0.8302, respectively.

Figure 4 displays the comparative result analysis of the
AIEDAE-ESRS system with present methodologies under
OOV word detection. The figure stated that the AIEDAE-
ESRS method has the capacity of achieving efficient out-
comes with increased value of accuracy, NCE, and AFS. It
is noted that the CRF and DNN models have shown mini-
mum performance with minimal values of accuracy, NEC,
and AFS. In line with this, the DURNN, DULSTM, and
DBRNN systems have resulted in moderately closer accu-
racy, NEC, and AFS values. But, the AIEDAE-ESRS method
has outperformed the other systems with the high accuracy,
NCE, and AFS of 0.9708, 0.3720, and 0.7497, respectively.

Figure 5 displays the comparative analysis of the
AIEDAE-ESRS procedure with current methods under CSI
classification. The figure described that the AIEDAE-ESRS
method has the capacity of achieving efficient outcomes with
the increased values of accuracy, NCE, and AFS. It is noticed
that the CRF and DNN models have shown minimum
performance with minimal values of accuracy, NEC, and
AFS. In line with this, the DURNN, DULSTM, and
DBRNN systems have resulted in moderately closer
accuracy, NEC, and AFS values. But, the AIEDAE-ESRS
system has outperformed the other techniques with the
higher accuracy, NCE, and AFS of 0.8579, 0.4120, and
0.6796 correspondingly.
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Figure 9: RMSE analysis of AIEDAE-ESRS technique.
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Figure 6 displays the comparative analysis of the
AIEDAE-ESRS method with current methods under
deletion error detection. The figure described that the
AIEDAE-ESRS method has the capacity of achieving effi-
cient outcomes with the increased values of accuracy, NCE,
and AFS. It is noticed that the CRF and DNN models have
shown smallest performance with the minimal values of
accuracy, NEC, and AFS. In line with this, the DURNN,
DULSTM, and DBRNN methods have resulted in moder-
ately closer accuracy, NEC, and AFS values.

Figure 7 exhibits the accuracy graph analysis of the
AIEDAE-ESRS technique on the test MIT speech recogni-
tion dataset. The figure portrayed that the AIEDAE-ESRS
technique has reached improved training and validation
accuracy with increasing amount of epochs. It is also noticed
that the training accuracy is considered to be lower com-
pared to the validation accuracy.

Figure 8 demonstrates the loss graph analysis of the
AIEDAE-ESRS technique on the test MIT speech recognition
dataset. The figure depicted that the AIEDAE-ESRS technique
has attained decreasing training and validation loss with a rise
in the number of epochs. It is noticed the training loss is
seemed to be higher than the validation loss.

Finally, a brief RMSE analysis of the AIEDAE-ESRS
technique takes place under distinct sizes of training data
is given in Figure 9 and Table 2 [23]. The result reported that
the AIEDAE-ESRS technique has attained improved perfor-
mance with the minimal values of RMSE compared to CRF
and DBRNN techniques. For instance, with TS of 10%, the
AIEDAE-ESRS technique has obtained lower RMSE of
1.12%, whereas the CRF and DBRNN techniques have
attained higher RMSE of 2.21% and 1.81%, respectively.
Meanwhile, with TS of 40%, the AIEDAE-ESRS system has
attained lower RMSE of 0.93%, while the CRF and DBRNN
techniques have attained higher RMSE of 1.99% and 1.80%
correspondingly. Eventually, with TS of 60%, the AIEDAE-
ESRS technique has obtained lower RMSE of 0.89%, whereas
the CRF and DBRNN techniques have achieved higher
RMSE of 1.98% and 1.75% correspondingly. Moreover, with
TS of 80%, the AIEDAE-ESRS technique has obtained lower

RMSE of 1.03%, while the CRF and DBRNN methods have
accomplished higher RMSE of 2.01% and 1.77% correspond-
ingly. Furthermore, with TS of 100%, the AIEDAE-ESRS
technique has obtained lower RMSE of 1.16%, while the
CRF and DBRNN systems have reached higher RMSE of
2.01% and 1.73% correspondingly.

By looking into the abovementioned figures and tables, it
is ensured that our AIEDAE-ESRS methodology has gained
maximal performances over the existing techniques.

5. Conclusion

In this study, an effective AIEDAE-ESRS technique has been
developed for the accurate estimation and error detection in
speech recognition model. The AIEDAE-ESRS technique
involves three major processes, namely, preprocessing,
DNN-HMM-based speech signal recognition, and FPA-
based hyperparameter tuning. The utilization of the FPA
helps to properly adjust the hyperparameters of the DNN-
HMM model which supports to greatly increase the detec-
tion performance. The experimental result analysis of the
AIEDAE-ESRS technique take place using benchmark data-
set and investigated the results under several aspects. The
simulation results reported the outstanding efficiency of
the AIEDAE-ESRS methodology over the recent approaches.
The improvements in experimental results reported the
enhanced outcomes of the AIEDAE-ESRS technique based
on various measures. With accuracy, NCE, and AFS values
of 0.9921, 0.2640, and 0.6909, respectively, the AIEDAE-
ESRS system outperformed the other techniques. With a
TS of 100%, the AIEDAE-ESRS technique achieved a
reduced root mean square error of 1.16 percent, whereas
the CRF and DBRNN systems achieved a higher root mean
square error of 2.01% and 1.73 percent, respectively. In the
future, the performance of the AIEDAE-ESRS technique is
additionally improved by the advanced DL models for
speech recognition.
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