
Research Article
A Quasistraight Line Routing Protocol for Square Grid-Based
Wireless Sensor Networks

Md. Ajij,1 Sanjoy Pratihar ,2 Ashish Kumar Luhach ,3 and Diptendu Sinha Roy1

1National Institute of Technology Meghalaya, Shillong, India
2Indian Institute of Information Technology Kalyani, Kalyani, India
3PNG University of Technology, Morobe, Papua New Guinea

Correspondence should be addressed to Ashish Kumar Luhach; ashish.kumar@pnguot.ac.pg

Received 27 January 2022; Revised 18 March 2022; Accepted 23 March 2022; Published 11 May 2022

Academic Editor: Mohammad R Khosravi

Copyright © 2022 Md. Ajij et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Sensor nodes in a wireless sensor network (WSN) are both energy-constrained and vulnerable to faults and disasters.
Communication between the sensor nodes is generally hop-by-hop, and the nodes are distributed throughout the area to be
covered. Broadcast-based routing protocols are not preferable in sensor networks since broadcasting is considered costly in
terms of battery power consumption. In this paper, a digital quasistraight line segment- (DQSS-) based approach is employed
for the detection of quasistraight line segments, i.e., for quasistraight path finding between WSN sensors arranged in a square
grid. Comparative results show that the method is comparable with the best-known straight line finding algorithm in terms of
path lengths and computation time. Moreover, the proposed method is capable of avoiding dead nodes by updating DQSS
parameters dynamically during path finding. Hence, the proposed method is promising to be used in WSN square grids as a
quasistraight line routing protocol.

1. Introduction

Wireless sensor networks (WSNs) are extensively used in
monitoring environments, surveillance equipments, intelli-
gent home appliances operated remotely, patient care sys-
tems, etc. In WSN, the sensor nodes establish the path for
communication from the sender to the receiver. This path
making process should be carried out with limited
resources. The performance of WSN is generally affected
by many factors. These affecting factors are bandwidth,
mobility, scalability, data aggregation, power consumption,
etc. Because nodes have limited power sources, the minimi-
zation of power consumption is a vital issue in WSN, and
this defines the performance of WSN [1]. Maximum energy
is consumed by the sensor nodes in the communication
processes. Routing protocols should be robust and straight-
forward, ensuring less energy consumption. Because of the

limited resources of WSN nodes, the routing protocols must
support the extended lifespan of the nodes [2]. Therefore,
many protocols have been proposed highlighting the mini-
mization of energy consumption.

Different protocols have been developed for WSNs
according to the different prerequisites of uses and a large
number of WSNs types. Numerous studies have attempted
to analyze and classify these routing protocols according to
different parameters that have been published. WSN routing
protocol can be classified based on (a) application type, (b)
delivery mode, (c) network architecture, (d) initiator of com-
munication, (e) path establishment (route discovery), (f)
network topology, (g) protocol operation, (h) next hop selec-
tion, and (i) latency-aware energy-efficient routing. The
main goal of WSN is to establish a path consisting of the
WSN nodes which will be reliable and energy efficient [3].
Energy consumption in routing is mainly due to finding

Hindawi
Wireless Communications and Mobile Computing
Volume 2022, Article ID 8425506, 11 pages
https://doi.org/10.1155/2022/8425506

https://orcid.org/0000-0002-0833-6989
https://orcid.org/0000-0001-8759-0290
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/8425506


neighbors for communications and necessary small compu-
tations. So, usually, the routing algorithms focus on how to
compute the shortest path from the source node to the des-
tination for quick transmission. A quick shortest path find-
ing from the source node to sink may reduce the network
congestion also.

Most of the traditional routing protocols cannot avoid
the construction of curved (nonstraight) paths for data
transmission. As a result, many multidirectional communi-
cations will lead to wastage of energy. Furthermore, the non-
straight paths normally contain more nodes than the straight
paths, which leads to higher energy consumption [4]. So it is
worthy of finding out a straight-line route (path).

Another serious problem is the recovery of failure nodes
in the WSN environment. Node failure may be because of
many reasons. The most crucial reasons for node failure in
a wireless sensor network (WSN) [5] are (a) fabrication pro-
cess problems, (b) environmental factors, (c) battery power
depletion, and (d) enemy attacks. Node failure is a common
issue in WSN, and this affects the connectivity in a network,
which degrades the quality of communication [6]. In WSN,
a connected network is desired for smooth communication.
Hence, restoring connectivity is always given importance.
Connectivity restoration is normally done by replacing dead
nodes with other unused nodes [7]. This replacement mech-
anism should be robust, and the computational overhead
must be taken care of as high-cost computations reduce
the battery life [8–10]. WSNs and ad hoc networks are also
vulnerable to faults, often disasters, and, owing to this very
nature, are expected to fail and subsequently recover from
such scenarios with minimal extraneous support [11, 12].
Energy optimal WSN operations have been studied exten-
sively over the years, and the topologies and management
strategies vary drastically with WSN use cases and applica-
tions [13, 14]. Various routing protocols have been studied,
each with its own set of pros and cons. It has been well
understood that traditional distributed routing involving
broadcasts or those employing geographic information via
GPS modules are not suited due to excessive battery drain-
age [4, 15–17]. This has paved the path for probabilistic
routing such as gossip [18] and random routing [19, 20].
However, such probabilistic routing techniques are unsuited
for WSNs with a considerable number of nodes as they can-
not guarantee straight line paths, thus cannot ensure mini-
mum distance, and are hence suboptimal in terms of
energy expended while routing.

1.1. Straight Line Routing. The random walk-based protocol
is extensively used in WSN. Gossip [21] and rumor [20] are
two well-known random walk-based routing protocols.
Gossip concentrates on multicast, which suffers from power
limitations and a high rate of wireless channel failure. In
the rumor routing (RR) protocol, each node must maintain
its list of neighbors. For propagation of a message, the node
adds its list of neighbors to that message. Also, the message
may keep track of all the nodes that this message has
passed through. The node can decide a neighboring node
to be the next node in the path. The next node must not
have received the message earlier, and this way, it may pre-
vent the route from growing in the backward direction.
Rumor routing may show spiraling problems and energy
is wasted in maintaining the records of visited nodes.

Chou et al. [22] proposed a routing protocol based on a
random walk and straight line routing (SLR), intending to

p0 p1 p2

p3 p4 p5 p6

p7 p8 p9

p10 p11 p12 p13

p14 p15 p16

p17 p18 p19 p20

0

123

4
5 6 7

Figure 1: An example of a digital quasistraight line segment with singular code s = 1, nonsingular code n = 0, and the two run lengths
(number of points in the run) l1 and l2 are 3 and 4, respectively.

Table 1: Freeman’s chain code for the line segment shown in
Figure 1.

p0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0

D1

D5

D16

D2

D4 D3D6

D7

D8

D9

D10

D11 D12 D13 
D15

D15

Figure 2: The sixteen directional DQSSs (representative segments
with l1 = 4, l2 = 5).

2 Wireless Communications and Mobile Computing



extend the route as straight as possible. The central idea of
the SLR protocol was creating the routing path hop-by-
hop. In each hop, the next node is selected so that it lies
on the extended straight path approximately. Liu et al. [4]
proposed a new protocol based on straight line routing.
The rumor routing (RR) protocol also solves the spiral prob-
lem. The basic idea of discovering the straight path was to
find the angle using radio signals. Many routing protocols
are specially designed to enhance the classic RR protocol.
For example, DRR [23], IDRR [24], SDRR [25], and ZRR
[26] have been proposed to solve the spiral problem.
Improved sensor node localization technique is proposed
by Phoemphon et al. [27], where the positions of the anchor

nodes form a straight or nearly straight line. Banimelhem et al.
[28] proposed a principal component analysis- (PCA-) based
efficient path generation algorithm.

1.2. Faulty Node. Numerous strategies have been proposed
for node deployment, which is often divided into two cate-
gories: random deployments and deterministic (grid-based)
deployments [29]. Nodes are randomly eliminated and
managed during ad hoc deportation in a stochastic deploy-
ment. When deploying on a grid, the nodes are arranged
according to the angles of the grid points, which leads to
greater accuracy in overall management. The physical

Table 2: Direction understanding based on coordinates of the endpoints.

X-coordinate sign Y-coordinate sign dyj j < dxj j dyj j < dx
2
�
�

�
� dxj j < dy

2

�
�
�

�
�
� No. of steps Direction

Positive Positive Yes Yes No dyj j + 1 D1

Positive Positive Yes No No dxj j − dyj j + 1 D2

Positive Positive No No No dyj j − dxj j + 1 D3

Positive Positive No No Yes dxj j + 1 D4

Negative Positive No No Yes dxj j + 1 D5

Negative Positive No No No dyj j − dxj j + 1 D6

Negative Positive Yes No No dxj j − dyj j + 1 D7

Negative Positive Yes Yes No dyj j + 1 D8

Negative Negative Yes Yes No dyj j + 1 D9

Negative Negative Yes No No dxj j − dyj j + 1 D10

Negative Negative No No No dyj j − dxj j + 1 D11

Negative Negative No No Yes dxj j + 1 D12

Positive Negative No No Yes dxj j + 1 D13

Positive Negative No No No dyj j − dxj j + 1 D14

Positive Negative Yes No No dxj j − dyj j + 1 D15

Positive Negative Yes Yes No dyj j + 1 D16

Input: Geographical grid location of Source node (S) and Destination node (D)
Output: N: A quasistraight path from S to D.
1 Translate the source node(ðSði, jÞÞfrom ði, jÞ to ð0, 0Þ;
2 Translate the destination node ðDðu, vÞÞ accordingly;
3 Check x-coordinate sign, y-coordinate sign, if jdyj < jdxj, if jdyj < jx/2j, if jdxj<jy/2j;
4 Find the applicable row in Table 2 and get directional codes: s (singular code) and n (nonsingular code); See. Fig. 2
5 Find the number of steps Scount and direction of DSS;
6 Break the Scount in into two integers;
Scount = k +m;(where 0 ≤ jkj − jmj ≤ 1);
7 Find the two run-lengths l1 and l2using the following criteria:
Slength ⟵max ðjdxj, jdyjÞ;
Slength ≤ k × l1 +m × l2; Select l1 and l2when it shows minimum difference between Slength and ðk × l1 +m × l2Þ.
8 N=Find-Pathðl1, l2, s, nÞ;

Algorithm 1: DQSS-based routing algorithm.

3Wireless Communications and Mobile Computing



positioning of sensor devices is better understood in grid-
based deployment.

Many works exist to detect and analyze faulty nodes, and
a few of them are listed below. Guo et al. [30] propose a
sequence-based mechanism for detecting defective nodes.
An algorithm for identification of fault node, based on a sta-
tistical z-score function, is proposed in [31], where all sensor
nodes deliberately send information to the central node, and

the root node analyzes the data to identify the fault. Asim
et al. [32] provide an architecture for the management of
faults in wireless sensor networks. They proposed that the
entire network can be partitioned into the virtual lattice of
cells and subsequently perform fault detection and recovery
locally with the least energy utilization. A genetic algorithm-
(GA-) based technique was proposed by Rajeswari and
Neduncheliyan [33].

1 pcurr ⟵ S ; N⟵∅ ; Run⟵odd;index⟵1
2 whilepcurr::x ≠D:xANDpcurr:y ≠D:y do
3 N =N ∪ pcurr;
4 if Run = odd then
5 limit⟵l1
6 else
7 limit⟵l2
8 while index ≤ limit do
9 pcurr ⟵ Point in the direction n from pcurr;
10 N =N ∪ pcurr;
11 index⟵index+1
12 if Run=odd then
13 Run⟵even;
14 if Run = even then
15 Run⟵odd;
16 pcurr ⟵ Point in the direction s from pcurr;
17 index⟵1;
18 if pcurr ≠D then
19 Extend vertically or horizontally from pcurr to D and condiser the points in N
20 return N;

Procedure 1: Find path ðl1, l2, s, nÞ.

x-axis

D (16, 5)

y-axis

S (0, 0)

x-axis

D (16, 5)

y-axis

S (0, 0)

Figure 3: Demonstration of working of the algorithm; DQSS direction is D1, n = 0, s = 1, and l1, l2 = 3, 4; green nodes: active, gray nodes:
sleeping, and red nodes: dead (the path does not go through any dead node).

4 Wireless Communications and Mobile Computing



2. Our Contributions

In this work, we have proposed a novel path finding method
based on quasistraight line fitting focusing on the grid-based
deployment of sensor nodes. Moreover, we have proposed a
protocol for path making and avoiding faulty nodes in a
square grid of sensor nodes during path making. The proto-
col establishes a quasistraight line routing protocol for a
node to node communication, involving a minimum possi-
ble number of sensors. We assume that there will be a few
dead nodes in the sensor grid (mostly they are either live
or sleeping). This proposed path making is fast and
dynamic, and avoiding dead nodes does not incur extra
communication costs.

3. Digital Quasistraight Line Segment (DQSS)

The structural view of rectangular grid-based wireless sensor
network and points in digital space are indistinguishable. In
our proposed work, our objective is to fit quasistraight digi-
tal line segments in the rectangular grid to find out the
shortest path between two endpoints (source and destina-
tion) in WSN. The shortest distance between two points is
indeed a straight line. In grid-based WSN, digital straight
line will be suitable to explore the shortest route from sender
to receiver.

Characterizations of digital straight lines have been given
in many ways till date [34, 35]. Moreover, many algorithms
exist to verify whether a given thin arc is digitally straight or

not. Freeman introduced the chain code-based technique for
representing 8 connected arcs and lines as a sequence of
straight pieces [36, 37]. A chain code sequence (representing
a digital curve) should possess the following properties if it
represents a digital straight line segment (DSS) [34].

(i) (R1) The runs have at most two directions, differing
by 45°, and for one of these directions, the run
length must be 1

(ii) (R2) The runs can have only two lengths, which are
consecutive integers

(iii) (R3) One of the runs can occur only once at a time

(iv) (R4) For the run length that occurs in runs, these
runs can themselves have only two lengths, which
are consecutive integers

In this proposed work, we characterize a straight line seg-
ment as the chain code sequence: npsnqsnp ⋯ , where n is
nonsingular code (the code occurs consecutively multiple
times) and s is singular code (occurs singly in between non-
singular codes’ runs). Code values, n and s, are consecutive
integer differing by 45°. In our consideration, the nonsingular

S (0, 0)

D (20,13)

(18, 13)

(20, 13)

S: Source node

D: Destination node

14

13

12

11

10

9

8

7

6

y-
co

or
di

na
te

x-coordinate

5

4

3

2

1

0

–1
–1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Figure 4: Demonstration of working of the algorithm. n = 1, s = 0, l1 = 3, and l2 = 4.

Table 3: Information stored at each sensor node.

Path ID
1, 2, 3, 4f g

Run ID
odd/even

Run limit
l1/l2

Node ID
in 1⋯ l1f g or 1⋯ l2f g n s

5Wireless Communications and Mobile Computing



run lengths, p and q, are consecutive integers. Property R1
and R2 hold in our cases. On property R3, we are specific,
because in our method, none of the runs occurs in runs.
Instead, both the run lengths repeat alternately. So, it is evi-
dent that we may not always reach the destination point D.
Whenever we reach the row or the column of the destination
point in the grid, we use a horizontal or vertical stretch from
that point to the destination point (D). Hence, we refer to the
digital straight line segments obtained by us as digital quasis-
traight line segments (DQSS).

An example of a DQSS is shown in Figure 1, and the cor-
responding chain code is shown in Table 1. In Freeman’s
chain code-based properties, the mentioned run length
refers to the length of a continuous sequence of the nonsin-
gular code (in the chain code sequence). In our discussion,
we have used it as the number of points in the continuous
sequence in single direction. In the example shown in
Figure 1, as per Freeman’s definition, the two run lengths
are l1 = 2 and l2 = 3, singular code s = 1, and nonsingular
code n = 0. For the same example, we are considering the
two run lengths l1 = 3 and l2 = 4.

3.1. Sixteen Directional DQSSs and Selection of DQSS. A dig-
ital quasistraight line segment will fall into one of the sixteen
directional clusters as shown in Figure 2. Given the two end-
points Sðx1, y1Þ and Dðx2, y2Þ of a segment, the direction can
be determined in Table 2. The singular and nonsingular
codes concerning the various directions are as follows: D1

: s = 1, n = 0; D2 : s = 0, n = 1; D3 : s = 2, n = 1; D4 : s = 1, n
= 2; D5 : s = 3, n = 2; D6 : s = 2, n = 3; D7 : s = 4, n = 3; D8
: s = 3, n = 4; D9 : s = 5, n = 4; D10 : s = 4, n = 5; D11 : s = 6,
n = 5; D12 : s = 5, n = 6; D13 : s = 7, n = 6; D14 : s = 6, n = 7
; D15 : s = 0, n = 7; and D16 : s = 7, n = 0. Next, we find the
number of steps, Scount , in the straight line segment, using
Table 2 and do the followings to estimate the run lengths
l1 and l2.

(i) Break the number of steps, Scount, into two integers
such that, Scount = k +m, where 0 ≤ jkj − jmj ≤ 1

(ii) If the DQSS has run lengths, l1 and l2 then check the
following criteria: Slength ≤ k × l1 +m × l2 and Slength
⟵max ðjdxj, jdyjÞ

(iii) Select the DQSS which has minimum difference
between Slength and (k × l1 +m × l2)

Our proposed DQSS-based quasistraight line finding
method is shown in Algorithm 1. The algorithm selects
the grid points or nodes to show the DQSS connectivity
from the source node (Si,j) to the destination node (Du,v).
The proposed algorithm selects and activates the nodes
lying on the selected DQSS by maintaining the proper
direction of the DQSS (following the properties as stated
earlier), i.e., using the values l1 and l2 alternately starting
from the source S and using the singular and nonsingular
codes s and n as applicable. To start the path, we start with

Bresenham

DQSS

50
45
40
35
30
25
20
15
10

5
0

0 10 20 30

x-coordinate

y-
co

or
di

na
te

40 50 60

Figure 5: Differences in line segments: DQSS and Bresenham’s line.

6 Wireless Communications and Mobile Computing



the smaller run length at source S. The selection of l1, l2, s,
and n is shown in Algorithm 1 and the path making is
shown in procedure FIND PATH (Procedure 1) of
Algorithm 1.

4. Demonstration of the Proposed Algorithm

An example has been shown in Figure 3 to demonstrate the
working of the proposed algorithm. Here in this example,
the DQSS is to be fit in between Sð0, 0Þ and Dð16, 5Þ. We
find that the direction D1 is applicable for this example.
The number of stairs or steps, Scount, is jdyj + 1, i.e., 6. We
find the possible values of k and m as 3 and 3. As, Slength is
16 here, we find that l1 and l2 can be set as 3 and 4, respec-
tively, following the criteria: Slength ≤ k × l1 +m × l2. Hence,
we start path finding from S using n = 0, s = 1, l1 = 3, and
l2 = 4. As shown in the procedure of Algorithm 1, pcurr is
the current point during path making. We extend from the
current point using nonsingular code’s run lengths as appli-
cable. Stairs are created using the jumps because of the appli-
cation of the singular code, and we gradually proceed
towards the destination point D. If the current point pcurr
reaches either the row (when pcurr:y =D:y) or the column
(when pcurr:x =D:x) of the destination point in this process,
we stretch horizontally or vertically towards D from that
current point pcurr. An example has been shown in
Figure 4. In this example, when pcurr reaches ð18, 13Þ, the y
values of pcurr and D become equal. Hence, we stretch from
ð18, 13Þ to ð20, 13Þ.

5. The Protocol Using DQSS

Our proposed method works on a regular rectangular grid
[38], where sensor nodes are positioned at grid intersection
points. Our objective is to find the shortest quasistraight line
path from the sender to the receiver. Sensor nodes are clas-
sified as given below:

(i) Active nodes: the nodes which are active in data
transmissions

(ii) Sleeping nodes: initially, the nodes are sleeping and
become activated based on requests

(iii) Dead nodes: dead nodes do not work in any condi-
tion as they are not in working condition; the dead
nodes may be replaced with sleeping nodes

Wireless sensor nodes may be fixed nodes or mobile
nodes. But in our case, we assume that the mobility of nodes
is very less, and during movement, the nodes communicate
with a core positioned at the grid points. So, virtually, the
grid points are always the sensor nodes’ locations. If a node
is not active but lying on the detected straight line, then
either it is a sleeping node or a dead node. If it is a sleeping
node, the state of the node is changed from sleeping to
active. If it is a dead node, then it does not respond to path
making requests, and it is avoided reaching the destination.
It must be noted that a dead node can be avoided by updat-
ing the run length limits, i.e., by preponing or postponing
the application of the singular code. It is true that because
of this preponing or postponing of the singular code, some
runs may have run lengths other than l1 or l2. But, the length
minimization constraint is maintained.

5.1. Sending and Receiving at Sensor Nodes. The starting
point sensor initiates the path finding by sending a request
to the prospective next sensor as per the codes and run
lengths. We assume that the sensor nodes are equipped with
local processors and storage registers to store their tagged
information. If the next sensor responds to the previous, it
is marked into the path, and the process continues until
the destination is reached. The information which are tagged
with each sensor are primarily path ID, run ID, run limit,
node ID, n, and s as shown in Table 3. Here, path ID is
the ID of the connecting straight line path. We assume that
a sensor node can be part of four paths at most. Every path
has several runs of codes. These runs are differentiated as

Bresenham

0

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

2 4 6 8 10 12

Various destination nodes

CP
U

 ti
m

e (
m

s)

14 16 18

DQSS

Figure 6: CPU time: DQSS vs. Bresenham’s line (on 18 different line segments as shown in Table 4).

7Wireless Communications and Mobile Computing



odd and even. The initial run ID is odd, followed by an even
ID run, followed by an odd ID run, and so on. If the run ID
is odd, the sensor node is part of a run with length equal to l1
. If the run ID is even, the sensor node is part of a run with
length equal to l2. Node ID denotes the index of the node
within the run. For example, if node ID is i and run ID is
odd, then the current sensor is i-th node of a run whose
length is l1. Here, n and s are nonsingular and singular
codes. All these pieces of information are stored and proc-
essed by the local processor. Using these values, we decide
the next node at each sensor. For example, if the current
node is l1-th node in an odd run, then the next prospective
node in the straight line lies in direction s from the current
point. The current point is the latest point decided to be in
the straight line segment.

For the DQSS example shown in Figure 3, the triplet
ð<RunID>,<RunLimit>,<NodeID > Þ values (at sensor
nodes) starting from the source node are as follows:
ðodd, 3, 1Þ, ðodd, 3, 2Þ, ðodd, 3, 3Þ, ðeven, 4, 1Þ, ðeven, 4, 2Þ,
ðeven, 4, 3Þ, ðeven, 4, 4Þ, ðodd, 3, 1Þ, ðodd, 3, 2Þ, ðodd, 3, 3Þ,
ðeven, 4, 1Þ, ðeven, 4, 2Þ, ðeven, 4, 3Þ, ðeven, 4, 4Þ, ðodd, 3, 1
Þ, ðodd, 3, 2Þ, and ðodd, 3, 3Þ. Whenever a sensor node gets
the node ID equal to run limit, it flips the run ID (odd to
even or even to odd) and selects the next node in direc-
tion s from the current point.

The decision-making process is very lightweight as no
other arithmetic or complex computations are involved.
The nodes check the index limits at every node and forward
the incremented index information, whereas in Bresenham’s
line drawing algorithm, we need to compute the decision
parameter’s value at each pixel position to decide the next
pixel [39]. In Bresenham’s algorithm, the decision parameter
is updated by involving addition, multiplication, and com-

parison operations. In contrast, our method computes the
necessary parameters once and only uses increment and
comparison operations in the loop. Figure 5 shows a com-
parison of the DQSS line with the Bresenham’s line. Also,
a comparison between DQSS and Bresenham’s line algo-
rithm on the CPU times for various line segments is shown
in Figure 6 and Table 4.

5.2. Dead Node Avoidance. We assume that significantly
fewer dead nodes will be present in the grid. During the
making of the straight line path, at some point, if a dead
node appears as the following selection, we wish to avoid
it. This is done by increasing or decreasing the current non-
singular run length (run limit). We have the following two
cases.

(i) The current node pcurr is a dead node, and it is the
first node of a run (reached using singular code s
from the previous point). The run limit of the cur-
rent run is increased by 1. An example is shown in
Figure 7

(ii) The current node pcurr is a dead node, and it is any
node other than the first node of a run (reached
using nonsingular code n from the previous point).
The run limit of the current run is reset by index −
1 (index points the current node pcurr. Hence, pcurr
is avoided by applying a move using the singular
code on the previous node of pcurr. An example is
shown in Figure 8

5.3. Energy Consumption. In WSN, the energy consumed is
the sum total of energy consumed by individual nodes (see

Table 4: Various line segments and the corresponding CPU time (in milliseconds).

L1: dx = 10, dy = 6 L2: dx = 20, dy = 12 L3: dx = 30, dy = 18
DQSS 2.661 2.766 2.801

Bresenham 2.947 3.102 3.158

L4: dx = 40, dy = 24 L5: dx = 50, dy = 30 L6: dx = 60, dy = 36
DQSS 2.833 2.843 2.941

Bresenham 3.250 3.260 3.259

L7: dx = 70, dy = 42 L8: dx = 80, dy = 48 L9: dx = 90, dy = 54
DQSS 2.978 3.014 3.038

Bresenham 3.264 3.280 3.321

L10: dx = 100, dy = 60 L11: dx = 120, dy = 72 L12: dx = 140, dy = 84
DQSS 3.039 3.063 3.119

Bresenham 3.406 3.440 3.446

L13: dx = 160, dy = 96 L14: dx = 180, dy = 108 L15: dx = 200, dy = 120
DQSS 3.13 3.227 3.264

Bresenham 3.466 3.546 3.581

L16: dx = 250, dy = 150 L17: dx = 300, dy = 180 L18: dx = 500, dy = 300
DQSS 3.288 3.288 3.409

Bresenham 3.682 3.748 3.939

8 Wireless Communications and Mobile Computing



Equation (1)) [40, 41]. Energy consumed by a node com-
prises of energy for transmitting packets (Et), that for receiv-
ing packets (Er), and consumptions because of sleeping (Es).

ETotal = 〠
n

i=1
Ei, ð1Þ

where Ei = Et + Er + Es.
For Er and Es, most of the network simulators use stan-

dard values. However, Et depends on various factors. Most
prominent of which includes packet size (l) and distance

between nodes (d). Hence, Et may be expressed using the
formula shown in

Et = l ∗ Ebit + l ∗ λ ∗ d2, ð2Þ

where λ is medium constant.
Our proposed algorithm focuses on minimizing the path

length between the two given nodes by finding a quasis-
traight line segment between the two nodes. Minimization
of the path length ensures minimization of the energy
consumption.

x-axis

D (16, 5)

y-axis

S (0, 0)

x-axis

y-axis

S (0, 0)

Figure 7: Dead node avoidance by increasing the current run length limit; the length of the first even run is increased by 1.

x-axis

D (16, 5)

y-axis

S (0, 0)

x-axis

y-axis

S (0, 0)

D (16, 5)

Figure 8: Dead node avoidance by decreasing the current run length limit; limit is reduced to 3 from 4.

9Wireless Communications and Mobile Computing



6. Conclusion

This paper proposes a novel quasistraight line routing proto-
col based on quasistraight line fitting, which is derived from
Freeman’s chain code-based straightness properties. The
proposed algorithm focuses on the grid-based deployment
of sensor nodes in WSN. If the constructed path attempts
to go through a dead node, the path is modified so that the
length minimization constraint is maintained with mini-
mum deviation. The method has been compared with a
standard straight line finding algorithm, and the results
show its applicability.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] F. Bouakkaz and M. Derdour, “Maximizing WSN life using
power efficient grid-chain routing protocol (PEGCP),” Wire-
less Personal Communications, vol. 117, no. 2, pp. 1007–
1023, 2021.

[2] R. Zagrouba and A. Kardi, “Comparative study of energy effi-
cient routing techniques in wireless sensor networks,” Infor-
mation, vol. 12, no. 1, p. 42, 2021.

[3] J. Yan, M. Zhou, and Z. Ding, “Recent advances in energy-
efficient routing protocols for wireless sensor networks: a
review,” IEEE Access, vol. 4, pp. 5673–5686, 2016.

[4] H.-H. Liu, S. Jia-Jang, and C.-F. Chou, “On energy-efficient
straight-line routing protocol for wireless sensor networks,”
IEEE Systems Journal, vol. 11, no. 4, pp. 2374–2382, 2017.

[5] S. Umamaheswari, W. S. Antony, and A. Joe, “Detection and
correction of node failures in wireless sensor networks,” in
International Conference on Advanced Computing and Com-
munication Systems (ICACCS), volume 1, pp. 1479–1483,
Coimbatore, India, 2021.

[6] R. N. Jadoon, A. A. Awan, M. A. Khan, W. Zhou, and
A. Shahzad, “An Efficient Nodes Failure Recovery Manage-
ment Algorithm for Mobile Sensor Networks,” Mathematical
Problems in Engineering, vol. 2020, Article ID 1749467, p. 14,
2020.

[7] K. Mahmood, M. K. Saeed, S. Ali, S. Zaman, A. Al Awady, and
M. Saqib, “Smart node relocation (snr) and connectivity resto-
ration mechanism for wireless sensor networks,” EURASIP
Journal on Wireless Communications and Networking,
vol. 2021, no. 1, pp. 1–19, 2021.

[8] H. Yetgin, K. T. K. Cheung, M. el-Hajjar, and L. Hanzo, “A
survey of network lifetime maximization techniques in wire-
less sensor networks,” IEEE Communications Surveys & Tuto-
rials, vol. 19, no. 2, pp. 828–854, 2017.

[9] A. A. Aziz, Y. Ahmet Sekercioglu, P. Fitzpatrick, and
M. Ivanovich, “A survey on distributed topology control tech-
niques for extending the lifetime of battery powered wireless
sensor networks,” IEEE Communications Surveys & Tutorials,
vol. 15, no. 1, pp. 121–144, 2013.

[10] F. Engmann, F. A. Katsriku, J.-D. Abdulai, K. S. Adu-Manu,
and F. K. Banaseka, “Prolonging the lifetime of wireless sensor
networks: a review of current techniques,”Wireless Communi-
cations and Mobile Computing, vol. 2018, Article ID 8035065,
23 pages, 2018.

[11] I. Benkhelifa, N. Nouali-Taboudjemat, and S. Moussaoui,
“Disaster management projects using wireless sensor net-
works: an overview,” in 2014 28th International Conference
on Advanced Information Networking and Applications Work-
shops, pp. 605–610, Victoria, BC, Canada, 2014.

[12] D. G. Reina, M. Askalani, S. L. Toral, F. Barrero,
E. Asimakopoulou, and N. Bessis, “A survey on multihop ad
hoc networks for disaster response scenarios,” International
Journal of Distributed Sensor Networks, vol. 11, no. 10, Article
ID 647037, 2015.

[13] K. Akkaya and M. Younis, “A survey on routing protocols for
wireless sensor networks,” Ad Hoc Networks, vol. 3, no. 3,
pp. 325–349, 2005.

[14] N. A. Pantazis, S. A. Nikolidakis, and D. D. Vergados, “Energy-
efficient routing protocols in wireless sensor networks: a sur-
vey,” IEEE Communications Surveys & Tutorials, vol. 15,
no. 2, pp. 551–591, 2013.

[15] C. E. Perkins and P. Bhagwat, “Highly dynamic destination-
sequenced distance-vector routing (DSDV) for mobile com-
puters,” ACM SIGCOMM Computer Communication Review,
vol. 24, no. 4, pp. 234–244, 1994.

[16] C. E. Perkins and E. M. Royer, “Ad-hoc on-demand distance
vector routing,” in Proceedings WMCSA’99. Second IEEE
Workshop on Mobile Computing Systems and Applications,
pp. 90–100, New Orleans, LA, USA, 1999.

[17] R. S. Battula and O. S. Khanna, “Geographic routing protocols
for wireless sensor networks: a review,” International Journal
of Engineering and Innovative Technology (IJEIT), vol. 2,
no. 12, pp. 39–42, 2013.

[18] E. Ahvar, S. Ahvar, G. M. Lee, and N. Crespi, “An energy-
aware routing protocol for query-based applications in wire-
less sensor networks,” The Scientific World Journal, vol. 2014,
Article ID 359897, 9 pages, 2014.

[19] B. Blywis, M. Güneş, F. Juraschek, and S. Hofmann, “Gossip
routing in wireless mesh networks,” in 21st Annual IEEE Inter-
national Symposium on Personal, Indoor and Mobile Radio
Communications, pp. 1572–1577, Istanbul, Turkey, 2010.

[20] D. Braginsky and D. Estrin, “Rumor routing algorthim for sen-
sor networks,” in Proceedings of the 1st ACM international
workshop on Wireless sensor networks and applications,
pp. 22–31, Atlanta, Georgia, USA, 2002.

[21] M.-J. Lin, K. Marzullo, and S. Masini, Gossip Versus Determin-
istic Flooding: Low Message Overhead and High Reliability for
Broadcasting on Small Networks, Technical report, Depart-
ment of Computer Science and Engineering, University of Cal-
ifornia, San Diego, USA, 1999.

[22] C.-F. Chou, S. Jia-Jang, and C.-Y. Chen, “Straight line routing
for wireless sensor networks,” in 10th IEEE Symposium on
Computers and Communications (ISCC’05), pp. 110–115,
Murcia, Spain, 2005.

[23] H. Shokrzadeh, A. T. Haghighat, F. Tashtarian, and A. Nayebi,
“Directional rumor routing in wireless sensor networks,” in
2007 3rd IEEE/IFIP International Conference in Central Asia
on Internet, pp. 1–5, Tashkent, Uzbekistan, 2007.

[24] H. Shokrzadeh, M. Mashaiekhi, and A. Nayebi, “Improving
directional rumor routing in wireless sensor networks,” in

10 Wireless Communications and Mobile Computing



2007 Innovations in Information Technologies (IIT), pp. 108–
112, Dubai, United Arab Emirates, 2007.

[25] S. Hamid, A. M. Rahmani, A. T. Haghighat, and
N. Forouzideh, “SDRR: serial directional rumor routing in
wireless sensor networks,” in 2010 International Conference
on Networking and Information Technology, pp. 75–79,
Manila, Philippines, 2010.

[26] T. Banka, G. Tandon, and A. P. Jayasumana, “Zonal rumor
routing for wireless sensor networks,” in International Confer-
ence on Information Technology: Coding and Computing
(ITCC’05)-Volume II, volume 2, pp. 562–567, Las Vegas, NV,
USA, 2005.

[27] S. Phoemphon, C. So-In, and N. Leelathakul, “Improved dis-
tance estimation with node selection localization and particle
swarm optimization for obstacle-aware wireless sensor net-
works,” Expert Systems with Applications, vol. 175, article
114773, 2021.

[28] O. Banimelhem, E. Taqieddin, and I. Shatnawi, “An efficient
path generation algorithm using principle component analysis
for mobile sinks in wireless sensor networks,” Journal of Sensor
and Actuator Networks, vol. 10, no. 4, p. 69, 2021.

[29] M. A. Fadi, E. A. Ashraf, S. H. Hossam, and A. I. Mohamed,
“Deploying faulttolerant grid-based wireless sensor networks
for environmental applications,” in IEEE Local Computer Net-
work Conference, pp. 715–722, Denver, CO, USA, 2010.

[30] S. Guo, Z. Zhong, and T. He, “Find: faulty node detection for
wireless sensor networks,” in Proceedings of the 7th ACM con-
ference on embedded networked sensor systems, pp. 253–266,
Berkeley, California, 2009.

[31] R. R. Panda, B. S. Gouda, and T. Panigrahi, “Efficient fault
node detection algorithm for wireless sensor networks,” in
2014 International Conference on High Performance Comput-
ing and Applications (ICHPCA), pp. 1–5, Bhubaneswar, India,
2014.

[32] M. Asim, H. Mokhtar, and M. Merabti, “A fault management
architecture for wireless sensor network,” in 2008 Interna-
tional Wireless Communications and Mobile Computing Con-
ference, pp. 779–785, Crete, Greece, 2008.

[33] K. Rajeswari and S. Neduncheliyan, “Genetic algorithm based
fault tolerant clustering in wireless sensor network,” IET Com-
munications, vol. 11, no. 12, pp. 1927–1932, 2017.

[34] A. Rosenfeld, “Digital straight line segments,” IEEE Transac-
tions on Computers, vol. C-23, no. 12, pp. 1264–1269, 1974.

[35] P. Bhowmick and B. B. Bhattacharya, “Fast polygonal approx-
imation of digital curves using relaxed straightness properties,”
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 29, no. 9, pp. 1590–1602, 2007.

[36] H. Freeman, “On the encoding of arbitrary geometric configu-
rations,” IRE Transactions on Electronic Computers, vol. EC-
10, no. 2, pp. 260–268, 1961.

[37] H. Freeman and L. S. Davis, “A corner-finding algorithm for
chain-coded curves,” IEEE Transactions on Computers, vol. -
C-26, no. 3, pp. 297–303, 1977.

[38] G. Ramamurthy, T. JagannadhaSwamy, and A. Jain, “Cost and
energy efficient distributed computation: wireless sensor net-
works on uniform grid,” in 2021 International Conference on
Sustainable Energy and Future Electric Transportation
(SEFET), pp. 1–5, Hyderabad, India, 2021.

[39] J. E. Bresenham, “Algorithm for computer control of a digital
plotter,” IBM Systems Journal, vol. 4, no. 1, pp. 25–30, 1965.

[40] T. D. Nguyen, J. Y. Khan, and D. T. Ngo, “A distributed
energy-harvesting-aware routing algorithm for heterogeneous
IoT networks,” IEEE Transactions on Green Communications
and Networking, vol. 2, no. 4, pp. 1115–1127, 2018.

[41] S. Verma, Y. Kawamoto, and N. Kato, “Energy-efficient group
paging mechanism for qos constrained mobile IoT devices
over LTE-A Pro networks under 5G,” IEEE Internet of Things
Journal, vol. 6, no. 5, pp. 9187–9199, 2019.

11Wireless Communications and Mobile Computing


	A Quasistraight Line Routing Protocol for Square Grid-Based Wireless Sensor Networks
	1. Introduction
	1.1. Straight Line Routing
	1.2. Faulty Node

	2. Our Contributions
	3. Digital Quasistraight Line Segment (DQSS)
	3.1. Sixteen Directional DQSSs and Selection of DQSS

	4. Demonstration of the Proposed Algorithm
	5. The Protocol Using DQSS
	5.1. Sending and Receiving at Sensor Nodes
	5.2. Dead Node Avoidance
	5.3. Energy Consumption

	6. Conclusion
	Data Availability
	Conflicts of Interest

