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The target tracking of nonlinear maneuvering radar in dense clutter environments is still an important but difficult problem to be
solved effectively. Traditional solutions often rely on motion models and prior distributions. This paper presents a novel improved
architecture of Kalman filter based on a recursive neural network, which combines the sequence learning of recurrent neural
networks with the precise prediction of Kalman filter in an end-to-end manner. We employ three LSTM networks to model
nonlinear motion equation, motion noise, and measurement noise, respectively, and learn their long-term dependence from a
large amount of training data. They are then applied to the prediction and update process of Kalman filter to calculate the
estimated target state. Our approach is able to address the tracking problem of nonlinear maneuvering radar target online end-
to-end and does not require the motion models and prior distributions. Experimental results show that our method is more
effective and faster than the traditional methods and more accurate than the method with LSTM network alone.

1. Introduction

Target tracking is an important support for radar, sonar,
satellite, optical sensor, and other systems to realize moni-
toring, positioning, navigation, and other applications. Its
working mechanism is to fuse the prior information of the
target and the online measurement information of the sen-
sor and estimate the number, position, and motion state of
the target online under the background of noise. In general,
there are two key difficulties in target tracking, namely,
target dynamic state uncertainty and measurement data
uncertainty. This paper only focuses on the dynamic state
uncertainty in radar target tracking.

For the single target tracking of approximately uniform
motion, it is basically solved based on Bayesian theory. The
essence of Bayesian theory is to seek the solution of the
posterior probability density of motion state according to
the prior probability density and observation likelihood
function of dynamic parameters. Kalman filter (KF) [1] is
an unbiased optimal estimation in the recursive form of
Bayesian theory, which is applicable to target tracking of

linear Gaussian motion in many fields. For nonlinear object
tracking, the common improvement method is the Extended
Kalman filter (EKF) [2], which approximately linearizes the
system near the working point. The Unsensitive Kalman fil-
ter (UKF) [3] makes an approximate Gaussian distribution
after projection of a few deterministic sample points. The
Particle filtering (PF) [4] approximates the posterior proba-
bility density of the nonlinear functions by a large number of
random discrete samples. These methods all approximate
the posterior probability distribution from different direc-
tions. And their computational accuracy is limited by the
model approximation effectiveness, or they need to balance
the effectiveness and computational efficiency.

For target tracking with strong maneuverability, target
maneuvering leads to the change of target dynamic charac-
teristics. The commonly used solutions are the Markov jump
multimodel algorithms, e.g., the interactive multimodel
(IMM) algorithm and the variable structure multimodel
algorithm (VSMM) algorithm [5, 6]. In essence, this kind
of algorithms applies multiple motion models for matching
the motion patterns of maneuvering target, with the models
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transferred by Markov matrix. The disadvantage is that the
model structure and quantity need to be determined in
advance, leading to limited statistical accuracy due to model
mismatch and insufficient estimation data.

For the nonlinear maneuvering radar target, its motion
equation is often unpredictable, and the distribution of the
motion process noise and measurement noise is also uncertain.
These problems are difficult to solve using the traditional
methods mentioned above. We analyze, in essence, the target
tracking is to estimate the nonlinear mapping from the obser-
vation sequence to the real state of the target in time dimension.
Considering the rapid development of deep neural networks
(DNN) [7–11] in recent years, relying on its strong expression
ability, it is possible to find a deterministic map to approximate
the conditional density from a given input to an output in a
mathematically optimal way by learning from a large amount
of data [12]. Recurrent neural network (RNN) plays an impor-
tant role in processing time series as a vital branch of DNN. Its
main specialities are able to process historical data cyclically
and recursively and model the historical memory information.
With this help, RNN is good at dealing with the time series,
which have tight correlation sequence information and uncer-
tain length. Theoretically, as long as there is enough training
data covering the possible motion path of the tracked object
and an appropriate network structure, RNN is able to output
the target state condition density of a given available observa-
tion value at each time step [13]. This coincides with the needs
of target tracking. Inspired by this, we integrate the deep neural
network with the traditional target tracking method, giving full
play to their advantages, so as to effectively solve the above
complex target tracking problems.

The contributions of this paper are summarized in the
following items:

(1) In order to overcome the problems of nonlinear
maneuvering radar target tracking, inspired by deep
learning ideas, we propose a novel target tracking
architecture combing Kalman filter and LSTM net-
work. We model three LSTM networks separately for
the uncertainty of the nonlinear motion equation,
motion process noise distribution, and measurement
noise distribution in Kalman filter. Relying on the pow-
erful learning ability of LSTM network, the long-term
dependent characteristics of target motion and mea-
surement can be learned from the training of abundant
training data and uniformly applied to the motion state
prediction of Kalman filter. The advantages of this
architecture are that it requires no approximation and
no prior distribution, and it can carry out the nonlinear
maneuvering radar target tracking end-to-end online

(2) We generate a large amount of training data using
model sampling, based on widely used nonlinear
maneuvering radar target time series model

(3) The qualitative and quantitative simulation results
show that the proposed architecture is stronger than
the traditional nonlinear target tracking methods in
both the estimation error and computational speed
in nonlinear maneuvering target tracking task

2. Related Work

In recent literatures, the application of DNN network in
target estimation and prediction has been widely studied.
In this section, we introduce those works that explicitly use
LSTM in combination with traditional methods to infer time
correlation in chronological order.

Early, Haarnoja et al. [14] used the one-time estimation
as the measured value inputting into the Kalman filter.
And the estimator is required to provide the prediction of
noise covariance, which is often inaccurate without a learn-
ing process. Coskun et al. [15] proposed a method to human
image pose regularization, which uses the LSTM estimator
fused with a KF. However, it is only applicable to the estima-
tion of slowly changing human image posture, and it does
not fully explain the use performance of target tracking
problem with rapidly changing state. Recently, Gao et al.
[16] proposed two LSTM networks to receive the observa-
tion results and output the real state in a continuous man-
ner. They complete the process of prediction and filtering,
respectively. However, the two processes are independent
and not related. The accuracy of the estimate will be limited.
Moreover, they use an overall LSTM structure for estima-
tion, which makes it more difficult to fit. Llerena et al. [17]
used the LSTM unit to estimate the motion state through
the encoder decoder architecture. However, only the perfor-
mance comparison with EKF algorithm, and only under sev-
eral linear and specific motion paths, cannot fully explain
the superiority of this algorithm. Zhang et al. [18] used a
Kalman filter based on LSTM for data assimilation of a
two-dimensional spatiotemporal depth average ocean flow
field and path planning of underwater glider. The LSTM net-
work only models the spatial basis function in the nontidal
flow field. The output of LSTM and the observation results
obtained from the glider flow estimation data both are
inputted to the Kalman filter. LSTM does not estimate all
motion equations, process noise, and measurement noise,
so the accuracy of estimation effect is limited.

In [19], we proposed to use of the LSTM network com-
monly used in RNN to extract the features of continuous data.
Thus, it is able to fit the nonlinear mapping between noisy
observations and target state under the conventional motion
model. However, for nonlinearmaneuvering radar target track-
ing, the ability of this method is limited. Therefore, we propose
a new architecture combining LSTM network and Kalman fil-
ter, which strengthens the extraction of target motion history
features, prediction accuracy, and noise resistance.

Our architecture is somewhat similar to [16], but is
different in three key ways: First, motion state prediction
and filtering in [16] are independently completed, while we
integrate the results of the LSTM prediction into the Kalman
filter state prediction to enhance the accuracy of the target
prediction. Secondly, a whole RNN is used in [16] for learning
and estimation, while we use three LSTMs: motion state,
motion process noise, and measurement noise for learning
and estimation. In this way, the learned historical information
is more comprehensive and has stronger anti-interference
ability. Thirdly, due to the different network architecture, we
also use different loss functions.
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3. Background

The Bayesian principle is applied as a basic theoretical
framework for dealing with the observation data and its
sequential characteristics uncertainty. The Bayesian method
uses the prior estimation of motion state and the likelihood
function of observation value to accurately estimate the
motion state. We assume the motion model of the system
is as follows:

State equation : xk = f xk−1ð Þ + vk,
Observation equation : yk = h xkð Þ +wk,

ð1Þ

where xk is the motion state at k step, vk is the prediction
process noise, which obeys the Gaussian distribution vk ~
Nð0, QÞ, and f ðÞ is the motion equation, yk is the observa-
tion data at the k step, wk is the observation noise, which
obeys the Gaussian distribution wk ~Nð0, RÞ, and h is the
observation equation.

The best solution of Bayesian filtering on the math from
the classical Bayesian theory is the following:

p xk yk−1jð Þ =
ð
p xk xk−1jð Þp xk−1 yk−1jð Þdxk−1, ð2Þ

p xk ykjð Þ = 1
p yk yk−1jð Þ p yk xkjð Þp xk yk−1jð Þ: ð3Þ

From these, the Bayesian filtering consists chiefly of two
stages: prediction stage as Equation (2) and filtering stage as
Equation (3). We are able to accurately acquire the posterior
probability density of the two stages. The Kalman filter algo-
rithm is the recursive form to realize this accurate solution.

3.1. Kalman Filter. If we use xt to represent the motion state
and yt to represent the measurement, we can change the
model to

xt = Axt−1 +ww ~N 0,Qð Þ, ð4Þ

yt =Hxt + v v ~N 0, Rð Þ, ð5Þ
where A is the motion matrix, xt‐1 is the motion state at time
t − 1, and w is process noise, which is a Gaussian white noise
with zero mean and covariance matrix Q. H is the observa-
tion matrix, and v is measurement noise, which is a Gaussian
white noise with zero mean and covariance matrix R.

The Kalman filter algorithm is divided into two stages:
prediction and update.

The prediction stage calculates the state prior estimation
and the error covariance prior estimation at current time
according to the state estimate at previous time, as follows:

x̂t′= Ax̂t−1, ð6Þ

P̂t′= AP̂t−1A
T +Q: ð7Þ

The update stage combines the prior estimations with
new measurement data to calculate the improved posteriori

estimations. K t is the calculated filter gain matrix and the
intermediate calculation result of filtering. The Kalman filter
algorithm is a recursive prediction update method.

Kt = P̂t′HT HP̂t′HT + R
� �−1

, ð8Þ

x̂t = x̂t′+ Kt ŷt −Hx̂t′
� �

, ð9Þ

P̂t = I − KTHð ÞP̂t′: ð10Þ
3.2. Long Short-Term Memory.With the help of RNN’s char-
acteristics as mentioned above, RNN is best adapted for
dynamic scenes, hardly characterized by a fixed number of
parameters. It is adequate for handling strongly correlated
information in time and space series such as target tracking.

However, the traditional RNN is bad at storing the long-
term memory of sequence information and may cause seri-
ous gradient disappearance or gradient explosion [20]. The
main method to solve this problem is to use long-term mem-
ory network (LSTM), which is able to overcome the above
shortcomings effectively.

LSTM is an improved RNN adding special memory func-
tion. It is able to compute the state of hidden layer neurons in
various ways. The memory unit is mainly composed of four
components: input gate, forgotten gate, output gate, and
self-circulation connection. The LSTM protects and controls
the status of the memory units by dominating the gates out-
puts. They work together to make LSTM get the ability to
store and transmit sequence information for a long time
and then reducing the problem of gradient disappearance.

In this paper, we use a general variant of forgetting gate
[21], which is good for improving performance [22]. The
LSTM variants are described below:

f t = σ Wfhht−1 +Wfxxt + bf
� �

, ð11Þ

it = σ Wihht−1 +Wixxt + bið Þ, ð12Þ

ot = σ Wohht−1 +Woxxt + boð Þ, ð13Þ

~ct = tanh Wchht−1 +Wcxxt + bcð Þ, ð14Þ

ct = f t ⊗ ct−1 + it ⊗~ct , ð15Þ

ht = ot ⊗ tanh ctð Þ, ð16Þ
where σ represents sigmoid function and ⨂ represents ele-
ment level multiplication. From these equations, it can be
seen that the LSTM applies the forgotten gate f t to reset
the memory, uses the input gate it to write to the memory,
employs the output gate ot to read from the memory, and
finally forms the output or hidden state ht . The values of
the intermediate storage unit ~ct and all gates are determined
by the input xt and all kinds of W and b parameters, which
are learned in a training process. For multilayer LSTM, the
first layer hidden states ht are regarded as the input xt of
the second layer, and so on.
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4. Kalman Filter Fusing LSTM for Nonlinear
Target Tracking

It can be seen from the above analysis that Kalman filter
algorithm requires the linear equation of motion state,
and the motion process noise and measurement noise
are both Gaussian white noise with 0 mean. However,
for nonlinear maneuvering targets, their motion state is
often irregular, and the distribution of motion process
noise and measurement noise is also a priori unknown.
To address these problems, we present the Kalman filter
fusing LSTM (KFFLSTM), a novel structure for the non-
linear target tracking. Specifically, we make use of three
different LSTM networks to model the nonlinear process
function, process noise, and measurement noise in Kalman
filter, respectively. Through the deep learning process from
massive training data, we are able to achieve the best coef-
ficient representation of the three networks. Then, it is
applied to the Kalman filter calculation to obtain a more
accurate target state prediction.

4.1. System Description. In essence, our network model is
a kind of Kalman filter technology based on deep learn-
ing. With the continuous refinement of the measured
values, it can regularize the nonlinear target motion state
without manually setting the process and measurement
models.

Theoretically, by setting the receiving vector sequence of
the LSTM network, from Equations (11)–(16), the hidden
state of the t-th time step of the LSTM is summarized as

Theoretically, by setting the receiving vector sequence
X = ðx1, x2,⋯, xTÞ of the LSTM network, from Equations
(11)–(16), the hidden state of the t-th time step of the LSTM
is summarized as

ht = f θh xt , ht−1ð Þ, ð17Þ

where ht−1 is the hidden state of the previous step and f θh is
a deterministic gated activation function through the param-
eter set θh determined. The corresponding output at time t
can also be summarized as

ot = f θo xt , ht−1ð Þ, ð18Þ

where f θo is a deterministic gated activation function
through the parameter set θo determined.

Through the training process of LSTM network, we
achieve the optimal parameter set θ∗ (θh and θo are its sub-
sets) in statistical sense, with the error function minimized.
With its help, the LSTM deterministically approximate the
conditional probability density pðy1,⋯, ytjx1,⋯, xtÞ and
complete the deterministic mapping from input to output.
This is expressed as

p y1,⋯, yT x1,⋯, xTjð Þ =
YT
t=1

p yt xtjð Þ, ð19Þ

where each of pðytjxtÞ is parameterized by a cyclic module,
which defines a deterministic function.

Through LSTMs, we can learn the mapping relationship
from input to output from abundant training data and apply
them to the estimation of key parameters in Kalman filter.
Compared with the traditional model-based methods, this
new one’s advantages will be very significant. In traditional
methods, these parameters are often determined by fixed
models or obtained by experience, which limits their appli-
cation in nonlinear and non-Gaussian target tracking. The
fusion of LSTM networks and Kalman filter not only makes
the Kalman filter algorithm break through the original limi-
tation of linear Gaussian but also helps the updating process
of Kalman filter to combine the estimation obtained by
LSTM and measurement, which is expected to make the
nonlinear target tracking more effective than that of Kalman
or LSTM alone.

Specifically, our network model divides the tracking
task into three different LSTM networks according to
their function. Each LSTM estimates the undetermined
matrix in the Kalman filter: the LSTM-A estimates the
process state transition matrix A (Equation (6)), the
LSTM-Q estimates the process noise covariance matrix
Q (Equation (7)), and the LSTM-R estimates the mea-
surement noise covariance matrix R (Equation (8)). The
three networks are organically combined by the predic-
tion and update process of the Kalman filter. Compared
with one whole LSTM [23] learning process, this arrange-
ment is able to make the learning task of each LSTM
simpler, converge faster, and improve the effect of overall
estimation.

The system structure is shown in Figure 1. In the time
step t, LSTM-A takes the prediction of the previous step
x̂t−1 as the input to generate the intermediate state of process
estimation x̂t′. Then, it is input to LSMT-Q to generate the
estimation of process noise covariance Q̂t . Meanwhile, the
observed value yt of this time step is input to LSTM-R to
generate the estimation of the measurement noise covari-
ance R̂t . Finally, the x̂t′, ŷt , Q̂t , and R̂t are inputted to the
above update Equations (8)–(10) of Kalman filter to obtain
the final state prediction value x̂t of this time step. Each time
step in the whole prediction process is iterated according to
this step, and finally a whole tracking prediction results can
be obtained.

4.2. Model Prediction and Update Steps. Assuming that the
measured value is a noisy estimation of the basic state, it
can be simplified to make H = I in above Equation (5). The
original model updates as

xt = Axt−1 +w w ~N 0, Q̂t

� �
,

ŷt = xt + v v ~N 0, R̂t

� �
,

ð20Þ

where the process equation A in the prediction step is
modeled by LSTM-A network, Q̂t is output by LSMT-Q
and R̂t is output by LSTM-R. ŷt is the measurement
observed at time t as the input to the filter. The formula of
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Kalman filter process is modified to

x̂t′= Ax̂t−1, ð21Þ

P̂t′= AP̂t−1A
T + Q̂t , ð22Þ

Kt = P̂t′ P̂t′+ R̂t

� �−1
, ð23Þ

x̂t = x̂t′+ Kt ŷt − x̂t′
� �

, ð24Þ

P̂t = I − Ktð ÞP̂t′, ð25Þ

where x̂t and x̂t−1 represent the posteriori state estimation
values at time t and time t − 1, respectively, which are part
of the filtering results. Other filtering results are P̂t and
P̂t−1, which represent the a posteriori estimation covariance
at time t and time t − 1, respectively. Next section, we give
a detailed description of the LSTM networks.

4.3. LSTM Network Architecture. We use LSTM-A, LSTM-
Q, and LSTM-R to represent the three LSTM networks. Each
network is described in Figure 2.

Specifically, the estimation task of nonlinear process
function is the most important, in which a large of features
need to be extracted from the training data. Therefore, the
LSTM-A is designed consisting of four stacked LSTM layers;
each layer has 1024 hidden units. There are three fully con-
nected (FC) layers, whose hidden units are set 1024, 1024,
and 2, respectively. The process noise estimation task is rel-
atively easy. The LSTM-Q is designed as a single layer LSTM
with 256 hidden units, adding a full connection layer of 2
hidden units. The measurement noise is relatively fixed,
and the estimation is easier. The LSTM-R is designed as a
single-layer LSTM network with 128 hidden units and a full
connection layer connecting 2 hidden units. Behind each
LSTM layer in the design, there is a loss layer with a reten-
tion probability of 0.8. The activation function of each fully
connected layer is the nonlinear function Relu (except the
last layer).

It should be noted that in order to ensure the invertibility
of the matrix generated when calculating the Kalman gain,
the Q̂t and R̂t are limited to diagonal matrices and positive
definite by exponentiation of the outputs of LSTM-Q and
LSTM-R.

4.4. Loss Function. In practice, we first used the commonly
used sum of squares of residuals (SSR) loss function:

L θð Þ = 1
T
〠
T

t=1
xt − x̂t θð Þk k2: ð26Þ

However, the value of the loss function did not converge
during the training process. After the problem locating, we
found that the LSTM-A module cannot learn any reasonable
mapping. Therefore, a regular term is added to the loss func-
tion to strengthen the gradient flow to LSTM-A. So the
modified loss function is as follows:

L θð Þ = 1
T
〠
T

t=1
xt − x̂t θð Þk k2 + λ xt − x̂t′ θð Þ�� ��2, ð27Þ

where xt the real target motion state at time t, x̂tðθÞ is the
result of state estimation values at time t, and x̂t′ðθÞ is the
intermediate result estimated by LSTM-A. The super param-
eter λ is empirically set to 0.7.

4.5. Training Optimization. Our goal is to find the optimal
fixed parameter sets, which are able to make the loss caused
by all free parameters in the complex loss function mini-
mized. These parameters are the sum of all weight and bias
parameters of all three LSTM modules. The optimization
process is often nonconvex. Facing many local minima, we
only need to achieve a small enough local minimum. That
is adequate for our practice [24].

To train the model, we use the back propagation time
algorithm [25] to obtain the gradient. The gradient update
is performed according to the commonly used Adam [26]
optimizer.

The huge training data set may increase the computa-
tional complexity of gradient calculation. In order to over-
come this problem, we only use a small batch of training
data to update the parameters in each iteration. The benefits
are selecting the descent direction accurately for every gradi-
ent descent and reducing the training shock, within a certain
range. However, the defects are increasing the number of
iterations, rising the operation time and slowing parameters
modification. There is no final conclusion on how to select
the batch size. Too small batch will introduce more noise,
and too large batch will increase the training shock [27, 28].

LSTM-A LSTM-Q

LSTM-R

Kalman filter
calculation

Observation
sequence

P̂t-1

P̂t

x̂t-1
x̂'t

x̂t

ŷt

R̂t

Q̂t

Figure 1: Overview of the KFFLSTM. In a time step t, the architecture of the KFFLSTM is composed of three LSTM modules and Kalman
filter calculation modules.
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For the sake of suppressing the problem of gradient
explosion, the gradient clipping mechanism is introduced.
When the weight is updated too quickly in the iteration, it
is easy to lead to loss divergence. Therefore, we need to cut
the gradient. By controlling the maximum normal form of
the gradient, we limit the weight to update in an appropriate
range, which effectively restrain the gradient problem.

5. Experiments

In this section, in order to show the tracking performance of
the designed KFFLSTM structure for nonlinear targets, we
compare the performance with a series of common nonlinear
target tracking algorithms, including EKF, UKF, PF, IMM,
and B-LSTM structure. This B-LSTM structure, proposed in
[19], is the representative of a kind of model, whose feature
is using two whole LSTMs to learn the prediction step and
measurement update step from the training data, respectively.

5.1. Dataset. Specifically, we use a typical nonlinear time
series model. This model is widely used in the literature as
a benchmark numerical filtering technique to demonstrate
performance improvement [29, 30]. The state space equa-
tion is as follows:

xk =
xk−1
2 + 25 xk−1

1 + x2k−1
+ 8 cos 1:2kð Þ + uk,

zk =
x2k
2 + vk,

ð28Þ

where the process noise distribution is uk ∼Nð0, σ2uÞ, σ2
u = 10.

The observed noise distribution is vk ∼Nð0, σ2vÞ, σ2v = 1. The
initial state distribution is x0 ∼Nð0, 10Þ.

Through the simulation of the model, the training data
set can be obtained. Specifically, the random observation tar-
get was generated within a certain observation time, and the
initial position was randomly set within a certain range. We
produced 64 random path observation data, respectively, by
simulating the target state sequence and the corresponding
observation sequence, resulting in a total of 65536 × 2 obser-
vation data. It was assumed that the data variable of interest
was set as the position state of the observation target.

In the implementation of LSTM network structure,
adopting the network structure mentioned above, the scale
of network parameters is nearly 307460 parameters, whose
best values need to be achieved by training process using
the loss function and optimization method described in
Section 3. The initial learning rate of training KFFLSTM
structures is set to 1e − 5 and attenuates to 0.9 from the
second cycle. For this training, we use reduced time back
propagation to propagate gradients of 64 time steps, and
the batch size is set to 16. In the test stage, we simulated
the test data set containing 1024 target state sequences and
corresponding observation sequences to verify the enhance-
ment of performance.

5.2. Performance Comparison. In the test, we selected some
traditional methods, widely used to solve the nonlinear
target tracking problem [29], EKF, UKF, IMM, PF, and the
single LSTM method B-LSTM as the baseline to compare

LSTM-A

LSTM-Q LSTM-R

FC (2) Linear

FC (2) Linear FC (2) Linear

LSTM (1024)

LSTM (1024)

Dropout (0.8)

Dropout (0.8)

LSTM (1024)

Dropout (0.8)

LSTM (1024) LSTM (256) LSTM (128)
Dropout (0.8) Dropout (0.8) Dropout (0.8)

FC (1024) Relu

FC (1024) Relu

R̂tQ̂t

x̂'t x̂'tx̂t-1

x̂'t

Figure 2: LSTM-A, LSTM-Q, and LSTM-R architecture. As detailed below, the LSTM-A, LSTM-Q, and LSTM-R are composed of different
neuron layers in KFFLSTM.
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with the designed KFFLSTM structure. The IMM method
selected CV and CT models to switch. The PF method
simulated the performance of 50 particles and 1000 parti-
cles, respectively. These above algorithms all have per-
formed 500 Monte Carlo calculations and obtained the
root mean square error (RMSEs) of each time step, as
shown in Figure 3.

As shown in Figure 3, for this typical nonlinear time series
target tracking, EKF performs worse than sampling methods
(UKF and PF) and LSTM-based methods. The multimodel
method IMM only selects the commonly used CV and CT
models for switching, so its performance is similar to EKF.
For the PF method, the performance of 1000 particles is
slightly worse than that of B-LSTM method. Our proposed
KFFLSTM performs better than B-LSTM. It is worth noting
that although the traditional methods are very different from
the proposed LSTMnetworkmethods in solving the nonlinear
target tracking problem, the fluctuation of RMSE curve is
similar. This shows that these methods can achieve the
purpose of tracking, but the accuracy is different.

In addition, we also compared the average running time
and average RMSE of each iteration of various methods under
the condition of using the same CPU, as shown in Table 1.

Because the estimation accuracy of EKF, UKF, and IMM
is far from that of other methods, we focus on the compari-
son between PF and LSTM methods. It can be seen that our
proposed KFFLSTM can provide accurate estimation in a
short calculation time. Compared with PF with 50 particles,
the accuracy is improved by 27.3% and the calculation time
is shortened by 45.5%. Compared with 1000 particle PF, the
accuracy is improved by 14.5%, and the calculation time is
reduced by 96.8%. Compared with the B-LSTM method, this
method improves the accuracy by 13.2%, but the running
time is slightly longer. This may be because KFFLSTM not
only needs to calculate a similar number of gradients but also
has to calculate many matrix operations, including the inver-
sion of the square matrix in Equation (23), at each time step.

5.3. Influence of Different Noise Variances. In order to carry
out this experiment, we change the observation noise vari-
ance and motion noise variance, respectively, to dynamically
simulate the impact of mobility change or measurement
error change on the estimation effect of these methods.

Firstly, our simulation uses the same initial state and
fixed motion noise variance to calculate the average RMSE
of PF50, PF1000, B-LSTM, and KFFLSTM methods, when
the observed noise distribution variance is set to the typical
value of 1, 10, 50, and 100, as shown in Figure 4.

As shown in Figure 4, when the observation variance
increases by order of magnitude, the RMSE of PF1000
changes a little and increases slightly, while the RMSE of
PF50 changes greatly and increases significantly. The RMSE
of B-LSTM and KFFLSTM nearly remain the same.

Secondly, our simulation uses the same initial state and
fixed the observation noise distribution variance to calculate
the average RMSE of PF50, PF1000, B-LSTM, and KFFLSTM
methods, when the motion noise variance is set to the typical
value of 1, 10, 50, and 100, as shown in Figure 5.

As shown in Figure 5, when the motion variance increases
by order of magnitude, the RMSE change of PF1000 and PF50
increases significantly. The RMSE of B-LSTM increases slowly,
and KFFLSTM increases slightly.

This shows that the two LSTM-based methods are insen-
sitive to the mobility change of nonlinear tracking target and
the change of measurement error compared with the

Table 1: Table of the main algorithms, RMSE values, and runtimes
at each iteration.

Algorithms RMSE Run times

PF (50 particles) 5.532 1.424ms

PF (1000 particles) 4.758 24.32ms

KFFLSTM 4.235 0.775ms

B-LSTM 4.732 0.453ms
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Figure 3: The RMSE of KFFLSTM compared with other baseline methods. Our method performs better than the traditional method and
single LSTM method.
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traditional methods. Especially, the antisensitivity of
KFFLSTM described in this paper is stronger than that of
LSTM alone method.

5.4. Influence of Initial a Prior. In our experiment, we
assumed that the initial a priori motion state of the target
is known, that was to say, the initial a priori of the test
data and the training data were considered to be the same.
However, in practice, the initial state of the actual target is
often unexpected. Once it is out of the distribution range
of training data, this will lead to poor tracking effect of
the model on test data [30]. In order to solve this prob-
lem, we may increase the support range of the initial a
priori of training data theoretically, but the price is more
training data required.

To verify this, we simulated the training data with differ-
ent initial state distribution range and the same test data set
and calculated the RMSE of the KFFLSTM, respectively, as
shown in Table 2. The results show that the estimation accu-

racy of the model remains almost unchanged as long as the
initial prior distribution of the training data can cover the
initial prior distribution of the test data.

6. Conclusion

Against nonlinear moving target tracking, KFFLSTM struc-
ture combining LSTM and Kalman filter is proposed in this
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Figure 5: The RMSE of KFFLSTM with different process noise variance. Our method’s RMSE curve basically remained unchanged.

Table 2: RMSE of the KFFLSTM trained with different initial prior
data sets.

Training data initial
prior distribution

Test data initial
prior distribution

RMSE of
KFFLSTM

N (0, 10) N (0, 10) 4.235

N (0, 100) N (0, 10) 4.238

N (0, 500) N (0, 10) 4.237

N (0, 1000) N (0, 10) 4.239

4
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5.2
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6
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Figure 4: The RMSE of KFFLSTM with different measure noise variance. RMSE curve of our method and B-LSTM increases slightly.
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paper. This creative structure is able to learn the nonlinear
motion process, motion noise, and measurement noise from
massive training data and then apply it to the Kalman filter
equations to complete the accurate estimation of the target
motion states. It not only does not need to specify the
motion model and noise model in advance but also is capa-
ble of learning the nonlinear motion model through the
data, which is very difficult to record explicitly. The experi-
mental data indicate that compared to the traditional
methods, this method estimates the states more accurately
within a shorter calculation time and also performs better
than the single LSTM method.

What this paper provides is only a preliminary algo-
rithm. In the future, with the continuous development of
LSTM or RNN, its performance in the field of nonlinear
tracking will be continuously improved.
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