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In this paper, we investigate the issue of spectrum sensing of noncooperative beam signals that are emitted by a multiantenna
transmitter. When the sampling period of the sensing node includes the whole process of beam scanning, that is, spectrum
sensing is performed in an ideal situation, we use the traditional energy detection algorithm for spectrum sensing and get good
results; for multiantenna beam scanning spectrum sensing in nonideal situation, the performance of traditional energy
detection algorithm is seriously degraded. To deal with this problem, a sensing period selection (SPS) algorithm is proposed.
The simulation results show that the proposed algorithm can effectively improve the performance of spectrum sensing in the
multiantenna array beam scanning scenario.

1. Introduction

With the rapid development of wireless communication tech-
nology, the spectrum resource demand is also increasing [1].
The ever-increasing demand for spectrum has led to a shortage
of available spectrum resources [2]. Spectrum sensing, based on
various signal detection approaches, is one key enabling tech-
nology for dynamic spectrum sharing [3]. Traditional spectrum
sensing mainly detects omnidirectional signals, which include
energy detection [4] matched filter detection [5], and cyclosta-
tionary detection [6]. As the 5G cellular communication tech-
nology emerges, spatial domain signal generated by
beamforming technology provides more available bandwidth
for people’s daily spectrum needs, while meeting the ever-
increasing transmission rate and throughput requirements [7,
8]. At the same time, the new generation of spectrum sensing
technology has also changed from the detection of omnidirec-
tional signals to the detection of directional signals, that is, spec-
trum sensing of beam signals. The beamforming technology
uses complex digital signal processing technology to convert
the regular excitation signal into the corresponding amplitude
and phase of each beam by designing the antenna array to gen-
erate a high-gain directional beam [9]. Beamforming technol-
ogy can not only effectively make up for the shortcoming of
beam signal’s rapid loss in spatial transmission but also exploit

spectrum resources from the spatial angle dimension [10]. At
present, the detection of spectral holes in the spatial angle
dimension, that is, spectrum beam sensing technology, has
become a new research trend [11].

In spectrum sensing, it is necessary not only to sense the sta-
tus of spectrum resources by primary users but also to provide
spatial angle information in the spectrum. In general, the end of
spatial spectrum sensing is divided into two stages: detection
and positioning [12]. The research of these two stages is gener-
ally independent of each other. In the detection stage of spatial
spectrum sensing, themain purpose is to detect whether the pri-
mary user exists. In [13], the authors propose a spatial detection
algorithm, using techniques such as interference alignment to
explore spatial spectrum resources and improve detection per-
formance; the work in [14] uses beamforming to sectorize the
space and proposes a spatial spectrum sensing algorithm based
on sector segmentation, which not only improves the detection
performance but also provides information about spare sectors
in space. In addition, direction-of-arrival (DOA) estimation is
required in the positioning stage of spatial spectrum sensing.
The multiple signal classification (MUSIC) algorithm is the
most representative algorithm in the positioning stage of spatial
spectrum sensing [15–17]. The work in [18] proposes com-
bined detection and positioning algorithms, where the authors
first use the traditional detection algorithm to perform
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spectrum sensing, then obtain the spatial information of spec-
trum holes through the angle-of-arrival (AOA) estimation algo-
rithm to realize the function of spatial spectrum sensing.

This paper mainly studies the detection stage of spatial
spectrum sensing in beam scanning scene. Specifically, this
paper mainly studies spectrum sensing in multiantenna beam
scanning scenarios, which is essentially spectrum sensing of
beam signals. At this stage, there have been many papers on
the spectrum sensing of multiantenna beamforming. The work
in [19] proposes for multiantenna CR sensors a class of spec-
trum sensing methods, named the generalized likelihood ratio
test (GLRT), that require no information about the primary
users or the channels from the primary to the secondary users.
The proposed methods utilize the eigenvalues of the sample
covariance matrix of the received signal vector from multiple
antennas and derive two new algorithms for spectrum sensing
under different assumptions on the availability of the white
noise power value at the CR receiver. The work in [20] designs
a uniform circular array which uses a NC-α-MTG-MUSIC
algorithm to sense the arrival signal. The NC-α-MTG-MUSIC
includes an α-MTG algorithm to detect whether the primary
signals exist and a MUSIC algorithm to estimate its DOA.

When a beamforming signal is sent to the receiver
through the antenna array, the receiver’s location informa-
tion needs to be known. In other words, the beamforming
direction needs to be determined. When the transmitter
does not know the receiver’s location, it generally determines
the receiver’s position information by beam scanning [21,
22], which provides an opportunity for sensing of noncoop-
erative beam signals. There is no prior knowledge of beam-

forming arrays that can be obtained for noncooperative
parties, which makes existing methods of spectrum sensing
inapplicable. In this paper, a spectrum sensing method based
on energy detection is proposed for the noncooperative
beam scanning scenario. Since the noncooperative sensing
party does not know any prior knowledge of the scanned sig-
nal, the energy detection method is the most effective spec-
trum sensing method in this scenario. Specifically, the
main contributions of this paper are summarized as follows.

(1) Formulate a system model where the sensing node
detects the presence of a beam scanning signal emit-
ted by a noncooperative transmitter

(2) Derive the closed form expressions of the detection
probability and the false alarm probability in beam
scanning scenario

(3) Design an algorithm to improve spectrum sensing
performance in nonideal situation of the beam scan-
ning scenario by selecting the appropriate sensing
time period

(4) Present in-depth simulation results which demon-
strate the effectiveness of the proposed algorithm

The rest of the paper is organized as follows: Section 2
describes the system model, where we model the beam-
scanning signal in the transmitter and the received signal
in the receiver. Section 3 performs performance analysis of
energy detection in beam scanning scenarios. In Section 4,
a SPS algorithm is designed for spectrum sensing in nonideal
situation. Section 5 presents the simulation results, including
spectrum sensing results under ideal situation, spectrum
sensing results under nonideal situation, and spectrum sens-
ing results in nonideal situation after adding the proposed
SPS algorithm. Section 6 concludes this paper.

2. Signal Model

In this paper, we consider a spectrum sensing system model
as shown in Figure 1, which has a transmitter with a linear
array to emit beam signals and a multiantenna sensing node
to detect the presence of the beam signals. The transmitter is
composed of a linear array of nt antennas, which can gener-
ate a 0-180° scanning beam. The sensing node is located in
the positive 90° direction of the beam generated by the non-
cooperative transmitter, where the beam starts to scan from
0°. Scanning beams ranging from 0° to 180° are generated by
changing the phase of each transmit antenna. During the
beam scanning process, the beam signal will cover the area
where the sensing node is located. The sensing node is com-
posed of a linear array composed of nr antennas.

2.1. Transmitting Model. The transmitter consists of linear
array antennas, and the number of antennas is nt for a trans-
mission channel from a transmitter to a sensing node. As
shown in Figure 2, the azimuth and elevation angles are
denoted by ϕ and θ, respectively, which obeys ϕ ∈ ð−π, π�
and θ ∈ ð−π/2, π/2�. Supposing that the path attenuation is
the same for all antennas, the ith antenna transmit signal
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Figure 1: System model.

x

z

0

n
y

𝛥t𝜆

𝜃

𝜙

Figure 2: The deployment of antenna elements in linear array
pattern.
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can be expressed as

yi = Aejd2π/λ, ð1Þ

where A is the transmit power and d is the distance of signal
propagation. λ is the carrier wavelength, and λ = f /c, where
f is the carrier frequency and c is the speed of light. The dis-
tance between the two antennas is Δtλ, the distance from the
first antenna (the antenna that is closest to the receiver) to
the sensing node is d1 = d0, the distance from the second
antenna to the sensing node is d2 = d0 + Δtλ sin θ cos ϕ,
and the distance from the nth antenna to the sensing node
is dn = d0 + ðn − 1ÞΔtλ sin θ cos ϕ. Therefore, the beam-
forming vector can be expressed as

wt =

1
exp j2πΔt sin θ cos ϕð Þ
exp j2π2Δt sin θ cos ϕð Þ

⋮

exp j2π nt − 1ð ÞΔt sin θ cos ϕð Þ

2
666666664

3
777777775
: ð2Þ

The channel vector can be obtained by

H = exp j2πd0 sin θ cos ϕ
λ

� �
: ð3Þ

2.2. Sensing Model. The sensing node consists of a linear
array of nr antennas. When receiving the signal, the sensing
node selects a direction to receive the signal. The sensing
node is designed as a linear array to receive beam signals
directionally. If the approximate direction of the transmit
beam is known, interference from signals from other direc-
tions can be effectively reduced. The hypothesis is expressed
by hyperparameters H1 that the beam signal exists, and the
absence of the beam signal is expressed by hyperparameters
H0 [23]. The received signal can be expressed as

y nð Þ =
ε nð Þ, H0,
wH

r Hwtx nð Þ + ε nð Þ, H1,

(
ð4Þ

where wr and wt are the beamforming vector of the receiv-
ing beam and the beamforming vector of the transmitting
beam, respectively. εðnÞ is additive noise following the zero
mean additive white Gaussian noise (AWGN) distribution
with variance δ2w. xðnÞ is the symbol of the transmitted sig-
nal, denoted as xiðnÞi = 1, 2,⋯, nt , which is the output of
the ith antenna, where nt is the number of antennas. We
define jwH

r Hwtj2 as the beam alignment gain of the antenna
G [23]:

G =GrhGt , ð5Þ

where Gr , Gt , and h denote the receive gain, transmit gain,
and the channel gain, respectively, and their values depend
on whether the beam is aligned. Here, we use the typical sec-
tor antenna model [24] expressing them as a function of the
alignment angle:

Gn αð Þ =
g1 =

2π − 2π − φð Þg2
φ

, if αnj j ≤ φ

2 ,

g2, else,

8><
>: ð6Þ

where n can be r or t. As shown in Figure 3, αr and αt rep-
resent the angle between the directional receiving beam and
the optimal beam and the angle between the transmitting
beam and the optimal transmitting beam, respectively. g1
is the main beam gain, and g2 is the sidelobe gain, which sat-
isfies 0 ≤ g1 ≤ 1 ≤ g2. φ is the bandwidth [25] of the beam in
gain mode, which can be approximately expressed as

φ ≈ 50:8 λ

Nd cos β , ð7Þ

where β represents the angle between the beam pointing and
the normal direction of the array.

Transmitter

Sensing node
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Figure 3: The beamforming gain with directional transmission and
directional sensing node.
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3. Spectrum Sensing of Beam Signals

For noncooperative beam signals, the energy detection algo-
rithm [26] can detect beam signals without prior informa-
tion. The energy value of the received beam signal at the
sensing node within a certain period of time is compared
with a preset threshold, and if the received signal is higher
than the threshold, it is determined that the beam signal
exists [27].

Assuming that the channel is AWGN channel, the angu-
lar velocity of the transmitter to transmit the scanning beam
is fixed. Note that x and ε both obey a Gaussian distribution.
Therefore, we can conclude that the distribution of the
received signal from formula (4) is

y nð Þ ~
N 0, δ2w
� �

H0,

N 0, δ2w +Gδ2s
� �

H1,

(
ð8Þ

where G is the beam alignment gain; then, energy detection
is used as a method for spectrum sensing. Let τ be the avail-
able sensing time and K be the number of samples (K is the
maximum integer not greater than τf s. For notation simplic-
ity, we assume K = τf s). The test statistic for energy detector
is given by

Λ = 1
K
〠
K

n=1
y nð Þj j2, ð9Þ

where Λ, a random variable, is the energy detection statistic.
One key performance metric for energy detection is

detection probability, which defines the probability that the
detector detects the presence of a signal in H1, which can
be expressed as [28]

Pd = P Λ > TjH1ð Þ: ð10Þ

Then, p1ðxÞ is assumed to be expressed as the probability
density function (PDF) of the energy detection statistic.
Then, one key performance metric, named detection proba-
bility, can be further expressed as

Pd =
ð∞
T
p1 xð Þdx: ð11Þ

Using central limit theorem (CLT), detection probability
Pd can be given by

Pd =Q
T − N δ2w + Gδ2s

� �� �
ffiffiffiffiffiffiffiffiffiffiffi
2/Kð Þp

δ2w + Gδ2s
� �

 !
, ð12Þ

where Qð·Þ is the complementary distribution function of
the standard Gaussian,

Q Xð Þ = 1ffiffiffiffiffiffi
2π

p
ð+∞
x

e−t
2/2dt: ð13Þ

Then, the missed detection probability can be expressed

as

Pm = 1 − Pd: ð14Þ

Another key performance metric for energy detection is
false alarm probability, which defines the probability that
the detector detects the presence of a signal in H0, which
can be expressed as [28]

Pf = P Λ > TjH0ð Þ: ð15Þ

Suppose p0ðxÞ is represented as the PDF of the energy
detection statistic Λ. Then, the probability of false warning
can be given by

Pf =
ð∞
T
p0 xð Þdx: ð16Þ

Using central limit theorem (CLT), false alarm probabil-
ity Pf can be given by

Pf =Q
T − δ2wffiffiffiffiffiffiffiffi
2/K

p
δ2w

 !
: ð17Þ

4. Algorithm Design

In Section 3, we provide theoretical derivations for the perfor-
mances of spectrum sensing in multiantenna beam scanning
scenarios. As shown in Figure 4, the beam signal is scanned
from 180° to 0°. The curves of different colors in Figure 4 rep-
resent the direction in which the transmitter emits the beam
signal at different times, respectively. These performances
can only be achieved under the ideal situation that the whole
process of beam scanning is sampled by sensing nodes, and
the sensing period is equal to the beam scanning period. In
the actual situation, the process of beam scanning may not
be completely sampled. Because the transmitter and the sens-
ing node are noncooperative, it is difficult to set the sensing
period to be the same as the beam scanning period. Therefore,
for such a nonideal situation, we pay more attention to the
sampling data of main lobe passing through the sensing node,
where the time period is in ts, as shown in Figure 4. We first
assume that the sensing period ts is the same as the time tb
for multiantenna beam scanning scenarios. In the spectrum
sensing of beam scanning scenarios, we are more concerned
about the energy detection statistics of the beam signal cover-
ing the sensing node, that is, the signal energy data in ts time in
Figure 4. If more data in the ts can be sampled in the sensing
cycle of the sensing node, the result of spectrum sensing will
be greatly improved. Therefore, we propose an SPS algorithm
to optimize the sensing results.

When the beam pattern covers the sensing node, the
sensing node can detect a larger signal energy. Our goal is
to collect the time period that the beam covers to the sensing
node within the sensing period as much as possible. There-
fore, the sensing performance will be greatly improved when
the sensing node can collect more sampled data in the red
area for spectrum sensing. In Figure 5, the transmitter starts
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the first beam scanning at the time 0-t1, the transmitter is off
at the time t1-t2, and the transmitter starts the second round
of beam scanning at the time t2-Tmax. We assume that the
presence of the beam scanning signal in the ts time period
is to be sensed. The horizontal axis in the figure is a random
period with a total time of Tmax, including two complete
beam scans of the transmitter. The longitudinal axis is the
signal energy of the sensing node. In fact, during the ts time
period, the transmitter has started beam scanning. However,
the time period in which the beam pattern covers the sensing
node is not included in the ts time, so the sensing node will
mistakenly judge that the beam scanning signal does not
exist. If we observe the sensing results in the ts+1 time period
later, the sensing node will perceive the scanning signal cor-
rectly. Based on this idea, we design an SPS algorithm to
improve the spectrum sensing performance in the case of
nonideal beam scanning.

In nonideal situation, no matter when the sensing period
starts, two sensing periods must contain the time for the
whole beam scanning round. Suppose that the part of the
process of beam scanning is sensed by the kth sensing cycle,
then we need to compare the energy detection statistic Λk of
the kth sensing cycle with the energy detection statistic Λk−1

of the previous sensing cycle and the energy detection statis-
tic Λk+1 of the next sensing cycle. Comparing the largest
energy detection statistic to a threshold, then the presence
or absence of a beam scan signal will be given. The reason
is we do not know whether the beam scanning process in
the kth sensing period is the first half or the second half in
tb. Taking these three sensing periods can ensure that the
whole beam scanning process is included. We can simplify
this process by comparing these three energy detection sta-
tistics with the threshold. If they are all less than the thresh-
old, the sensing result is H0, otherwise, the perception result
is H1. When ts = tb, the algorithm is as follows.

When ts > tb, the whole beam scanning time must be
included within 2 sensing cycles. Therefore, we can also
use Algorithm 1 to optimize spectrum sensing. In this case,
we cannot make the sensing time ts too long. Because if
the sensing time is too long, it will cause the sensing node
to collect too many noise signals, which will eventually make
the sensing result worse.

Then, we consider the case where the sensing period is
smaller than the beam scanning period. We solve this prob-
lem by designing Algorithm 2. When ts < tb, we need to find
an ideal integer i where ði − 1Þts < tb and its > tb. Therefore,
it can be ensured that the whole process of beam scanning
must be included in i sensing cycles. Subsequently, similar
to subsection C, the energy detection statistics for the first i
and last i sensing cycles are compared to the threshold,
respectively (ð2i + 1Þ sensing cycles in total). If they are all
less than the threshold, the sensing result is H0, otherwise,
the sensing result is H1. In particular, we do not have to
determine the ideal integer i. We need to estimate a small i
where its > tb, and we will get good results. The algorithm
is as follows:

In addition, the case of ts ≥ tb can be regarded as the case
of i = 1.

5. Simulation Results

In this section, we discuss the performance of the proposed
energy detection method in the beam scanning scenario
through numerical simulations and verify the theoretical
analysis. Simulation results were investigated by running
10,000 iterations of Monte Carlo testing. The theoretical
results are calculated using formulas (12) and (17). Consid-
ering the energy detection situation in the actual scene, we
discussed the full process of beam scanning that sensing
nodes are sampled and only part of the beam scan is sam-
pled. The parameters in our simulation are shown in
Table 1.

5.1. Sensing Results in Ideal Situation. In this subsection, we
discuss the ideal case where the whole process of beam scan-
ning is sampled by the sensing node and the sensing period
ts is the same as the time for one round of beam scanning tb.
In this case, the hyperparameter H0 is defined as the trans-
mitter which is not powered on during the sampling period
of the sensing node; the hyperparameter H1 is defined as the
whole process of beam scanning which is sampled by the
sensing node during the sensing period.
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Figure 4: Important data sampling areas for spectrum sensing
based on beam scanning.
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Figure 5: Signal energy data received by sensing node.
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Figure 6 shows the ROC curves of Pd and Pf at different
thresholds. Setting different thresholds has a great impact on
perceptual performance. If the threshold is set too large,
some beam signals with weak energy may not be detected,

resulting in reduced detection probability. If the threshold
is set too small, the energy of some noise may have exceeded
the threshold, resulting in an increase in the probability of
false alarm probability. The threshold ranges from 40%
Topt with a step size of 5% to 100% Topt which is defined
as obtaining the optimum value of Topt which results in tar-
get Pd ≥ 0:95 while minimizing Pf .

Figure 7 shows the comparison between theoretical and
simulated probabilities for Pd in different transmit powers
with setting the threshold to make Pf as 0.01. It is seen that
the probability of detection increases with the increase of the
number of samples. As the transmit power increases, the sig-
nal power at each moment in the beam scanning process
increases, too. It leads to an increase in SNR at any time in
beam scanning process. So Pd will gradually become larger.

In Figure 8, we discussed the relationship between Pd
and the change in the distance from the sensing node to
the transmitter when the threshold is set to make Pf as
0.01. Figure 8 also shows the theoretical and simulated
results of Pd . Obviously, when the distance increases to a
certain extent, it decreases rapidly as the distance continues
to increase. This is because the beam power in the wireless
channel attenuates rapidly as the distance increases, and
after the attenuation reaches a certain level, the power of
beam signal is lower than noise.

5.2. Sensing Results in Nonideal Situation. In this subsection,
we discuss a more realistic case where the part of the beam
scanning process is sampled by the sensing nodes. In this
case, the hyperparameter H0 is defined as the transmitter
which is not powered on during the sampling period of the
sensing node; the hyperparameter H1 is defined as the sam-
pling period of the sensing node which contains the part of
the beam scanning process.

Input: threshold T , i, Energy detection statistics Λk−i…Λk−1, Λk, Λk+1 … Λk+i.
Output:H
1: If Λk−i < T & Λk−i+1 < T &…& Λk+i < T
2: H ← H0
3: Else
4: H ← H1
5: End if

Algorithm 2: Sensing period selection (SPS).

Table 1: Key simulation parameters.

Parameter Value

Carrier frequency f s = 28GHz

Maximum transmit power Pmax = 10W
Number of antennas n = 8
Distance between antennas da = λ/2
Distance between antenna array and receiver d = 10 ~ 50m
Loss α = 2

100%Topt 70%Topt

120%Topt

40%Topt

0 0.2 0.4 0.6 0.8 1
Pf

Pd

0.7

0.75

0.8

0.85

0.9

0.95

1

Figure 6: ROC curves of Pd and Pf in ideal situation.

Input: threshold T , Energy detection statistics of the ðk − 1Þ-th sensing cycleΛk−1, Energy detection statistics of the k-th sensing
cycleΛk, Energy detection statistics of the ðk + 1Þ-th sensing cycleΛk+1.
Output:H
1: If Λi−1 < T & Λi <T &Λi+1 < T
2: H ← H0
3: Else
4: H ← H1
5: End if

Algorithm 1: Equal period selection (EPS).
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The green curve in Figure 9 shows the ROC of Pd and Pf

at different thresholds. Since the sensing node does not sam-
ple the whole process of beam scanning, the calculation
results of equations (11) and (15) cannot be used to approx-
imate the calculation results. In this case, simulation results
were investigated by running 10,000 iterations of Monte
Carlo testing.Comparing with Figure 6, the performance of
the sampling partial scan process is significantly lower than
that of the sampling full scan process.

The green curve in Figure 10 shows the variation of Pd in
different transmit powers with setting the threshold to make
Pf as 0.1. We find that with transmit power increased, Pd

increases gradually. We found that using a larger transmit
power, Pd may actually decrease compared to a smaller
transmit power. Although a higher transmit power can
obtain better SNR, the data collection process of sensing
nodes is random. It is possible that only a short scan time

was acquired at higher transmit powers. In general, using
larger transmit power can effectively improve the sensing
results.

As shown in the green curve in Figure 11, when the
threshold is set to make Pf as 0.01, we discuss the relation-
ship between Pd and the change in the distance of the sens-
ing node from the transmitter. Obviously, it keeps
decreasing as the distance increases.

5.3. Sensing Results in Nonideal Situation Based on SPS
Algorithm. In this subsection, we consider a more realistic
situation. As in Subsection 5.2, the part of the beam scan-
ning process is sampled by the sensing node. The definitions
of hyperparameters H0 and H1 are the same as those in
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Figure 7: Pd as a function of power in ideal situation
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Figure 8: Pd as a function of distance in ideal situation.
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Figure 9: ROC curves of Pd and Pf in different situations.
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Figure 10: Pd as a function of power in the nonideal situation after
using SPS algorithm in the nonideal situation
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Subsection 5.2. When energy detection is implemented, the
SPS algorithm is added to optimize the sensing results.

When the beam pattern covers the sensing node, the
sensing node can detect a larger signal energy. Our goal is
to collect the time period that the beam covers to the sensing
node within the sensing period as much as possible. The
purpose of adding SPS algorithm is to take the sampling data
that the time of beam signal covers the sensing node as the
sensing result.

Figure 9 shows the ROC curves of Pd and Pf at different
thresholds. The threshold range is the same as the ROC
curve in ideal and nonideal situation. In Figure 9, although
the sensing node does not sample the whole process of beam
scanning, the sensing performance is significantly better
than the simulation result without adding the SPS algorithm.

The reason is that the sensing result is closer to the situation
where the whole process of beam scanning is sampled by
sensing nodes, the ideal situation.

The variation of Pd in different transmit powers with set-
ting the threshold to make Pf as 0.01 is shown in Figure 10.
The blue curve is the relationship between Pd and power
after adding the SPS algorithm. The blue curve is the rela-
tionship between Pd and power in the ideal situation, and
the green curve is in the nonideal situation. After adding
the SPS algorithm, the result is much better than that of tra-
ditional energy detection without using the SPS algorithm
and even approaches the ideal result.

In Figure 11, when the threshold is set to make Pf as
0.01, we discuss the relationship between Pd and the change
in the distance of the sensing node from the transmitter. The
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Figure 11: Pd as a function of distance in the nonideal situation after using SPS algorithm in the nonideal situation when the sensing node is
in the 60° direction of the transmitter
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Figure 12: Pd as a function of power in the nonideal situation after using SPS algorithm in the nonideal situation when the sensing node is
in the 60° direction of the transmitter
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blue curve is the relationship between Pd and the distance
between sensing node and transmitter after adding the SPS
algorithm. The blue curve is the relationship between Pd
and the distance between sensing node and transmitter in
the ideal situation, and the green curve is in the nonideal sit-
uation. Obviously, when the distance increases to a certain
extent, Pd decreases rapidly with the distance continues to
increase. After adding the SPS algorithm, the sensing results
are significantly better than the experimental results in the
nonideal situation and approach the results in the ideal
situation.

5.4. Sensing Results of Sensing Nodes in Other Locations. In
this subsection, we discuss the sensing performance when

the sensing node is in other positions in the ideal situation
and nonideal situation and after adding SPS algorithm.

When the sensing node is in other locations, good sens-
ing results can still be obtained after adding SPS algorithm.
In Figures 12 and 13, the sensing results when the sensing
node is located in the 60° direction of the transmitter are
shown, respectively.

The variation of Pd in different transmit powers with set-
ting the threshold to make Pf as 0.01 is shown in Figure 12.
The blue curve is the relationship between Pd and power
after adding the SPS algorithm. After adding SPS algorithm,
the sensing result is slightly lower than the ideal red curve
and significantly higher than the nonideal green curve. This
is consistent with the case where the sensing node is located
in the 90° direction of the receiver.

In Figure 13, when the threshold is set to make Pf as 0.01,
we discuss the relationship between Pd and the change in the
distance of the sensing node from the transmitter. The blue
curve is the relationship between Pd and the distance between
sensing node and transmitter after adding the SPS algorithm.
After adding the SPS algorithm, the sensing result is slightly
lower than the ideal red curve and significantly higher than
the nonideal green curve. This is consistent with the case where
the sensing node is located in the 90° direction of the receiver.

5.5. Setting Time of Sensing Period. The setting of the sensing
time needs to be based on the estimation of the scanning
period of the multiantenna beam. If the sensing time is set
too large, it will result in the acquisition of too much noise.

As shown in Figure 14, whereris the ratio of the sensing
period to the beam scanning period, we can see that Pdkeeps
decreasing as the sensing period increases. We consider the
changes of Pd in the ideal case and nonideal case and after
adding the SPS algorithm. In particular, the ideal situation
here is defined as that the whole process of beam scanning
is within the sensing time. In these three cases, Pd shows a
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Figure 13: Pd as a function of distance in the nonideal situation after using SPS algorithm in the nonideal situation when the sensing node is
in the 60° direction of the transmitter
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Figure 14: Pd as a function of distance sensing period duration
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downward trend, but after adding the SPS algorithm, the
performance of Pd is obviously close to the ideal situation.

When the sensing period is too long, there is only noise
in most of the time period of sensing, and the time when the
beam scans to the sensing node is very small. This results in
the scanning signal being covered in long-term noise during
the sensing phase.

If the sensing time is set too small, it will be difficult to
sample the data that the scanning signal covers the sensing
node. In these cases, we can optimize the perception results
by using the SPS algorithm. However, if the difference
between the sensing time and the beam scanning time is
too large, the sensing result will become poor.

6. Conclusion

This paper has studied the issue of spectrum sensing of nonco-
operative beam signals. For the ideal case, the sensing period is
equal to the time of one round of beam scanning and the sens-
ing node collects all the data in the whole process of beam scan-
ning. We use the theoretical derivation method and the Monte
Carlo method to verify the performance indicators of spectrum
sensing. The results show that in the ideal situation, the spec-
trum sensing performance indicators verified by the Monte
Carlo method are almost consistent with the theoretically
derived results and both have good sensing results. For the non-
ideal situation, that is, the situation closer to the actual situation,
we use the traditional energy detection method and the energy
detection method after adding the SPS algorithm to verify the
performance of spectrum sensing. The experiment uses the
Monte Carlo method. The results show that the application of
the SPS algorithm in energy detection can effectively improve
the performance of spectrum sensing.
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