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In this paper, we propose a novel multipath cluster-assisted single station localization method based on a genetic algorithm-based
improved salp swarm algorithm (SSA-GA) to improve localization accuracy in an outdoor non-line-of-sight (NLOS) propagation
environment. The scattering area model is presented which scatterers are considered Gaussian distribution for outdoor NLOS
environments. The geometrical properties of propagation paths, such as angle of arrival and time of arrival, are jointly utilized
to construct pseudoscatterer distribution. In order to filter the interference scatterers distributed outside the scattering region,
the Gaussian kernel-based algorithm is developed. Furthermore, SSA-GA is proposed to solve the positioning objective
functions constructed by pseudoscatterers clustering accurately. Results confirm the practicability of our newly proposed
method, and the positioning error is less than 5% in outdoor NLOS propagation environment.

1. Introduction

In recent years, position location (also called localization or
positioning) is a key application for the fifth generation
(5G) of mobile communication technology, which has been
a growing interest for a variety of applications such as navi-
gation, industrial mines, rescue operations, and traffic man-
agement [1–3]. By measuring the range and the angle of the
received signals between the mobile device and base stations
based on the known locations of other reference points, the
precise location knowledge of the transmitted source signal
from a mobile station (MS) can be determined. Unfortu-
nately, the majority of outdoor scenarios are characterized
by the non-line-of-sight (NLOS) propagation conditions,
due to specular reflections from obstacle surfaces such as

mine cars, roadways, and buildings. Consequently, the local-
ization environment is even more complex, which compro-
mise the localization accuracy of current positioning
technologies. Accurate and quick position location of MS is
critical in urban environments under NLOS propagation
conditions, especially for the implementation of the Federal
Communications Commission’s (FCC) E-911 [4].

In NLOS propagation environments, accurate single-site
localization using a single base station (BS) for a wireless
source signal is an attractive technique due to its conve-
nience in deployment and operation compared with
multiple-site localization techniques. A large number of
researchers are actively working towards achieving an
acceptable accuracy of single base station localization
methods by using the measured parameters of multiple path
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signals, such as time of arrival (TOA), angle of arrival
(AOA), and received signal strength (RSS). Details may refer
to [5–10]. Time difference of arrival (TDOA) has been
widely used in localization due to its low time synchroniza-
tion requirements. In reference [11], the target position is
estimated by using the transmission time difference between
multiple different nodes and the target. Considering that
three nodes can locate the target, a weighted average location
algorithm based on Cramér–Rao lower bound (CRLB) is
proposed to weight the average target positions estimated
by different nodes. The weight is determined by the CRLB
corresponding to the estimated target position. The simula-
tion and measurement results show that the positioning
error is less than 1m in the indoor scenario. In addition,
since TOA and RSS are both efficient over long and short
distances, respectively, it is studied recently that with the
combination of TOA and RSS, the spatial geometric distri-
bution among the source, scatterers, and reflectors is used
to construct the positioning objective function. In order to
use multipath RSS-TOA to locate the target, an iterative gen-
eralized trust region subproblem (GTRS) framework is pro-
posed in [12] to approximately solve the nonconvex
maximum likelihood problem. The performance of GTRS
model is further improved in [13] by considering that the
directivity of the target will have a great impact on RSS mea-
surements in different directions. Moreover, in reference
[14], a second-order cone programming (SOCP) framework
with convex hull constraints and soft regularization is pro-
posed to solve the RSS-TOA localization problem, and the
unknown transmission time and power information are
considered to improve the robustness of the localization
algorithm. Even though the method in literature [11–14]
can use multipath information to locate target in NLOS
propagation scenarios, however, it requires some assump-
tions or a priori conditions. For example, in [11], it is
assumed that there are sight distance paths between multiple
nodes and targets, and in [12–14], it is assumed that the
NLOS measurement error of each multipath is the same,
resulting in that the positioning algorithm is not applicable
to actual NLOS propagation scenarios. Under NLOS propa-
gation conditions, estimating the target positions accurately
is challenging and has not been fully studied yet.

The motivation of this paper is threefold. First, we use
the Gaussian kernel-based algorithm to filter interference
scatterers outside the scattering region. Second, an improved
salp swarm algorithm (SSA) is proposed to determine the
accurate location of source signal by enhancing the global
search performance and robustness in NLOS environments.
Last, we evaluate the performance of the proposed method,
Levenberg-Marquardt (LM) algorithm, and SSA algorithm.

2. Scattering Region Model

The present problem is aimed at determining the location of
source signal, e.g., a mobile station (MS), in a NLOS envi-
ronment by using a single base station (BS) based on scatter-
ing area model. The Gaussian-based scattering area model is
introduced to describe spatial geometric distribution of scat-
terers and MS, which can be used in achieving high precision

under NLOS propagation conditions [15], compared with
the conventional ring of scattering (ROS) model and the disk
of scattering (DOS) model [16]. The MS-BS geometry is
given in Figure 1.

Although the NLOS propagation environments might
involve multiple-bound reflection and refraction paths,
single-bounce reflection is assumed in this paper due to
well-fitting for modelling the multipath propagation in out-
door areas. Furthermore, we assume that the source signal is
scattered by the scatterers S1, S2,⋯, SN in the scattering area
SA1, SA2,⋯, SAM to reach the base station (BS), where each
multipath signal corresponds to a scatterer. The i-th path
can be parameterized by the propagation distance Li
(measured as the propagation distance between the MS
and the BS) and the azimuth AOA θi (measured from the
positive x-axis). The propagation distance of the i-th path
from MS to BS is Li = c × ti, i = 1, 2,⋯,N , where c denotes
the speed of light and ti is the TOA of the i-th multipath sig-
nal. The objective is to determine the unknown MS position,
denoted in the Cartesian coordinate as ðx, yÞ.

In order to take full advantage of multipath information,
pseudoscatterers are introduced. The pseudoscatterer is
equivalent to the transmitter position corresponding to the
received multipath signal in LOS propagation environment,
and each available multipath corresponds to a pseudoscat-
terer. A certain geometric relationship between the distribu-
tion of pseudoscatterer and scatterers and target is depicted
in Figure 2, where Si′ denotes the pseudoscatterers corre-
sponding to the i-th multipath and ri represents the signal
propagation distance from the i-th scatterer to MS. The
target positioning process is as follows.

2.1. Step 1: Extraction of Pseudoscatterer Centres. In this
paper, the BS is deployed at a known position, denoted as
(xB, yB) in the Cartesian coordinate in Figure 2. Use the
propagation distance Li and the AOA θi of the i-th path to
determine the pseudoscatterers location ðxi′, yi′Þ, which can
be expressed in available information form as

xi′= Li × cos θið Þ + xB

yi′= Li × sin θið Þ + yB:
ð1Þ

MS

Barrier

BS

SA1
SA2

SAM

Figure 1: Illustration of the MS-BS geometry based on the
scattering area model.
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Let ðx̂ j, ŷ jÞ, j = 1, 2,⋯,M represent the centres of the
scattering area. Note that if in the azimuth AOA, the propa-
gation distance parameters for all paths corresponding to the
scattering centres have already been estimated in advanced,
the positioning objective function can be constructed to
estimate the target position.

The clustering algorithm can be used to obtain the
pseudoscatterer clustering centres of S1′ , S2′ ,⋯, SM′ . After
that, the multipath parameters of the scattering area centres
can be obtained from the pseudoscatterer clustering centres
by (1). The corresponding parameters ðLj, θjÞ are given
as follows:

Lj =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x̂ j′2 + ŷ j′2

q
θj = arctan ŷ j′/x̂ j′

� �
,

8><>: ð2Þ

where ðx̂ j′, ŷ j′Þ is the cluster centre of the pseudoscatterer.

2.2. Step 2: Construction of Positioning Objective Function. In
this paper, it is assumed that the scattering area centres in
the urban environment are known to be ðx̂ j, ŷ jÞ, j = 1, 2,⋯,
M. The centre of the scattering area can be obtained with the
aid of satellite map or the distribution of surrounding build-
ings. The signal propagation distance is equal to the sum of
the distance of the signal from BS to the scatterer and from
the scatterer to MS, which can be calculated as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x − x̂ j
� �2 + y − ŷ j

� �2
r

= Lj −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x̂ j − xB
� �2 + ŷ j − yB

� �2
r

, j = 1, 2,⋯,M,

ð3Þ

where ðxB, yBÞ and ðx, yÞ are the locations of BS and MS,
respectively. l j, i.e., the distance from MS to the centre of each
scattering area, is shown as

l j = Lj −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xj − xB
� �2 + yj − yB

� �2
r

, j = 1, 2,⋯,M: ð4Þ

Taking theM-th scattering centre as the reference, the dis-
tance difference between the other scattering centres and the
M-th scattering centre to the MS can be expressed as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x − xMð Þ2 + y − yMð Þ2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x − x̂ j
� �2 + y − ŷ j

� �2
r

= lM − l j, j = 1, 2,⋯,M − 1:
ð5Þ

In fact, due to the presence of parameter estimated errors,
the target position in (5) does not have a closed-form solution.
The solution process needs to be transformed into a nonlinear
optimization problem.We can devise the objective equation as
a set of errors, which can be defined as follows:

φj x, yð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x − xMð Þ2 + y − yMð Þ2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x − x̂ j
� �2 + y − ŷ j

� �2
r

− lM‐l j
� �

, j = 1, 2,⋯,M‐1:
ð6Þ

The MS position can be obtained by minimizing the sum
of objective functions for all errors, so the positioning objective
function is constructed as

min ψ x, yð Þ = 1
M − 1 〠

M−1

j=1
φ2
j x, yð Þ: ð7Þ

3. Parametric Clustering of Multipath Signals

In the actual scenario, scatterers are not only distributed in
the specified scattering area but also exist far away from the
scattering area. These scatterers are called interference scat-
terers in this paper. When clustering the pseudoscatterer,

y

x

BS (xB, yB)

Si (xi, yi)

Sí (xí, yí )

ri

MS (x, y)

Li

i

Figure 2: Pseudoscatterers distribution.

Input ðxi′, yi′Þ, i = 1, 2,⋯,N , σ, s1, s2,⋯, sN = 0
1: for i = 1, 2,⋯,N do
2: for j = 1, 2,⋯,N , j ≠ i do
3: Calculate dij by (8)
4: end for
5: end for
6: Calculate dave by (7)
7: for i = 1, 2,⋯,N do
8: for j = 1, 2,⋯,N , j ≠ i do
9: if dij < dave then
10: si = si + 1
11: end if
12: end for
13: end for
14: Select 4/5N scatterers ðxi′, yi′Þ with large si
Output ðxi′, yi′Þ, i = 1, 2,⋯, 4/5N

Algorithm 1: Interference scatterers filtering.
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the pseudoscatterer corresponding to the interference scat-
terers will affect clustering and the final positioning accuracy.
Therefore, it is necessary to identify and filter the interference
scatterers. In this paper, the Gaussian kernel function is used
to filter interference scatterers.

The Gaussian kernel function describing the distance
between two individuals is used to eliminate the effect of inter-
ference scatterers. Let the location of the two pseudoscatterers
be ðxi′, yi′Þ and ðxj′, yj′Þ, respectively. And then Gaussian kernel
function dij with width parameter σ is defined as

dij = exp −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi′− xj′

� �2
+ yi′− yj′
� �2

r
2σ2

0BB@
1CCA: ð8Þ

The larger dij indicates that the two pseudoscatterers are
closer. Since the interference scatterers are distributed outside
the scattering area and the number of them is relatively small,
the distribution of interference scatterers is sparse. By compar-
ing the distribution density of scatterers, the interference scat-
terers can be identified and filtered. In this paper, a reference
radius dave is set as the average Gaussian kernel of the pseudos-
catterers, which is expressed as

dave =
1
AN

dnmð Þ, n ∈X,m ∈X, n ≠m, ð9Þ

where dnm is the Gaussian kernel between any two unequal
pseudoscatterers Sn′ and Sm′ , AN = C2

N is the number of times
for the randomly selected two pseudoscatterers, N denotes
the number of pseudoscatterers, and X is the set of all
pseudoscatterers.

Input n, L, pc, pm, u, d
1: Initializing populations SðlÞ
2: while terminate condition has not been met do
3: for i = 1, 2,⋯, n do
4: Calculate fitness of salp xiðlÞ
5: end for
6: F=the best search salp
7: Update c1
8: Divide the population into two parts: leaders xi and followers _xi
9: for i = 1, 2,⋯, n/2 do
10: Update the position of the leaders by (10)
11: end for
12: for i = 1, 2,⋯, n/4 do
13: if pc > rand ð0, 1Þ
14: Update the position of xi, xi+n/4 by (12)
15: end if
16: end for
17: for i = 1, 2,⋯, n/2 do
18: if pm > rand ð0, 1Þ
19: Update the position of the xi by (11)
20: end if
21: end for
22: Set the population after crossover mutation as HðlÞ
23: Update populations Sðl + 1Þ=combine (HðlÞ,SðlÞ)
24: Calculate the optimal position of leader xbest
25: Update the position of the first follower by (13)
26: for i = 1, 2,⋯, n do
27: Update the position of followers by (14)
28: end for
29: end while
Output The best global solution F

Algorithm 2: Genetic algorithm-based improved salp swarm algorithm.

Table 1: Parameter settings.

Parameter Symbol Value

Base station coordinates xB, yBð Þ 0, 0ð Þ
Maximum number of iterations L 100

Number of scattering areas M 3

Number of scattering points N 100

Positioning range 500m × 500m
AOA measurement error eθi 5%
TOA measurement error ~ti 5%
Width parameter σ 200
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The filtering process of interference scatterers is as follows.
First a pseudoscatterer Si′ is selected to calculate the Gaussian
kernel dij of this scatterer with another pseudoscatterer Sj′.
Second, we compare dij with dave. When dij > dave, Sj′ is an
adjacent pseudoscatterer of Si′. Third, we calculate the number
of all adjacent pseudoscatterers for all pseudoscatterers by the
above method as S1, S2,⋯, SN . Finally, the N/5 scatterers are
filtered out by comparing the distribution density. The pseu-
docode is shown in Algorithm 1.

4. Proposed Location Algorithm

In this section, the problem in (7) is solved using a simple
yet computationally efficient iterative algorithm. The salp
swarm algorithm (SSA) [17] is often used to solve nonlinear
optimization problems; however, the SSA converges slowly
and tends to fall into local optimum. In order to solve the
above problems, this paper proposes SSA-GA. Firstly, the
salp population is divided into two populations, i.e., the
leaders xi = ðxi1, xi2,⋯, xidÞ, i = 1, 2,⋯, n/2 and the followers
_xi = ð _xi1, _xi2,⋯, _xidÞ, i = 1, 2,⋯, n/2, respectively, and n is the
number of individuals. The leader finds the food position
based on the population information iteratively, which is
the optimal solution for the objective function. The followers
follow the leader to reach the optimal solution position. The
quality of each position is evaluated by calculating fitness
which is the value obtained by bringing the individual posi-
tion into the objective function. In the l-th iteration, the j-th
position of the i-th leader xij can be obtained as follows:

xij =
Fj + c1 uj − dj

� �
c2 + dj

� �
 c3 ≥ 0

Fj − c1 uj − dj

� �
c2 + dj

� �
 c3 ≤ 0

(
 i = 1, 2,⋯, n/2,

ð10Þ

where Fj denotes the j-th position of the food, c1 = 2e−ð4l/LÞ2

is the parameter that can be used to adjust the movement
range of the leader, and L corresponds to the maximum iter-
ation. c2 and c3 are random numbers uniformly generated in
the interval of ½0, 1�. Moreover, uj and dj indicate the upper
bound and lower bound of j-th position. To effectively
enhance the global search capability of the optimization
algorithm, inspired by the genetic algorithm, crossover
mutation is introduced to update the leader position, which
can be expressed as follows:

xij =
xij Pm < rand 0, 1ð Þ
rand 0, 1ð Þ × uj − dj

� �
Pm ≥ rand 0, 1ð Þ,

(
ð11Þ

where pm is the variation probability of the leader. When pm
is greater than the random value within ð0, 1Þ, the xij is ran-
domly assigned to a value in the range uj to dj. For crossover
cases, the leader position can be updated as follows:

xn1 , xn2 ,⋯, xnd
xm1 , xm2 ,⋯, xmd

=
xn1,⋯, xn

d ′ , x
m
d ′+1,⋯, xmd

xm1 ,⋯, xm
d ′ , x

n
d ′+1,⋯, xnd

(
 pc ≥ rand 0, 1ð Þ,

ð12Þ

where pc represents crossover probability of the leader. The sub-
script d′ is the starting position of crossover. ðxn1 , xn2 ,⋯, xndÞ
and ðxm1 , xm2 ,⋯, xmd Þ are the position of two random leaders.
When pc is greater than the random value within ð0, 1Þ, two
individuals start crossover at the d′-th position.

The fitness of the crossed and mutated leaders is calcu-
lated to compare with the corresponding old leaders, and a
new population of leaders is created using the better leaders
(in the sense of fitness function). The optimum leader is first
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Figure 3: Clustering results with and without filtering out interference scatterers. (a) Unfiltered. (b) Filtered.
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selected by calculating the fitness function, and then the
position of the first follower can be calculated by

_x1j l + 1ð Þ = 1
2 _x1j lð Þ + xbestj lð Þ
� �

, ð13Þ

where xbestj represents the j-th position of the best fitness

leader. _x1j is the j-th position of the first follower. Finally,
combined with the position of oneself and other individuals,
the position of followers can be iterated by

_xij l + 1ð Þ = 1
2 _xij lð Þ + _xi−1j lð Þ
� �

i = 2, 3,⋯, n/2: ð14Þ

The pseudocode of SSA-GA is shown in Algorithm 2.

5. Algorithm Complexity Analysis

In this paper, SSA-GA is used to estimate the target location.
We analyse and compare the average computing time com-
plexity of SSA-GA and traditional SSA. This paper assumes
that the population number of each iteration in SSA-GA
and SSA is N1, the number of iterations is �L, and the update
time of position iteration for each leader and follower is T1
and T2, respectively. In the iteration process, T1 ≈ T2. And
the time for calculating individual fitness is T3. When SSA-
GA runs for the maximum time, the leader population will
cross-mutate each time. Because the time of individual cross-
mutation is much less than that of calculating individual fitness,
the time of cross-mutation can be ignored. After cross-muta-
tion, the leader will recalculate the fitness. So, the total operation
time of SSA-GA can be calculated as T ′ = �L × ðN1 × T1/2 +
N1 × T1/4 +N1 × L1/2 +N1 × T2/2Þ. The total operation time
of SSA is T″ = �L × ðT1 + ðN1 − 1Þ × T2Þ. The above two for-
mulas are simplified to obtain that the average computational
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time complexity of SSA-GA and SSA is Oð7 × L1 ×N1/4Þ and
OðL1 ×N1Þ, respectively.

6. Results and Analysis

In this section, the performance of the proposed method is
analyzed comprehensively through Monte Carlo simulations
under various parameter settings. Consider a typical outdoor
NLOS propagation environment, let the positioning range
be 500m × 500m, and the position of the BS is ð0, 0Þ. The
measurement errors of AOA eθi and TOA ~ti are taken to be
Gaussian distributed with a mean value of 5%. The scatterers
obey the Gaussian distribution in the scattering region with
known radius and centre, in which the mean value is the
centre of the scattering region. Each positioning results are
the average of 100 Monte Carlo simulations. The specific
simulation setup parameters are shown in Table 1.

First, we study the performance scatterer filtering.
Figure 3 depicts the clustering results with and without fil-
tering out interference scatterers. It can be seen that the
interference scatterers are thinly distributed and filtered
out. Furthermore, the number of interference scatterers
increases from 12 to 17. Figure 4(a) shows the cluster centre

error with and without filtered interference scatterers. As
shown in Figure 4(a), filtering scatterers can effectively
decrease the clustering centre error for different numbers
of interference scatterers. In order to comprehensively eval-
uate the effect of filtering interference scatterers on position-
ing accuracy, Figure 4(b) presents the positioning error with
and without filtering out interference scatterers.

The cumulative distribution functions (CDF) of posi-
tioning errors for the SSA-GA, SSA, and LM algorithms
[18] are represented in Figure 5. Here, the maximum num-
ber of iterations is set to 50. The results show that the local-
ization results using the SSA-GA are better than those solved
by the other two optimization algorithms; it is because the
proposed SSA-GA has better global search ability and avoids
the occurrence of local optimization, and the target position
is more accurate.

In the actual positioning scenario, there are measure-
ment errors in the multipath parameters. Figure 6 illustrates
the influence of the test errors of AOA and TOA on
positioning accuracy. It is shown that with the increase of
AOA and TOA errors, the positioning performance
decreases. During localization, AOA is only used for scat-
terer filtering. TOA is used to construct the target equation,
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Figure 7: Effect of optimization algorithm on positioning performance. (a) SSA-GA. (b) SSA. (c) LM.
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so the localization performance decreases more rapidly with
the increase of TOA error.

For three scattering regions with a given radius and
number of scatterers, Figure 7 shows the positioning error
using three optimization algorithms. We can derive that
the proposed SSA-GA has higher localization accuracy com-
pared to the SSA and LM algorithms in Figure 7, and the
positioning error is less than 5%. The positioning error
becomes larger as the radius of the scattering area increases.
And when the number of scattering scatterers increases, the
positioning error becomes lower.

In order to further study the factors affecting positioning
accuracy, we simulate the proposed method in a different
number of scattering regions. We obtained the positioning
errors of the proposed method under the conditions of 3,
4, 5, and 6 scattering regions, respectively, as shown in
Figure 8. Figures 8(a) and 8(b) show the positioning error
when the positioning range is 300m × 300m and 400m ×
400m, respectively. It can be seen that when the number of
scattering areas is less than 6, the positioning error fluctuates
in a small range, and with the increase in the number of scat-
tering regions, the aggregation of scatterers decreases, result-
ing in the obvious increase in positioning error.

7. Conclusion

In this paper, the problem of target localization in outdoor
NLOS propagation environment is addressed by fused
AOA and TOA measurements. Firstly, the Gaussian kernel
function is used to judge and filter the interference scatterers
to improve the clustering accuracy of multipath parameters.
Furthermore, a heuristic optimization algorithm SSA-GA is
proposed to solve the target localization function. The algo-
rithm expands the leader population in SSA and iterates the
leader position through cross and mutation, which over-
comes the local optimal problem of traditional algorithms

and improves the positioning accuracy. Finally, the simula-
tion results verify the effectiveness of the proposed localiza-
tion method in a NLOS propagation environment and show
that the positioning error is within 5% of the positioning
range. The main direction of future work is to verify the
applicability of the proposed positioning algorithm in a
three-dimensional NLOS environment and carry out multi-
path measurements in the actual scenario to verify the posi-
tioning accuracy of the proposed positioning method.
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