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In mobile multimedia applications, deep learning has received significant interest. Due to the limited computation and storage
resources of mobile devices, however, general training methods are hardly suited for mobile multimedia computing. For this
reason, we propose an adaptive momentum training (FWAdaBound) algorithm to reduce computation and storage cost, where
the Frank-Wolfe method is employed. Furthermore, we rigorously prove the regret bound in order that OðT3/4Þ can be
achieved, where T is a time horizon. Finally, the convergence, cost-reduction, and generalization ability of FWAdaBound are
validated through various experiments on public datasets.

1. Introduction

In mobile multimedia applications [1, 2], deep learning is a
significant method for multimedia computing [3]. Mean-
while, various deep learning models have been successfully
implemented in many important fields, such as convolu-
tional neural network [4, 5], recurrent neural network [6,
7], deep belief networks [8, 9], and industrial internet appli-
cations [10]. In order to implement deep learning models in
mobile multimedia, the training of deep neural networks is a
crucial technology. Moreover, because the computation and
storage resources of each mobile device is limited, general
training methods of deep neural networks are hardly
adapted to mobile multimedia computing. For this reason,
how to train rapidly deep learning models with lower com-
putational cost is one of challenging tasks in mobile multi-
media applications.

In fact, the training process of deep neural networks can
be regarded as an optimization process. For this reason, the
design of optimization algorithms is necessary in the train-
ing process. Currently, stochastic gradient descent (SGD) is
a dominative algorithm for training deep networks. SGD is

applied widely over the past years since its good generaliza-
tion ability and could be implemented easily. Despite SGD
having performed well in some applications, however, it
converges slowly. To accelerate the convergence of SGD,
many researchers have proposed various adaptive momen-
tum algorithms based on gradient descent. Generally, opti-
mizing step size and gradient direction of SGD are two
main directions that have been studied by researchers.

SGD often oscillates around the optimal solution when
step sizes are fixed. To address this issue, some novel algo-
rithms with adaptive step size have been proposed. AdaGrad
[11], RMSProp [12], and Adadelta [13] make step sizes
changed adaptively as training process goes on. Besides,
the current gradient direction in each iteration is randomly
selected, thereby it cannot find the direction to reach the
optimal solution in the shortest time. For this reason, histor-
ical gradient information has been used to adjust the current
gradient direction in many novel algorithms. Moreover,
these algorithms often use the first-order momentum to
maintain historical gradient information and the second-
order momentum to adaptive step size at the same time
(Adam [14], AMSGrad [15], and AdaBound [16]). It is gen-
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erally believed that algorithms combining first-order and
second-order momentum originated from Adam and are
Adam-type algorithms.

Being an Adam-type algorithms, AdaBound not only
inherits good generalization ability of SGD but also maintains
fast convergence rate of Adam. However, like other Adam-
type algorithm else, AdaBound also uses higher-order projec-
tion operators to handle the case where the iteration point is
not within the feasible region. Since the projection operation
includes the second-order Euclidean distance calculation or
higher-order methods measurement, it has a large computa-
tional cost in each iteration. Therefore, algorithms with pro-
jection operations like AdaBound become prohibitive when
dealing with large-scale problems including massive high-
dimensional data. To tackle this problem, we focus on propos-
ing a projection-free algorithm based on AdaBound. In the
field of optimization, the Frank-Wolfe method is one of the
projection-free technologies, which is commonly used in
replacing high-order projection operators with linear searches.
Therefore, in this paper, we redesign AdaBound algorithm,
which is called FWAdaBound by using the Frank-Wolfe
method to reduce computation cost of AdaBound. Moreover,
we prove that the FWAdaBound algorithm converges under
convex conditions and attain a guaranteed regret bound
related to the sublinear correlation of time horizon. In addi-
tion, FWAdaBound successfully retains AdaBound’s perfor-
mance on convergence and generalization ability.

In this paper, the summary of our contributions is pre-
sented as follows:

(i) We propose the FWAdaBound algorithm based on
the Frank-Wolfe method and AdaBound optimiza-
tion algorithm to eliminate costly projection steps
in large-scale problems

(ii) We prove the convergence of FWAdaBound under
the online learning framework. Moreover, we also
show that the regret of FWAdaBound is OðT3/4Þ,
where T is a time horizon

(iii) We present various of experiments to validate com-
putation cost reduction of FWAdaBound and show
good generalization ability of FWAdaBound on
public dataset

The rest of this paper is organized as follows: in Section
2, we review some important related work of FWAdaBound.
In Section 3, we introduce preliminary knowledge about
optimization object and online learning. In Sections 4, we
present some frequently used assumptions and detailed
design of FWAdaBound. In Section 5, we prove the conver-
gence of FWAdaBound in theory and obtain the regret
bound. In Section 6, we conduct various experiments in
detail on public datasets. Finally, we present the conclusion
of this paper in Section 7.

2. Related Work

SGD performs linear iteration of decision variables based on
gradient. Therefore, SGD is one of the simplest and easiest

implemented algorithms in deep learning. It has good gener-
alization ability if labeled training samples are sufficient.
However, the slow convergence rate of SGD always makes
it difficult to converge to optima under limited labeled train-
ing samples. To speed up convergence rate of SGD, the first-
order momentum and the second-order momentum based
on the gradient are used in optimization algorithms. More
specifically, the fist-order momentum of the gradient is used
to retain historical information of gradient, and the second-
order momentum of gradient is used to make the step size
adaptive. The first algorithm combining these two momen-
tums of gradient is Adam, which obtains a faster conver-
gence rate than SGD [14]. However, Reddi et al. found that
the convergence proof of Adam was problematic and pro-
posed an improved variant of Adam, called AMSGrad [15].
Moreover, [17] advocated that it is beneficial to consider
more past gradients when designing adaptive learning rates,
and thereby, they proposed NosAdam.

Despite Adam, AMSGrad, and NosAdam both improv-
ing the convergence rate, however, these three algorithms
all have lower generalization ability than SGD under suffi-
cient training samples. For this reason, [18] proposed
SWATS to improve generalization performance by switch-
ing from Adam to SGD in the later stages of training.
Although SWATS improves generalization ability for adap-
tive momentum algorithms, its switching time is difficult to
be accurately controlled. Based on works mentioned above,
[16] analyzed that unstable and extreme learning rates may
lead to the lack of generalization performance of adaptive
methods. Moreover, [16] used a dynamic boundary of the
learning rate, where the upper and lower limits can smoothly
converge to a constant final step size, respectively. Further-
more, the algorithm proposed is called AdaBound. There-
fore, AdaBound currently performs better in terms of
convergence speed and generalization ability compared with
other algorithms.

Although AdaBound performs well in the convergence
rate and generalization ability, projection steps in AdaBound
produce numbers of computation cost and make training
process prohibit when dealing with large-scale problems.
To be specific, the projection operator defined as ΠF,M can
be formed as follows:

ΠF,M yð Þ = arg min
x∈F

M1/2 x − yð Þ�� ��, ð1Þ

where F is a convex feasible set, x is a decision variable in
the feasible domain, and y is an unknown variable.

Equation (1) shows the high-order calculation method of
a projection operation, which brings a lot of calculation cost
to the algorithm. The efficiency of algorithms like AdaBound
are highly dependent on time and hardware. Therefore, it is
necessary to eliminate projection steps of AdaBound in
order to improve its efficiency. However, this much needed
algorithm has not yet been proposed. For this reason, we
propose a projection-free algorithm based on AdaBound,
which uses the Frank-Wolfe method to replace high-order
projection steps with one-dimensional linear searches.
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3. Preliminaries

In this section, we first introduce some notations for conve-
nience. Throughout this paper, we let a boldtype letter, like x
, denote a vector. For operative symbol, we let x/y denote the
element-wise division, x2 denotes the element-wise square,
and

ffiffiffixp
denotes the element-wise square root. For the tth

iteration, we let xt denote the decision vector, f t denote
the cost function, and xt,i denote the ith coordinate of xt .
Moreover, diag fxg denotes a diagonal matrix generated by
the elements of x in order, max f·, · g represents element-
wise maximum, and h·, · i denotes the scalar inner product.
In addition, we let R denote the real number set and ΠF,M
ð·Þ denotes the weighted projection operation, where F is a
feasible set and M represents a positive definite matrix.

In this paper, we consider an online convex optimization
problem, in which the cost function changes over the time or
iteration. If F ⊂ R is a convex and compact set, the decision
vector x ∈F , and the cost function at time t is f t ; then, we
focus on the following optimization objective:

min
x∈F

〠
T

t=1
f t xð Þ: ð2Þ

In order to solve the online optimization problem, i.e.,
Equation (2), an online optimization algorithm is required.
In addition, to measure the performance of an online opti-
mization algorithm, one of standard approaches is regret.
Moreover, if we let x∗ denote the theoretical optimal solu-
tion, then the definition of regret is as follows:

R Tð Þ = 〠
T

t=1
f t xtð Þ − 〠

T

t=1
f t x∗ð Þ, ð3Þ

where t = 1,⋯, T , and x∗ = arg minx∈F f ðxÞ.

4. Algorithm Design and Assumptions

In this section, the proposed algorithm design will be firstly
introduced in detail. Then, to analyze the convergence of the
proposed algorithm, we present some reasonable
assumptions.

4.1. Algorithm Design. The input of FWAdaBound is x1 ∈F ,
where F is a convex and compact set. The parameter β1t ∈
½0, 1Þ and let β11 = β1. Moreover, the parameter β2 ∈ ½0, 1Þ.
In addition, the parameters α, η ∈ ð0, 1�. Let gt denote the
gradient at time t ∈ f1,⋯, Tg; thus, gt = ∇f tðxtÞ. The overall
idea of our algorithm is as follows:

At first, we use the first-order momentum of the gradient
ut to define the sum function for time t: StðxÞ = ηh∑t

τ=1uτ,
xi + kx − x1k2; then, we use this function to implement
one-dimensional linear search wt = arg minx∈Fh∇StðxtÞ, xi,
which can accelerate convergence and avoid projection
operators, so it is the key of FWAdaBound to reduce the
computational cost. Next, we introduce second-order
momentum dt and use it to generate the dynamic upper
bound of learning rate ϖt adaptively. Finally, we apply ϖt

to update the decision variable as xt+1 = xt + ϖteðwt − xtÞ.
The specific algorithm is shown in Algorithm 1.

The first-order momentum of the gradient, ut , is com-
puted by FWAdaBound for time t as follows:

ut = β1tut−1 + 1 − β1tð Þgt: ð4Þ

The first-order momentum is generated by weighted
average of the current gradient and the historical gradient,
which speed up convergence rate for optimization algo-
rithms. Next, to implement one-dimensional linear search
which replaces of the projection operators, we define the fol-
lowing sum function for time t:

St xð Þ = η 〠
t

τ=1
uτ, x

* +
+ x − x1k k2: ð5Þ

To reduce the computational cost of the projection oper-
ation, FWAdaBound searches the feasible variable, wt ,
through one-dimensional linear as follows:

wt = arg min
x∈F

∇St xtð Þ, xh i: ð6Þ

Moreover, to realize the adaptive learning rate, FWAda-
Bound computes the second-order momentum of the gradi-
ent, dt , for time t as follows:

dt = β2dt−1 + 1 − β2ð Þg2t : ð7Þ

To ensure the convergence of the proposed algorithm,
FWAdaBound chooses the bigger value from fdt , dt−1g for
time t, i.e. d̂t =max fdt , dt−1g. In addition, the diagonal
matrix, Dt , based on d̂t is defined as Dt = diag fd̂tg. Next,
FWAdaBound generates a dynamic bound for learning rate
at time t:

ϖt = Clip
αtffiffiffiffiffi
Dt

p ,
ϖlow tð Þffiffi

t
p ,

ϖupp tð Þffiffi
t

p
� �

, ð8Þ

where ϖlowðtÞ is the lower bound and ϖuppðtÞ is the upper
bound. Therefore, Equation (5) clips the output of αt/

ffiffiffiffiffi
Dt

p
between the low bound and the upper bound. Finally, FWA-
daBound updates the decision variable for time t + 1 as fol-
lows:

xt+1 = xt + ϖt⨀ wt − xtð Þ: ð9Þ

Therefore, the design of the proposed algorithm is intro-
duced completely. And we present some following common
assumptions, which are the premises of the convergence of
the algorithm.

4.2. Assumptions. Next, three assumptions are presented for
the proposed algorithm as follows.
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Assumption 1. The constraint set F is convex and compact.
Moreover, the set F is bounded, i.e., kx − yk∞ ≤ B∞ for all
x, y ∈F , where B∞ > 0.

Assumption 2. The cost function f t of FWAdaBound is con-
vex and differentiable on F for all t ∈ f1,⋯, Tg. In addition,

all the cost functions, f f1,⋯, f tg, are Lipschitz functions
with L constant, where L > 0.

Assumption 3. The gradient of decision variable xt is
bounded for all t ∈ f1, 2,⋯, Tg over F , i.e., gt = k∇f tðxtÞk
≤G∞, where G∞ > 0.

Input: x1
Parameter: x1 ∈F , and β1t ∈ ½0, 1Þ where β11 = β1, β2 ∈ ½0, 1Þ. Moreover, α, η ∈ ð0, 1�:
Initially set: m1 = 0 and v1 = 0.
Output: xt+1
1: fort = 1, 2, 3,⋯do
2: t⟵ t + 1
3: Compute gradient of decision variables at time t:
4: gt = ∇f tðxtÞ
5: Compute the first-order momentum at time t:
6: ut = β1tut−1 + ð1 − β1tÞgt
7: Generate a new sum function:
8: StðxÞ = η∑t

τ=1‍uτ, x + ∥x − x1∥2
9: Search wt by one-dimensional linearly:
10: wt = arg minx∈F∇StðxtÞ, x
11: Compute the second-order momentum at time t:
12: dt = β2dt−1 + ð1 − β2Þg2t
13: Select a bigger value for the second-order momentum:
14: d̂t =max fdt , dt−1g and Dt = diag fd̂tg
15: Compute the dynamic bound for learning rate at time t:
16: ϖt = Clipfðαt/

ffiffiffiffiffi
Dt

p Þ, ðϖlowðtÞ/
ffiffi
t

p Þ, ðϖuppðtÞ/
ffiffi
t

p Þg
17: Update the decision variables for time t + 1:
18: xt+1 = xt + ϖteðwt − xtÞ
19: end for
20: returnxt+1

Algorithm 1: FWAdaBound
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Figure 1: Comparison of the relationship between the average loss and the running time of each algorithm.
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Assumption 1 is one of the most basic assumptions of
projection-free method, and almost all projection-free
related articles use it, such as these classic articles [19, 20].
Assumption 2–3 are supposed commonly and reasonably
for analyzing convergence of optimization algorithms such
as these research works [14–16]. Next, we present the con-
vergence analysis of the proposed algorithms based on
Assumptions 1–3.

In many research works [14–16], Assumptions 1–3 were
supposed commonly and reasonably for analyzing conver-
gence of proposed algorithms. Next, we present the conver-

gence analysis of the proposed algorithms based on
Assumptions 1–3.

5. Convergence Analysis

We first introduce the following definitions as the beginning
of this section. Moreover, the introduced definitions are
standard and common in convex optimization.

f xð Þ − f yð Þj j ≤ L x − yk k, ð10Þ

A
ve

ra
ge

 lo
ss

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5 ×10–3

0

Complete graph
Watts-strogatz
Cycle graph

Number of iterations

0
×103

2 4 6 8 10

(a) news20

A
ve

ra
ge

 lo
ss

0

5

10

15

Number of iterations
×104

0 2 4 6 8 10

Complete graph
Watts-strogatz
Cycle graph

(b) aloi

Figure 2: Comparison of the relationship between the training accuracy and the running time of each algorithm.
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Figure 3: Comparison of the relationship between the test accuracy and the running time of each algorithm.
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Definition 4. A function f : F ↦ R is called L-Lipchitz if for
any two points x, y ∈F we have

where L is a positive constant.

Definition 5. A function f : F ↦ R is convex and differentia-
ble if for all x, y ∈F , we have

f xð Þ − f yð Þ ≤ ∇f xð ÞΤ x − yð Þ: ð11Þ

Definition 6. Let f : F ↦ R be an arbitrary convex function.
Then, the function f is also called μ-smooth if for any two
points x, y ∈F , we have

f xð Þ − f yð Þ ≥ ∇f xð ÞΤ x − yð Þ − μ

2
y − xk k2, ð12Þ

where μ > 0.

Definition 7. Let f : F ↦ R be an arbitrary convex function.
Then, the function f is δ-strongly convex if for all x, y ∈F ,
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Figure 4: Comparison of the relationship between the perplexity and the running time of each algorithm. Lower is better.
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we have

f xð Þ − f yð Þ ≤ ∇f xð ÞΤ x − yð Þ − δ

2
y − xk k2, ð13Þ

where δ > 0.

In addition, if a function f is δ-strongly convex and let
x∗ = arg minx∈F f ðxÞ, then we have

f xð Þ − f x∗ð Þ ≥ δ

2
x − x∗k k2: ð14Þ

Moreover, from Definition 6, we obtain the following
equivalent relation:

∇f xð Þ−∇f yð Þk k ≤ μ x − yk k, ð15Þ

where x, y ∈F .
In order to simplify the process of convergence analysis,

we define some intermediate variables. Let x∗t = arg minx∈F
StðxÞ for any t ∈ f1,⋯, Tg. Moreover, we define S0ðxÞ = ∥x
− x1∥2 at time t = 0. In addition, we present the following
relation for St :

zt xð Þ = St xð Þ − St x∗tð Þ: ð16Þ

When x = xt , for brevity, denoting zt = ztðxtÞ. Next, we
present the following Lemma 8 to bound zt+1.

Lemma 8. If Assumptions 1–3 are satisfied, and variables f
xtg, futg, and fdtg are generated by Algorithm 1 for t ∈ f1,
⋯, Tg, and β1t = β1λ

t−1 ≤ β1ðt−1Þ ≤ β1, where λ ∈ ð0, 1�. In
addition, suppose that 0 ≤ ϖlowðtÞ ≤ ϖlowðt + 1Þ, and 0 ≤
ϖuppðt + 1Þ ≤ ϖuppðtÞ, denoting B∞ = ϖuppð1Þ and C∞ = ϖlow

ð1Þ. Then, we have

zt+1 ≤ 1 −
B2
∞ffiffi
t

p
� �

zt +
nηG∞
1 − β1

ffiffiffiffiffiffiffiffi
zt+1

p +
B4
∞
t

: ð17Þ

Proof. By Definition 6, we know that StðxÞ is a 2-smooth
function. Moreover, using the definition of ztðxÞ (i.e., Equa-
tion (16)) and xt , we obtain the following relation:

zt xt+1ð Þ = St xt+1ð Þ − St x∗tð Þ = St xt + ϖte wt − xtð Þð Þ − St x∗tð Þ:
ð18Þ

From the bounds of ϖlowðtÞ and ϖuppðtÞ, we have the fol-
lowing:

zt xt+1ð Þ ≤ St xt +
ϖupp 1ð Þffiffi

t
p e wt − xtð Þ

� �
− St x∗tð Þ ≤ St xt +

B∞ffiffi
t

p e wt − xtð Þ
� �

− St x∗tð Þ:

ð19Þ

In addition, from the Definition 7 and the strong-

convexity of StðxÞ, we obtain the following:

zt xt+1ð Þ ≤ St xtð Þ − St x∗tð Þ + B2
∞
t

wt − xtk k2 + B2
∞ffiffi
t

p ∇St xtð Þ, wt − xtð Þh i:

ð20Þ

From the definition of wt , we attain the following rela-
tion:

∇St xtð Þ,wth i ≤ ∇St xtð Þ, x∗th i: ð21Þ

Moreover, from Equation (21), we have the following:

∇St xtð Þ, wt − xtð Þh i ≤ ∇St xtð Þ, x∗t − xtð Þh i: ð22Þ

Plugging Equation (22) into Equation (20), we attain the
following relation:

zt xt+1ð Þ ≤ St xtð Þ − St x∗tð Þ + B2
∞
t

wt − xtk k2 + B2
∞ffiffi
t

p ∇St xtð Þ, x∗t − xtð Þh i:

ð23Þ

According to Definition 5 and the convexity of StðxÞ, we
obtain the following relation:

∇St xtð Þ, x∗t − xtð Þh i ≤ St x∗ð Þ − St xtð Þ: ð24Þ

Furthermore, plugging Equation (24) into Equation (23),
we get the following relation:

zt xt+1ð Þ ≤ St xtð Þ − St x∗tð Þ + B2
∞
t

wt − xtk k2 + B2
∞ffiffi
t

p St x∗ð Þ − St xtð Þð Þ

≤ 1 −
B2
∞ffiffi
t

p
� �

St xtð Þ − St x∗tð Þð Þ + B2
∞
t

wt − xtk k2:

ð25Þ

Next, we consider the term ztðxt+1Þ in Equation (25). By
the definition of ztðxÞ, we first obtain the following relation:

zt+1 xt+1ð Þ ≤ St+1 xt+1ð Þ − St+1 x∗t+1ð Þ: ð26Þ

Then, transforming Equation (26), and we attain the fol-
lowing relation:

zt+1 xt+1ð Þ ≤ St xt+1ð Þ − St x∗t+1ð Þ + St+1 xt+1ð Þ − St xt+1ð Þ + St+1 x∗t+1ð Þ − St x∗t+1ð Þ:
ð27Þ

In addition, due to the fact that x∗t = arg minx∈FStðxÞ,
we have Stðx∗t Þ ≤ Stðx∗t+1Þ. For this reason, we obtain the fol-
lowing relation from Equation (27):

zt+1 xt+1ð Þ ≤ St xt+1ð Þ − St x∗tð Þ + St+1 xt+1ð Þ − St xt+1ð Þ + St+1 x∗t+1ð Þ − St x∗t+1ð Þ
= zt xt+1ð Þ + St+1 xt+1ð Þ − St xt+1ð Þ + St+1 x∗t+1ð Þ − St x∗t+1ð Þ:

ð28Þ

Next, we consider the terms St+1ðxt+1Þ − Stðxt+1Þ and
St+1ðx∗t+1Þ − Stðx∗t+1Þ in Equation (28). From the definition
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of StðxÞ, we have the following relation:

St xð Þ − St xð Þ = η〠
t+1

τ=1
uΤτ x + x − x1k k2 − η〠

t

τ=1
uΤτ x − x − x1k k2 = ηuΤt+1x:

ð29Þ

Let x = xt+1 in Equation (29), we obtain

St xt+1ð Þ − St xt+1ð Þ = ηuΤt+1xt+1: ð30Þ

In addition, let x = x∗t+1 in Equationss (29), we attain

St x∗t+1ð Þ − St x∗t+1ð Þ = ηuΤt+1x∗t+1: ð31Þ

Combining Equations (28), (30), and (31), we have the
following:

zt+1 xt+1ð Þ ≤ zt xt+1ð Þ + ηuΤt+1xt+1 + ηuΤt+1x∗t+1 = zt xt+1ð Þ + ηuΤt+1 xt+1 − x∗t+1ð Þ
≤ zt xt+1ð Þ + η uΤt+1

�� �� xt+1 − x∗t+1k k:
ð32Þ

The second inequality in Equation (32) follows from
Cauchy-Schwarz inequality. Besides, plugging Equation
(23) into Equation (32), we obtain

zt+1 xt+1ð Þ ≤ 1 −
B2
∞ffiffi
t

p
� �

St xtð Þ − St x∗tð Þð Þ + B2
∞
t

wt − xtk k2 + η uΤt+1
�� �� xt+1 − x∗t+1k k:

ð33Þ

Since ztðxtÞ = StðxtÞ − Stðx∗t Þ, we attain the following
relation from Equation ((33))

zt+1 xt+1ð Þ ≤ 1 −
B2
∞ffiffi
t

p
� �

zt xtð Þ + B2
∞
t

wt − xtk k2 + η uΤt+1
�� �� xt+1 − x∗t+1k k

≤ 1 −
B2
∞ffiffi
t

p
� �

zt +
B2
∞
t

wt − xtk k2 + η uΤt+1
�� �� xt+1 − x∗t+1k k:

ð34Þ

The second inequality in Equation (34) follows the defi-
nition of zt = ztðxtÞ.

Before estimating the bound of zt+1ðxt+1Þ, we consider
the bound of ∥ut+1∥. To this end, applying the recursive algo-
rithm on ut , we have

ut = 〠
t

j=1
1 − β1j

� 	Yt−j
k=1

β1 t−k+1ð Þgj: ð35Þ

From Assumption 3 and Equation (35), we attain

utk k ≤ 〠
t

j=1
1 − β1j

� 	Yt−j
k=1

β1 t−k+1ð Þ 〠
n

σ=1
gj,σ

 !

≤ nG∞ 〠
t

j=1
1 − β1j

� 	Yt−j
k=1

β1 t−k+1ð Þ ≤ nG∞ 〠
t

j=1

Yt−j
k=1

β1 t−k+1ð Þ:

ð36Þ

In addition, because β1t = β1λ
t−1, we obtain the follow-

ing relation from Equation (36):

utk k ≤ nG∞ 〠
t

j=1
βt−j
1 ≤

nG∞
1 − β1

: ð37Þ

Plugging Equation (37) into Equation (34), we attain

zt+1 ≤ 1 −
B2
∞ffiffi
t

p
� �

zt +
B2
∞
t

wt − xtk k2 + nηG∞
1 − β1

xt+1 − x∗t+1k k:

ð38Þ

Since wt = arg minx∈Fh∇StðxtÞ, xi, we have wt ∈F .
Moreover, from Assumption 1, we have

wt − xtk k ≤ B∞: ð39Þ

Hence, combining Equations (38) and (40), we obtain

zt+1 ≤ 1 −
B2
∞ffiffi
t

p
� �

zt +
nηG∞
1 − β1

xt+1 − x∗t+1k k + B4
∞
t

: ð40Þ

Applying δ = 2 on Definition 7, we attain that the func-
tion StðxÞ is 2-strongly convex. In addition, from Equation
(14), we have

xt+1 − x∗t+1k k ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
St+1 xt+1ð Þ − St+1 x∗t+1ð Þ

p
= ffiffiffiffiffiffiffiffi

zt+1
p

: ð41Þ

Moreover, substituting Equation (41) into Equation (40),
and we can obtain the following:

zt+1 ≤ 1 −
B2
∞ffiffi
t

p
� �

zt +
nηG∞
1 − β1

ffiffiffiffiffiffiffiffi
zt+1

p +
B4
∞
t

: ð42Þ

Therefore, the proof of Lemma 8 is completed.
Now, we get the iterative relations between zt and zt+1

from Lemma 8. In order to attain the final bound of zt , we
should present the following two lemmas. First of all, we
introduce the first lemma of the two lemmas.

Lemma 9. For all t = 1, 2,⋯, we can obtain the following
relation:

1ffiffi
t

p 1 −
1

2
ffiffi
t

p
� �

≤
1ffiffiffiffiffiffiffiffiffi
t + 1

p : ð43Þ

Proof. We first square both sides of Equation (43) and take
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the difference; then, we have the following relation:

1ffiffi
t

p 1 −
1

2
ffiffi
t

p
� �� �2

−
1ffiffiffiffiffiffiffiffiffi
t + 1

p
� �2

=
1
t
−

1
t
ffiffi
t

p +
1
4t2

−
1

t + 1

=
1
t
−

1
t
ffiffi
t

p +
1
4t2

−
1

t + 1

� �
t t + 1ð Þ
t t + 1ð Þ

=
t + 1 + t + 1/4tð Þ − t + 1/

ffiffi
t

p
− t

t t + 1ð Þ

=
t + t + 1/4ð Þ − t + 1ð Þ ffiffi

t
p

t2 t + 1ð Þ =
5t + 1ð Þ − 4

ffiffi
t

p
t + 1ð Þ ffiffi

t
p

t2 t + 1ð Þ :

ð44Þ

Observing terms ð5t + 1Þ and 4
ffiffi
t

p ðt + 1Þ ffiffi
t

p
, we can

know that they all increase with t, and the latter grows faster
than the former. Therefore, we can further attain the follow-
ing relation from Equation (44):

1ffiffi
t

p 1 −
1

2
ffiffi
t

p
� �� �2

−
1ffiffiffiffiffiffiffiffiffi
t + 1

p
� �2

=
5t + 1ð Þ − 4

ffiffi
t

p
t + 1ð Þ ffiffi

t
p

t2 t + 1ð Þ ≤ 0:

ð45Þ

In addition, combining Equations (44) and (43), we
obtain the following relation:

1ffiffi
t

p 1 −
1

2
ffiffi
t

p
� �� �2

≤
1ffiffiffiffiffiffiffiffiffi
t + 1

p
� �2

: ð46Þ

From Equation (46), we have the following relation:

1ffiffi
t

p 1 −
1

2
ffiffi
t

p
� �

≤
1ffiffiffiffiffiffiffiffiffi
t + 1

p : ð47Þ

Therefore, the proof of Lemma 9 is completed.
Next, we introduce the last lemma about the final bound

of zt as follows.

Lemma 10. If Assumptions 1–3 are satisfied, and variables
fxtg, futg, fdtg are generated by Algorithm 4.1 for t = f1,
⋯, Tg, and β1t = β1λ

t−1 ≤ β1ðt−1Þ ≤ β1, where λ ∈ ð0, 1�. In
addition, suppose that 0 ≤ ϖlowðtÞ ≤ ϖlowðt + 1Þ, and 0 ≤
ϖuppðt + 1Þ ≤ ϖuppðtÞ. Denoting B∞ = ϖuppð1Þ, and C∞ =
ϖlowð1Þ. Moreover, as the parameters n, η, and β1 are chosen
such that ðnηG∞/ð1 − β1Þ1 − β1Þ

ffiffiffiffiffiffiffiffi
zt+1

p ≤ ð3B4
∞ − 2B2

∞Þ/t by
Algorithm 1, we then have

zt+1 ≤
4B2

∞ffiffiffiffiffiffiffiffiffi
t + 1

p : ð48Þ

Proof. By Equation (42), we have the following relation:

zt+1 ≤ 1 −
B2
∞ffiffi
t

p
� �

zt +
4B4

∞ − 2B2
∞

t
: ð49Þ

Now, we can use mathematical induction to get the
bound of zt . First, when t = 1, from definition of zt , we attain

z1 ≤ S1 x1ð Þ − S1 x∗1ð Þ ≤ x1 − x1k k2 − x∗1 − x1k k2 = − x∗1 − x1k k2 ≤ 4B2
∞:

ð50Þ

Therefore, the base of mathematical induction is true for
t = 1. Second, supposing that the mathematical induction is
also true for t, and we present that it also true for t + 1 as fol-
lows:

zt+1 ≤ 1 −
B2
∞ffiffi
t

p
� �

4B2
∞ffiffi
t

p +
4B4

∞ − 2B2
∞

t
≤
4B2

∞ffiffi
t

p −
4B4

∞
t

+
4B4

∞
t

−
2B2

∞
t

≤
4B2

∞ffiffi
t

p 1 −
1

2
ffiffi
t

p
� �

:

ð51Þ

Applying Lemma 9 into Equation (51), we obtain

zt+1 ≤
4B2

∞ffiffiffiffiffiffiffiffiffi
t + 1

p : ð52Þ

Therefore, the proof of Lemma 10 is completed.
Next, we present the following result to attain the bound

of RðTÞ.

Theorem 11. If the Assumptions 1–3 are satisfied. Moreover,
the sequences ut , wt , and dt are all generated by our proposed
algorithm, which t ∈ f1, 2,⋯, Tg. Then, we obtain that

R Tð Þ ≤ 8LB∞
3

T3/4 +
B2
∞

η 1 − β1ð Þβ1T
: ð53Þ

Proof. From Lemma 10 and Equation (41), we have the fol-
lowing:

xt − x∗tk k ≤ ffiffiffiffi
zt

p
≤

ffiffiffiffiffiffiffiffiffi
4B2

∞ffiffi
t

p
s

= 2B∞t−1/4: ð54Þ

Summing over Equation (54) for t = 1,⋯, T , we attain
the following relation:

〠
T

t=1
xt − x∗tk k ≤ 〠

T

t=1
2B∞t−1/4 ≤

8B∞
3

T3/4: ð55Þ

By Assumption 2, we know that f t is a Lipschitz func-
tion. In addition, applying Definition 4, we have

f t xtð Þ − f t x∗tð Þj j ≤ L xt − x∗tk k: ð56Þ

In addition, combining Equation (55) and (56), we
obtain

〠
T

t=1
f t xtð Þ − f t x∗tð Þj j ≤ 〠

T

t=1
L xt − x∗tk k ≤ 8LB∞

3
T3/4: ð57Þ
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Moreover, from the definition of RðTÞ, we have

R Tð Þ = 〠
T

t=1
f t xtð Þ − f t x∗ð Þ½ � = 〠

T

t=1
f t xtð Þ − f t x∗tð Þ½ � + 〠

T

t=1
f t x∗tð Þ − f t x∗ð Þ½ �:

ð58Þ

Since S0ðxÞ = ∥x − x1∥2, we attain the following relation:

ST x∗tð Þ − ST x∗ð Þ ≤ η〠
T

t=1
utx∗t + x∗t − x1k k2

" #
− η〠

T

t=1
utx∗t + x∗ − x1k k2

" #

≤ η〠
T

t=1
ut x∗t − x∗ð Þ + x∗t − x1k k2 − x∗ − x1k k2 ≤ 0:

ð59Þ

Since x∗, x1 ∈F , and by Assumption 1, we have kx∗ −
x1k ≤ B∞. Moreover, according to Equation (59), we obtain
the following relation:

〠
T

t=1
ut x∗t − x∗ð Þ ≤ 1

η
x∗ − x1k k2 − x∗t − x1k k2

h i
≤
B2
∞
η

: ð60Þ

Then, combining Equations (35) and (60), we have the
following relation:

〠
T

t=1
ut x∗t − x∗ð Þ = 〠

T

t=1
〠
t

j=1
1 − β1j

� 	Yt−j
k=1

β1 t−k+1ð Þg j

" #
× x∗t − x∗ð Þ

≥ 〠
T

t=1
〠
t

j=1
1 − β1j

� 	
β1tgj

" #
x∗t − x∗ð Þ

≥ 1 − β1ð Þβ1T 〠
T

t=1
gt x∗t − x∗ð Þ:

ð61Þ

Therefore, from Equations (60) and (61), we attain the
following relation:

〠
T

t=1
gt x∗t − x∗ð Þ ≤ B2

∞
η 1 − β1ð Þβ1T

: ð62Þ

Applying Definition 5 and Equation (58), we obtain

R Tð Þ ≤ 〠
T

t=1
f t xtð Þ − f t x∗tð Þj j + 〠

T

t=1
gt x∗t − x∗ð Þ: ð63Þ

Finally, substituting Equations (57) and (62) into Equa-
tion (63), we have

R Tð Þ ≤ 8LB∞
3

T3/4 +
B2
∞

η 1 − β1ð Þβ1T
: ð64Þ

Therefore, the proof of Theorem 11 is completed.
From Theorem 11, we get that limT⟶∞RðTÞ/T = 0,

which indicates that our proposed algorithm is convergent.

In addition, by Equation (64), we know that the regret
bound of our proposed algorithm is OðT3/4Þ.

Remark 12. This work is closed to the previous works
[14–16]. Our regret bound OðT3/4Þ is worse than the regret
bound Oð ffiffiffiffi

T
p Þ, which is obtained by [15, 16], but the num-

ber of iterations is increased within the same amount of time
due to the lower computational cost per iteration. Hence, the
overall convergent rate of the proposed algorithm is faster
than the Adam-type algorithms such as Adam [14] and Ada-
Bound [16].

Next, we will validate the performance of our proposed
algorithm by simulation experiments.

6. Experiments

Our algorithm is mainly used in the field of multimedia
communication. Specifically, through modeling and analy-
sis, it is proved that the algorithm can reduce the calculation
and storage cost of text, voice, picture, and other informa-
tion in multimedia information transmission.

So, in this section, we, respectively, apply and compare
the proposed algorithm on different dataset to validate the
convergence and performance of the proposed algorithm.
One application is the image classification on CIFAR-10
[21] dataset, and another one is the language modeling on
the Penn Treebank dataset [22]. The experiments are exe-
cuted on the equipment with 1080Ti GPU and CUDA
0.4.0, and written in Python 3.7 with Torch 1.0.1 framework.
The details of experiment settings and results are described
in the content below.

6.1. Experiment Settings. The CIFAR-10 is a famous and
standard dataset for image classification, which consists of
60,000 32 × 32 color images in 10 classes, and with 6,000
images per class. Moreover, the dataset has 50,000 training
images and 10,000 test images, respectively. We use deep
models, ResNet-34 and DenseNet-121, to finish the classifi-
cation tasks on CIFAR-10. The model ResNet-34, a popular
model in deep learning, is a deep residual networks with 34
layers. In addition, DenseNet-121 is a dense convolutional
network with 121 layers, in which each layer accepts all pre-
ceding layers as its additional input.

The Penn Treebank is a popular and classical dataset for
language modeling. The corpus of this dataset comes from
the Wall Street Journal. Moreover, this dataset contains
2,499 articles with a total of 1M words. In this experiments,
we use three LSTM models, including 1-layer, 2-layer and 3-
layer, to train this dataset.

In our experiments, we compare our proposed algo-
rithm, FWAdaBound, with classical and latest proposed
algorithms including OGD, Adam [14], and AdaBound
[16]. Furthermore, the setting of parameters of all algo-
rithms are shown as follows.

(i) OGD, the initial step size α is chosen from
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1e − 2, 5e − 3, 1e − 3, 5e − 4, 1e − 4f g ð65Þ

(ii) Adam [14], with β1 = 0:9, β2 = 0:999, αt = α/
ffiffi
t

p
, in

which the initial step size α is chosen from

1e − 2, 5e − 3, 1e − 3, 5e − 4, 1e − 4f g ð66Þ

Moreover, we use for the perturbation value ε = 1e − 8.

(iii) AdaBound [16], with β1 = 0:9, β2 = 0:999, αt = α/
ffiffi
t

p
, in which the initial step size α is chosen from

1e − 2, 5e − 3, 1e − 3, 5e − 4, 1e − 4f g ð67Þ

Moreover, ε = 1e − 8.

(iv) FWAdaBound, our proposed algorithm, we directly
applied the default hyperparameters of AdaBound
(a learning rate of 0.001, β1 = 0:9, β2 = 0:999, and ε
= 1e − 8)

Next, we show the results of our experiments on CIFAR-
10 and present the related analysis of the experimental
results.

6.2. Experiment Results and Analysis

6.2.1. Image Classification. In the first experiment, we run
the algorithms on CIFAR-10 for 200 epochs and measure
the relationship between running time and average loss. It
can be concluded from the first experiment that with the
same epoch number, FWAdaBound spends the shortest time
to complete the iterative task. It also confirms that FWAda-
Bound takes the least computation cost among all the exper-
imental algorithms. The reason is that FWAdaBound uses
linear search instead of the high-order projection steps in
Adam and AdaBound. Moreover, Figure 1 shows the results
for each algorithm on both ResNet-34 and DenseNet-121. In
the part (a) of Figure 1, the average loss of our proposed
algorithm FWAdaBound reaches the expected stable value
in the shortest time in model ResNet-34. Similarly, in part
(b) of Figure 1, FWAdaBound also takes the least time to
reduce the average loss in model DenseNet-121. This sug-
gests that with the same number of epochs, FWAdaBound
spends the least time to complete the iteration task. More-
over, this validates that FWAdaBound takes the least com-
putation cost among all the experimental algorithms. The
reason is that FWAdaBound uses linear search instead of
the high-order projection steps in Adam and AdaBound.
Therefore, FWAdaBound can iterates much faster than
Adam and AdaBound in each epoch.

Then, we execute the second experiment to verify the
generalization ability of training accuracy. The results of
the second experiment are shown in Figure 2. This figure
shows that the training accuracy of FWAdaBound rises rap-
idly in the early stage of training and finally reaches the same

height as AdaBound, which validates the generalization abil-
ity of training accuracy of FWAdaBound is better. Moreover,
the figure also shows that the training accuracy of FWAda-
Bound is higher than that of Adam and AdaBound at each
moment, which further indicates that the iteration cost of
FWAdaBound is the lowest.

Finally, the last experiment verify the generalization abil-
ity of test accuracy of our proposed algorithm. And the
results of this experiment are presented in Figure 3. Like-
wise, the test accuracy of FWAdaBound performs well in
the early stage of iteration process and achieves the same
performance as AdaBound in the final stage. Therefore,
FWAdaBound also has a good generalization ability on test
accuracy. In general, the generalization ability of FWAda-
Bound is the same as that of AdaBound but takes much less
computation cost than AdaBound and Adam.

6.2.2. Language Modeling. In this group of experiments, we
implement all the algorithms in 1-, 2-, and 3-layer LSTM
models on the Penn Treebank dataset. The results of the
experiments are shown in Figure 4 which presents the rela-
tionship between the perplexity and the running time of
each algorithm. Note that the lower perplexity the better.

The experiment results of 1-layer LSTM show that
FWAdaBound takes the least time to minimize the perplex-
ity. On 1-layer LSTM model, FWAdaBound performs best
in all algorithms, and Adam performs better than
AdaBound.

In addition, in the experiments executed on 2-layer
LSTM model, FWAdaBound has the quickest convergence
rate among all the algorithms. Moreover, FWAdaBound
takes 16.67% and 17.65% less running time than Adam
and AdaBound, respectively. In this experiment, AdaBound
performs better than Adam on the perplexity.

Finally, all the three algorithms are executed on the 3-
layer LSTM model. The results show that FWAdaBound
takes the least time to minimize the perplexity on Penn
Treebank. In addition, FWAdaBound takes 11.83% and
14.05% less time than Adam and AdaBound, respectively.
Moreover, AdaBound also performs better than Adam on
the perplexity in this experiments.

7. Conclusion

In this paper, we proposed a Frank-Wolfe adaptive momen-
tum online algorithm named FWAdaBound, which uses the
Frank-Wolfe technique to avoid the projection operation.
Moreover, our convergence analysis showed that the regret
bound of FWAdaBound achieves to OðT3/4Þ, where T is a
time horizon. In order to validate the performance of FWA-
daBound in applications, we execute three groups of experi-
ments for image classification and language modeling. The
results show that FWAdaBound has good performance in
the generalization ability of training and test accuracy.
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