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Recently, machine learning techniques, especially supervised learning techniques, have been adopted in the Intrusion Detection
System (IDS). Due to the limit of supervised learning, most state-of-the-art IDSs do not perform well on unknown attacks and
incur high computational overhead in the Internet of Things (IoT). To overcome these challenges, we propose a novel IDS
based on unsupervised techniques, namely, UTEN-IDS. UTEN-IDS uses the ensemble of autoencoders to handle the network
data and performs the anomaly detection by an Isolation Forest algorithm. The effectiveness of the proposed method is verified
using two benchmark datasets. The results show that our approach has significant advantages in classification performance and
proves its utility in the IoT network when compared to other approaches.

1. Introduction

Network security has become an essential challenge in infor-
mation systems, especially in the Internet of Things (IoT).
IoT is a network of devices such as computers and sensors.
The devices in IoT are likely to be vulnerable to various
attacks [1]. According to the report [2], two-thirds of enter-
prises have already experienced a cybersecurity incident
linked with their IoT devices. Some common cyberattacks,
such as Distributed Denial of Service (DDoS), call for further
research [3] and pose serious threats to IoT. The Intrusion
Detection System (IDS) has been created to detect attacks
in modern networks, including IoT networks. By analyzing
the traces of network intrusion, IDS can detect attacks and
raise alarms in real time.

However, traditional IDSs suffer from weaknesses such
as a low detection rate and high false alarm rate [4]. Nowa-
days, Machine Learning (ML) techniques are used in IDSs to
overcome weaknesses. ML is a type of interdisciplinary field
that emulate human intelligence. Supervised learning and

unsupervised learning are two types of ML [4]. The differ-
ence between them lies in the use of labeled data. The
state-of-the-art intrusion detection methods are almost
supervised learning methods, which means these methods
need both attack and normal data for model training. They
have achieved a high detection rate for some well-known
attacks. However, the labeling process is completed manu-
ally, and the samples may be mislabeled. Moreover, the
labels need to be updated regularly. Because of the lack of
relevant labels, these methods fail to detect increasing novel
attacks in the current IoT network.

Deep learning (DL) is one branch of ML, while the
neural network is the key component of DL. Compared
to ML models, DL models deal with big data effectively
and gain more and more attention. Some state-of-the-art
neural networks, such as Reservoir Computing Network
(RCN), are applied to target detection [5], text classifica-
tion, cybersecurity, and so on. In intrusion detection, DL
models with complex structures still require an amount
of labeled data for training and cost many computational

Hindawi
Wireless Communications and Mobile Computing
Volume 2022, Article ID 8614903, 11 pages
https://doi.org/10.1155/2022/8614903

https://orcid.org/0000-0001-7477-3637
https://orcid.org/0000-0003-1888-7001
https://orcid.org/0000-0001-7141-708X
https://orcid.org/0000-0001-6742-6338
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/8614903


resources. However, the high computational overhead
makes these models challenging to be used for IoT devices
with few resources [6].

In general, the existing solutions are in the following
difficulties:

(a) Over-reliance on supervised techniques.

(b) High computational overhead.

(c) Poor detection performance on unseen attacks.

We propose an Unsupervised Technique ENsemble-
based IDS (UTEN-IDS) to solve the above challenges.
UTEN-IDS combines unsupervised technologies in an
ensemble way. For example, an ensemble of lightweight
autoencoders (AEs) in UTEN-IDS is used to reconstruct
the input data and calculate the Root Mean Square Errors
(RMSEs). After the reconstruction, the Isolation Forest (IF)
[7] uses the RMSEs for final classification. Excellent detec-
tion performance is the most fundamental requirement for
an IDS [8]. We use the CES-CIC-IDS 2018 dataset [9] and
the MQTT-IOT-IDS2020 dataset [10] to verify the perfor-
mance. The results show that UTEN-IDS has a better detec-
tion performance. Because UTEN-IDS uses lightweight
models and generates low overhead, it can be applied to
IoT network.

The contributions of this paper are as follows:

(a) We propose UTEN-IDS, an unsupervised technique-
based IDS. The IDS is composed of unsupervised
techniques, such as AE and IF. AEs learn the input
data without the label, and IF is used to make the
final decision. AE can extract crucial features from
data, and the IDS takes full advantage of AE in intru-
sion detection to improve the detection rate.

(b) We propose a feature clustering method, which uses
the Mean Shift algorithm to cluster the features
based on the correlation of features. Without any
predefined parameters, this method divides the
closely related features into the same cluster for the
training of AE.

(c) We evaluate the performance of the proposed
method. The experimental results suggest that the
proposed UTEN-IDS is superior to the state-of-the-
art approaches.

The rest of the paper is organized as follows: Section 2
discusses the related research; Section 3 introduces the theo-
retical knowledge; Section 4 describes the proposed method;
Section 5 presents the experiment setup and results; Section
6 concludes the paper.

2. Related Work

The ML classifiers used in IDSs, such as Decision Tree
(DT) [11], Random Forest (RF) [12], Support Vector
Machine (SVM) [13], and neural network [14], can ana-
lyze the features of network traffic to distinguish malicious

activities from network traffic. Ingre et al. [15] proposed a
detection method based on the DT classifier, and the NSL-
KDD [16] dataset was used to test the performance. The
experimental results showed that the proposed method
could achieve high detection rates. Zhang et al. [17] pre-
sented an approach based on the Convolutional Neural
Network (CNN) and sampling technique, with an accuracy
of 98.82% on the UNSW-NB15 dataset [18] for binary
classification. In [19], the authors designed a feedback
mechanism to detect errors based on the recent detection
results. They used Multilayer Perceptron (MLP) as the
classifier, with an accuracy of 97.66% on the NSL-KDD.
As one paradigm of ML, the ensemble method constructs
the ensemble with base classifiers to improve accuracy
[20]. Voting is the simplest way to implement the ensem-
ble method. Gu et al. [21] proposed a method based on
SVM ensemble and feature augmentation, with an accu-
racy of 99.41% on the NSL-KDD dataset. In their research,
the quality-improved technique [22] provided high-quality
training data, and an SVM ensemble was applied for clas-
sification. In [23], the authors proposed a Voting-based
Neural Network (VNN). The method creates various neu-
ral network models and picks the best models from them.
The chosen models are used to perform the detection by
majority voting. Although the above methods achieve high
accuracy, they need labeled data for training and are insuf-
ficient to provide security against unknown attacks.

Supervised learning is more common than unsuper-
vised learning for intrusion detection. However, the unla-
beled traffic data generated in the network is suitable for
unsupervised learning, such as Unsupervised Feature
Selection (UFS) [24]. In [25], the authors used one UFS
technique to select features from intrusion detection data-
sets, and Redundancy Penalization (RP) technique based
on mutual information was applied to filter the features
further. Carrasco and Sicilia [26] proposed an unsuper-
vised neural network model based on Natural Language
Processing (NLP), tested against the UNSW-NB15 dataset,
and it achieved 99.20% precision and 82.07% recall.
Bohara et al. [27] used two unsupervised clustering algo-
rithms for intrusion detection. But this method needs a
combination of host and logs to achieve a good detection
performance. Mingqiang et al. [28] used a graph-based
algorithm to cluster the data and an outlier detection
method to decide which cluster was malicious. This
method remains computationally expensive due to the
complexity of the algorithm.

In [29], the authors proposed Kitsune, an online intru-
sion detection method based on AE. Kitsune reconstructed
the input data through AEs and used RMSE to record the
reconstruction error. The maximum RMSE in the training
phase was stored as a classification threshold. Kitsune per-
formed anomaly detection tasks in a semi-supervised way.
However, the threshold obtained in this way may be inac-
curate. In [30], the authors proposed AE-IDS, used the RF
algorithm to select features, and grouped the features by
affinity propagation clustering [31], and AEs reconstructed
the feature groups. AE-IDS selects features in a supervised
way, and selected features are grouped based on the
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average, ignoring the correlation between the features.
Zavrak and İskefiyeli [32] used Variational Autoencoder
(VAE) for intrusion detection and calculated Reconstruc-
tion Probability (RP). The RP value is used for classifica-
tion, but the proper threshold value was still hard to
determine. In [33], the authors used AE to classify the
intrusion behaviours, and IF is applied twice for reclassifi-
cation. However, this method did not consider the effect
of redundant features on detection performance and the
shortcoming of IF when tackling high-dimensional data.
The detection performance also depends on the predefined
value of the threshold. Unlike [33], we use IF to perform
the final prediction based on the output of AEs, and our
solution does not require a predefined threshold.

Although some achievements have been made in AE-
based intrusion detection, few researchers focus on the
choice of threshold for classification. It is critical to find
one proper threshold which directly affects the performance
of the classifier. In this paper, the proposed method can
address this issue. UTEN-IDS is inspired by the existing
research, but it is pretty different from the above methods.
It is composed of two layers. The first layer consists of AE,
and IF is in the second layer. IF plays the role of the thresh-
old by detecting unknown attacks adaptively.

3. Background

3.1. Autoencoder. AE is one kind of neural network. It is used
to output an accurate data representation by learning the the
low-dimensional features [34]. AE can transform the data
into a lower-dimensional space [35], and we can perform
the classification with the transformation differences.

Figure 1 shows the structure of the AE with three layers.
Suppose that the input sample X has n features, and Xi
denotes the ith feature where 1 ≤ i ≤ n. Each feature corre-

sponds to a neuron in the input layer separately. Encoding
and decoding are two main working phasesof AE. The data
is transformed from the input layer to the hidden layer in
the encoding phase, while the transformation from the hid-
den layer to the output layer is described as decoding. X is
reconstructed after the two phases to obtain the output Y ,
and Y is close to X. It is considered that an AE learns the
function Q: QðXÞ ≈ X.

The execution process of AE is not complex. Let Lj denotes
the jth layer in AE, and kLjk denotes the total number of neu-
rons in Lj. Thus, the weights which connect Lj to Lj+1 can be
described as thematrixWj with kLjk rows and kLj+1k columns.
The bias of connection is denoted as the vector bj with kLj+1k
dimensions. Let τ record the total parameters for all layers,
and τ = ðW, bÞ. τ is randomly generated when AE is initialized.
Forward propagation is used to activate the neural network
layer by layer. L2 is activated by W1, and L3 is activated by
W2…, the output layer is also activated by doing so. Let Zj be
kLjk-dimension vector generated by neurons in Lj, the calcula-
tion of Zj+1 can be defined as follows:

Zj+1 = F Wj
TZj + bj

� �
, ð1Þ

where F is called the activation function.
To make the propagation process more effective, sig-

moid is usually applied as F, and it is is given by:

F Xð Þ = 1
1 + e−X

, ð2Þ

Y is calculated in the output layer when forward propagation
is finished. AE tries to make the output value Y equal to the
actual value X. We denoted the above process as g; then, we
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Figure 1: AE topological structure.
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have gτðXÞ = Y . After that, the Back Propagation (BP) algo-
rithm is usually used to reduce the losses during
reconstruction.

Finally, the pattern of data is learned by AE. If the input
sample X is different from the samples that AE has learned,
there will be a significant error between X and Y . In this
work, the AE is only trained using normal data and learns
the concepts of legitimate behaviours in the network. After
that, the AE is tested with mixed data containing abnormal
cases, leading to a high reconstruction error for the anomaly.
Let n denotes the dimensionality of X. We can compute the
errors of reconstruction by RMSE:

RMSE X, Yð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
〠
n

i=1
Xi − Yið Þ2

s
: ð3Þ

3.2. Isolation Forest. IF is an unsupervised learning-based
anomaly detection algorithm, which focuses on the isolation
of few outliers [7]. IF could be seen as the ensemble of isola-
tion trees, which does not require the whole input data for
training and captures the character of outliers through the
samples of data. These trees work by splitting the data with
the randomly selected feature value. The path lengths of
anomalies are usually shorter than the normal ones in these
trees. Based on the path length of trees, the anomaly score is
calculated to identify the outliers. Suppose that the input
dataset has N samples, the anomaly score of sample X is
defined as follows:

Score Xð Þ = 2−E l Xð Þð Þ/C Nð Þ, ð4Þ

where lðXÞ denotes the path length in one isolation tree for
X, EðlðXÞÞ denotes the expected path length of these trees,
and CðNÞ is a constant associated with the dataset. The out-
liers usually have high scores. IF has been applied in differ-

ent fields due to its low memory consumption and high
detection precision.

4. Methodology

In this work, we have proposed UTEN-IDS to identify
cyberattack, especially unknown attacks. We aim to design
a lightweight IDS for IoT networks, providing accurate
detection performance. The framework of the UTEN-IDS
is shown in Figure 2. UTEN-IDS works through 3 main
phases: preprocessing, feature clustering, and anomaly
detection.

We clean the input data and select the best features dur-
ing the preprocessing phase. In the feature clustering phase,
the features are grouped into several subsets according to the
correlation between these features. After that, each sample in
the dataset is divided into several sub-samples, which are
distributed in different feature subsets. In the anomaly detec-
tion phase, the sub-samples in the same feature subset are
processed separately by AE. All the AEs are considered an
ensemble, and the number of AEs is also the number of sub-
sets. When AE completes the reconstruction of the samples
in the subset, we have the collection of RMSEs. We use the
IF algorithm to make the final classification based on all
the collections.

The current phase serves the next stage. As shown in
Figure 3, only normal traffic data is collected for training,
so there is no need to collect and label attack instances.
The mixed data consisting of both normal and attack
instances are used for the testing. In the following subsec-
tions, we will describe the proposed method in detail.

4.1. Preprocessing. The network traffic data with null values
or infinite values, in many cases, cannot be used as the input
of ML algorithms. Therefore, we process the input data in
the first phase. We replace the infinite value and null value
with zero for input data. Additionally, the features with
low variance are removed because the information provided
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Figure 2: The framework of UTEN-IDS.
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by these features is minimal, and they are not of benefit to
the training of AE.

4.2. Feature Clustering. Feature clustering is the process that
merges all features with high correlation into the same fea-
ture cluster. The purpose of feature clustering used in
UTEN-IDS is to train the ensemble of AEs better. By doing
so, redundant features are merged, and their impact on final
classification is reduced. On the other hand, the features
with the strongest correlation should be grouped into the
same subset. Different subsets represent different character-
istics of input data. An AE is trained with only one subset,
which helps the AE learn the data pattern deeply. We will
show the performance difference between the ensemble of
AEs and the single AE in the experiment.

In this process, we first evaluate the correlation between
the input features. The correlation coefficient between the
vectors α and β is computed as follows:

Corr α, βð Þ = Cov α, βð Þ
σααβ

, ð5Þ

where σα, σβ, Covðα, βÞ, and Corr are the standard deviation
of α, the standard deviation of β, the covariation of α and β,
and the correlation coefficient, respectively.

Secondly, we define the distance between two features
f i and f j based on the correlation coefficient:

Distance f i, f j
� �

= 1 − corr f i, f j
� ���� ���, ð6Þ

where 1 < i, j < T and T is the number of features.
We believe that features are either relevant or irrelevant,

and both positive and negative correlations show a link
between the features. Therefore, the absolute value of the
correlation coefficient is used in the equation. By doing so,
the distance of features is limited to the range ½0, 1�. If f i is
close to f j, the two features have a strong correlation with
each other. Then, we have the T-by-T distance matrix A,
where Aij denotes the distance between f i and f j.

Finally, we use an unsupervised clustering algorithm to
cluster the features. Specifically, we use the Mean Shift
algorithm [36] to cluster A. Mean Shift is an iterative algo-

rithm for clustering. There are two main reasons for using
Mean Shift:

(1) Mean Shift does not require predefined parameters,
such as cluster numbers and initial cluster centers.

(2) The performance of Mean Shift is robust with
acceptable algorithm complexity.

After that, the features in the same cluster are highly cor-
related, and the features in different clusters are almost irrel-
evant. If the input samples are all used for clustering, there
will be a significant increase in the computational complex-
ity. Therefore, we use 25% of the training set for clustering.
Let C represent the feature clustering result, a list of clusters
C = ½C1, C2,⋯, Ch�, where ∑h

i=1jCij = T , h is the number of
clusters, and jCij is the number of features in Ci. C is seen
as the feature mapping function. According to C, the fea-
tures of all training samples are grouped into h subsets,
which are used for the next phase. These subsets composes
the training set. It should be noted that feature clustering
is only performed in the training phase. For the testing pro-
cess, UTEN-IDS maps the input samples to hsubsets
according to C.

4.3. Anomaly Detection. A two-layer unsupervised ensemble
model is used for the anomaly detection phase. The ensem-
ble of AEs is implemented in the first layer, and IF is in the
second layer.

4.3.1. The Ensemble of Autoencoders. The standard DL
models (e.g., MLP) are trained in a supervised manner and
consume many computing resources. But AE is trained in
an unsupervised fashion, and it does not require labeled
samples. AE is also applied to the anomaly detection domain
[37]. For the abnormal sample, the reconstruction error cal-
culated by AE is different from the error of normal ones. The
IDS can classify the samples correctly with the errors. There-
fore, we choose AE as the core of UTEN-IDS and use AE to
capture the changes in the network behaviours from the
input.

As mentioned before, the AE is used to reconstruct the
input sample X. To make the reconstruction more efficient,
we apply the following settings to all the AEs:

(1) The number of layers is set to 3. AE with a three-
layer structure can reconstruct X well. On the other
hand, larger layers will increase the computational
overhead and require more time for training.

(2) The input and output layers have t neurons, where t
is the number of input features. The hidden layer has
75% ∗ t neurons because too many neurons in this
layer may lead to overfitting.

(3) The weights WD in the decoding phase is the matrix
transpose of the weights WE in the encoding, where
WD =WE

T . It is known as Tied Weights [38]. Only a
set of weights is adjusted by the AE, which speeds up
the training process and enables AEs to capture
more information from the data.

Input data

Detection
model

Attack

Normal
data

Mix data Normal
Classification

Train

Test

Figure 3: Training and testing processes.
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Suppose that there are h feature subsets, they are S1, S2
,⋯, Sh, where Si represents the feature subset i and 1 ≤ i ≤
h. According to C, sample X is mapped to h subsamples;
then, we have x1, x2,⋯, xh, and xi is in Si. All the sub-
samples in Si are used to train individual AE Ωi separately,
and the number of AEs is h. We take xi as an example to
explain this process.

For Ωi, the weights are initialized randomly before train-
ing. Firstly, the input xi is 0-1 normalized to get xi ′. Sec-
ondly, based on xi ′ and the weights, forward propagation
using the sigmoid function is completed through the entire
network; then, we have yi in the output layer. Thirdly, the
BP algorithm is used to propagate the errors during the pro-
cess. Based on the errors, we use Stochastic Gradient
Descent (SGD) to tune the weights of Ωi. By doing so, every
sample is learned by AE only once and the weights are
updated gradually. SGD has the advantage of being able to
train a detection model online [29]. After basic training of
UTEN-IDS locally, we can deploy it on the network for
detections or continue training online. Finally, the RMSE
between xi ′ and yi is calculated and returned as the output
for Ωi. We repeat the process until all the AEs are trained.
After that, the ensemble of AEs is generated.

After training, AE can execute the prediction on
unknownsamples. The input sample is also mapped into
h subsamples according to C. The sub-samples are used

as the input of Ω1,Ω2,⋯,Ωh, respectively. More specifi-
cally, the weights of Ωi are not updated anymore, only
forward propagation is performed and RMSE is returned
as a prediction score. If one attack instance is processed
by AE, we will have Rattack , and Rattack ≫ Rnormal, where R
denotes the RMSE.

4.3.2. Detection Using Isolation Forest. The ensemble of AEs
complete reconstruction for input subsets; then, we have the
RMSEs ½R1, R2,⋯, Rh�. However, it is insufficient to make
accurate decisions using these RMSEs simply.

In [29], the maximum RMSE in the training phase is
used as the classification threshold. Let Φ denote the thresh-
old. For a given instance, if the value of reconstruction error
is higher than Φ, this instance will be considered an anom-
aly. Furthermore, the larger values indicate more significant
anomalies. The threshold affects the classification perfor-
mance, and the proper value of the threshold is usually
tuned by experiments. It is not easy to find the optimal Φ.
In other words, the existing solutions do not have the self-
learning ability, and they can not detect attacks adaptively.

Based on the RMSEs, we use the IF algorithm to solve
the threshold problem. The IF model brought great perfor-
mance in the area of anomaly detection. It also works well
in situations where the training set does not contain anom-
alies [7].

One advantage of our method is its self-learning ability.
The IF algorithm distinguishes anomalies from normal
activities, making UTEN-IDS detect different kinds of
attacks in an adaptive manner. Specifically, the trained AEs
are used to predict the normal samples, and the obtained
RMSEs are used to train the IF. Then, AE and IF process
the test set which contains attack samples. The workflow of
anomaly detection can be summarized as follows:

Step 1. Split the input training set into two datasets, namely,
DAE andDIF.

Step 2. AEs are trained on DAE.

Table 1: Summary of CES-CIC-IDS 2018 dataset used in the
experiments.

Subdataset Size Distribution

D1 1048574
Benign: 446772

DoS attacks-SlowHTTPTest: 139890
DoS attacks-Hulk: 461912

D2 1048575
Benign: 996077

DoS attacks-GoldenEye: 41508
DoS attacks-Slowloris: 10990

D3 1048575
Benign: 360833

DDoS attack-LOIC-UDP: 1730
DDoS attack-HOIC: 686012

D4 1048571
Benign: 472380

DDoS attacks-LOIC-HTTP: 576191

D5 1048522
Benign: 1048009

Brute force-web: 362
Brute force-XSS: 151

D6 1048575
Benign: 667626

FTP-brute force: 193360
SSH-brute force: 187589

Table 2: Summary of MQTT-IOT-IDS2020 dataset used in the
experiments.

Traffic type Size Distribution (%)

Benign 165362 85.23

MQTT brute force 14544 7.50

Sparta SSH brute force 14116 7.27

Table 3: The proportion of the dataset.

Division Distribution

Training 80% normal

Validation 10%normal + 50%attack
Testing 10%normal + 50%attack

Table 4: Comparison results between anomaly detection methods.

Attack type Metric (%) LOF EE IF

MQTT brute force

Recall 98.93 97.21 99.46

F1 94.98 98.09 99.44

AA 97.40 98.39 99.60

Sparta SSH brute force

Recall 100.00 100.00 100.00

F1 95.43 99.49 99.63

AA 97.96 99.78 99.84
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Step 3. AEs predictDIFand obtain the collections of RMSEs,RIF.

Step 4. IF is trained on RIF.

Step 5. AEs predict the testing set and obtain the RMSEs,
then IF classifies the RMSEs.

DIF is set to 25% of the training dataset, and the samples
ofDIF is also used in the feature clustering phase to obtain C.
The remaining 75% of samples are used to train AEs. The
samples of DIF are unknown to AE, and the RMSEs calcu-
lated by AE will be close to the ones in the realistic scenario.
This allows UTEN-IDS to take full advantage of the training
set. If the whole training set or DAE is used as DIF, we find
that it takes more time to create the model, but the detection
rate is not improved.

If the RMSE of one instance is considered an outlier by
IF, this instance will be classified as an attack. IF suffers from
a “curse of dimensionality” [7], but the critical low-
dimensional features (RMSEs) will help IF achieve excellent
detection performance.

5. Experiments and Analysis

5.1. Dataset. The latest intrusion detection dataset represents
the modern malicious behaviours in the current network.
For this reason, the CSE-CIC-IDS 2018 dataset and the
MQTT-IOT-IDS2020 dataset are selected to demonstrate
the effectiveness of the proposed method.

The CSE-CIC-IDS 2018 dataset was published by the
Canadian Institute for Cybersecurity (CIC) in 2018, which
collected a variety of modern attack behaviours. This dataset
includes the experimental machine’s network traffic and sys-
tem logs, along with more than 80 features extracted from
the source pcap files by CICFlowMeter, a network traffic
flow generator and analyzer [39]. The dataset consists of dif-
ferent attack scenarios, and these scenarios are stored in sub-
datasets. However, not all the attack samples in the dataset
are suitable for testing models. Some attacks like “SQL injec-
tion” and “Infiltration” are insufficient to detect with net-
work traffic [30]. In this work, we pay close attention to
common attacks, such as DoS, DDoS, and brute force attack.
Therefore, as shown in Table 1, 6 subdatasets are used in our
experiments, involving eleven types of attacks. To test the
performance of UTEN-IDS properly, the features such as
source and destination IP are removed.

In this paper, we use the MQTT-IOT-IDS2020 dataset to
test the performance of UTEN-IDS in the IoT network. The
Message Queuing Telemetry Transport (MQTT) protocol is
one of the most standard communication protocols used in
IoT. The dataset consists of several kinds of IoT traffic,
which is generated under the simulated environment of the
MQTT-based IoT network. For this dataset, we are still con-
cerned about the attacks such as brute force. We extract two
kinds of brute force attacks from the original bi-directional

Table 5: Performance comparison between single AE and multiple
AEs.

Attack type Metric (%) Single AE Multiple AEs

MQTT brute force

Recall 97.15 99.46

F1 97.03 99.44

AA 97.89 99.60

Sparta SSH brute force

Recall 100.00 100.00

F1 98.10 99.63

AA 99.17 99.84

Table 6: Performance comparison between IF and UTEN-IDS.

Method
MQTT brute force Sparta SSH brute force

AA
(%)

F1
(%)

Recall
(%)

AA
(%)

F1
(%)

Recall
(%)

IF 99.33 98.84 99.44 99.60 99.07 100

UTEN-
UDS

99.60 99.44 99.46 99.84 99.63 100

Table 8: A comparison of F1 scores (%) on CES-CIC-IDS 2018
dataset.

Attack type
UTEN-
IDS

AE-
IDS

KitNET AE

DoS attacks-
SlowHTTPTest

96.77 99.89 93.67 91.78

DoS attacks-Hulk 14.65 41.76 0.59 18.76

DoS attacks-GoldenEye 80.74 26.24 54.99 63.33

DoS attacks-Slowloris 52.68 19.87 24.27 31.33

DDoS attack-LOIC-UDP 22.39 62.28 17.95 15.40

DDoS attack-HOIC 99.22 9.51 98.84 98.72

DDoS attacks-LOIC-HTTP 93.02 63.61 95.90 95.41

Brute force-XSS 0.72 0.10 0.22 0.20

Brute force-web 2.11 0.48 0.67 0.78

SSH-brute force 94.75 76.75 89.06 87.79

FTP-brute force 96.79 87.58 89.38 88.12

Table 7: A comparison of average accuracy (%) on CES-CIC-IDS
2018 dataset.

Attack type
UTEN-
IDS

AE-
IDS

KitNET AE

DoS attacks-
SlowHTTPTest

94.77 99.82 94.04 85.97

DoS attacks-Hulk 48.65 63.20 50.15 41.63

DoS attacks-GoldenEye 94.92 49.44 82.95 87.93

DoS attacks-Slowloris 94.73 71.22 82.53 87.88

DDoS attack-LOIC-UDP 91.69 98.55 89.04 86.83

DDoS attack-HOIC 92.50 52.50 88.86 87.71

DDoS attacks-LOIC-HTTP 88.98 54.44 85.04 80.58

Brute force-XSS 66.85 44.91 56.88 55.83

Brute force-web 72.31 58.81 63.00 69.57

SSH-brute force 93.28 57.58 82.74 80.46

FTP-brute force 95.19 79.46 82.79 80.47
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flow-based dataset. The data record the characteristics of the
flows in the IoT. The final dataset used in our experiment is
summarized in Table 2.

5.2. Evaluation Metrics. To evaluate the performance of
UTEN-IDS, we use the following evaluation metrics: recall,
F1 score, and Average Accuracy (AA). Recall reveals the
detection rate, and the F1 score comprehensively evaluates
the detection ability. It is the harmonic mean of the preci-
sion and recall, which can be formulated as:

F1 score = 2 ∗ Precision ∗ Recall
Precision + Recall : ð7Þ

The average accuracy evaluates the generalization ability
of the classifier. In the binary classification task, it is the
mean value of specificity and recall. F1 score, recall, and
AA are all positively correlated with the detection
performance.

5.3. Experimental Setup. We implement the UTEN-IDS in
Python. The experiments are conducted on the machine
with Linux operating system, 32GB RAM, Tesla V100
GPU, and Xeon GOLD 6148 CPU.

UTEN-IDS is only trained with normal traffic data in
specific network scenarios. In Table 3, for both the sub-
datasets of CES-CIC-IDS 2018 and the IoT dataset, 80% of
normal samples are used in the training process, 10% of nor-
mal samples and 50% of attack samples are used as the test
set, and the remaining samples are for validation. The nor-
mal samples are far more than the attack samples, and AEs
need many samples for the training process. Therefore,
80% of the normal data is selected for training. The propor-
tion of each class in the test and validation set is the same.
To evaluate the performance of UTEN-IDS, different types
of attacks are combined with normal data as the test set,
respectively.

5.4. Comparative Experiments. “Contamination” is a key
parameter for IF, which means the amount of contamination
of the dataset. This parameter determines the cutoff value of

anomaly score for IF. To obtain a robust model, we choose a
range of “contamination” values and perform the compari-
son on the validation dataset. Through experiment, we
observe that the values of 0.1 and 0.02 offer optimum perfor-
mance for CES-CIC-IDS 2018 and MQTT-IOT-IDS2020,
respectively.

Our method completes the detection through the anom-
aly detection algorithm, and the selection of anomaly detec-
tion algorithms affects the final classification result. Only
those state-of-the-art algorithms in anomaly detection are
worth considering. For this reason, we select Elliptic Enve-
lope (EE) [40] and Local Outlier Factor (LOF) [41] as com-
petitors of IF. They are all robust and explicable anomaly
detection algorithms. Table 4 shows that the UTEN-IDS
using IF achieves the best performance on all the metrics
on the validation set of the IoT dataset.

Table 5 shows the effect of feature clustering on the final
performance. We conduct a comparison experiment based
on the two schemes: single AE and multiple AEs. Single
AE represents only one AE used in UTEN-IDS, which skips
the feature clustering phase; multiple AEs represent the
UTEN-IDS with the ensemble of AEs. It can be inferred that
multiple AEs outperform single AE from Table 5.

UTEN-IDS solves the issue of intrusion detection by
using the IF, and IF is trained based on the RMSEs. To prove
that the AE helps improve the performance of the anomaly
detection algorithm, we compare the performance of
UTEN-IDS with the IF. Here, IF is trained based on the
raw data. In Table 6, the obtained results of UTEN-IDS are
significantly better than IF model, which proves that IF with
the RMSE attains a higher performance compared to IF with
the raw data.

The above experiments explain the necessity of some
steps or hyperparameters in our method. We conduct com-
parisons with several detection methods in the following
subsections.

5.4.1. Performance Analysis on CES-CIC-IDS 2018 Dataset.
In the selection of competitors, we consider the intrusion
detection methods belonging to the state-of-the-art. There-
fore, we select AE-IDS, KitNET [29], and AE. They are all
advanced detection methods. Here, AE is an unsupervised
neural network, which network structure is the same as
UTEN-IDS. We use one statistical approach used in [42]
to set the threshold of AE reconstruction loss, and the
threshold is used for classification. As mentioned earlier,
Kitsune is an online method and KitNET is the core detec-
tion algorithm of Kitsune. The anomaly threshold is a

Table 9: Performance (%) of the four intrusion detection methods on the IoT dataset.

Attack type Metric UTEN-IDS AE-IDS KitNET AE

MQTT brute force

Recall (%) 99.45 100 100 100

F1 (%) 99.48 99.07 85.14 67.24

AA (%) 99.62 99.59 92.33 78.57

Sparta SSH brute force

Recall (%) 100 99.31 100 100

F1 (%) 99.73 99.65 84.79 66.61

AA (%) 99.89 99.65 92.34 78.60

Table 10: A comparison of running time (S).

Attack type UTEN-IDS AE-IDS KitNET AE

MQTT brute force 46.96 98.06 82.59 17.99

Sparta SSH brute force 47.25 73.81 83.41 18.07
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crucial parameter for this method. We tune the parameter
value by experiments.

To prove the advantages of our proposed method against
new attacks, we compare the performances of UTEN-IDS
with the competitors on the CES-CIC-IDS 2018 dataset.
The four approaches use the same samples fortraining.
Then, the performance is measured by the testing set.

Table 7 shows the performance comparison of the four
methods on the different attack classes of the CES-CIC-
IDS 2018 dataset. For DoS attacks-GoldenEye, SSH-brute
force, and DoS attacks-HOIC, the accuracy values of
UTEN-IDS are significantly higher than that of others.

Table 8 shows the comparison results of the F1 score on
the dataset. F1 scores take into account both the detection
rate and classification performance. For most subdatasets,
the performance of UTEN-IDS is better than that of the
other methods.

In general, UTEN-IDS achieves the best results on most
subdatasets. The result shows that UTEN-IDS has a strong
generalization and detection ability against DoS, DDoS,
and brute force attacks. However, the proposed method does
not perform well in detecting DoS attacks-Hulk, DoS
attacks-SlowHTTPTest, and DDoS attack-LOIC-UDP.

For SlowHTTPTest attacks and LOIC-UDP attacks, we
notice that UTEN-IDS outperforms KitNET and AE, but it
is not as good as AE-IDS. One reason is the redundant fea-
tures of the subdatasets. We observe that AE-IDS uses the
RF algorithm to select less than 20 features and achieves
the best records, which indicates that many features can be
removed. On the contrary, UTEN-IDS uses more than 60
features, including many noisy features. These features have
a negative effect on the result. On the other hand, we find
that the reconstruction errors of the two types of attacks
are both great through the validation set. We take 0.001 as
the “contamination” value of IF and implement the experi-
ment again. For both attacks, the accuracy of UTEN-IDS
reached 99.98% and obtain a better performance.

In detecting “DoS attacks-Hulk,” the F1 score of our
method does not reach 20%. The reason for this is that there
is some similarity between the features of the subdataset. We
calculate the mean RMSE values of normal samples and the
attack samples, respectively. We find that their difference
was less than 0.01, which shows that these two kinds of sam-
ples are similar. Therefore, the IF algorithm cannot make
accurate decisions based on the RMSEs, which leads to poor
performance.

5.4.2. Performance Analysis on the IoT Dataset. To evaluate
the performance of our method in the IoT environment,
we compare UTEN-IDS with other detection methods using
the extracted samples of MQTT-IOT-IDS2020.

Table 9 shows the detailed performance comparison of
the four methods on the test set. The recall of UTEN-IDS
(99.45%) is lower than the best record (100%) in detecting
MQTT brute force attacks. However, UTEN-IDS achieves
the best accuracy and F1 score records of each class. The
results indicate that UTEN-IDS cope effectively with the
brute force attacks in the IoT network.

To further interpret the effectiveness of UTEN-IDS, we
conduct running time comparisons on the four detection
methods. Table 10 shows the total running time of these
approaches based on the extracted samples of MQTT-IOT-
IDS2020. It can be seen that the time cost of UTEN-IDS is
lower than that of AE-IDS and KitNET. Although AE takes
the shortest time, the classification performance is not as
good as UTEN-IDS.

Figure 4 shows the results for binary classification per-
formance based on the IoT dataset, which are measured by
recall, F1 score, and AA. Both kinds of brute force attack
samples are used to test the performance of different detec-
tion methods. We notice that both the F1 score and accuracy
of UTEN-IDS are higher than other methods. The compar-
ison results suggest that the proposed method is superior
to other intrusion detection methods.

70.00
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85.00

90.00

95.00

100.00

Recall F1 AA

UTEN-IDS
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Figure 4: A comparison (%) of binary classification.
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The results of the above experiments have demonstrated
the superiority of UTEN-IDS. The proposed method has not
only a robust detection performance but also a low time
complexity.

6. Conclusion

The threats of IoT intrusion are increasing day by day. In
our opinion, the solution is IDS. In this work, we proposed
UTEN-IDS, a lightweight IDS based on unsupervised tech-
niques, to tackle IoT security threats. It was divided into pre-
processing, feature clustering, and anomaly detection
phases. A variance filtering method was used to select fea-
tures in the preprocessing stage. The feature clustering phase
was used to obtain the feature subsets. The anomaly detec-
tion module of the proposed method was a two-level ensem-
ble model. AEs were used in the first level, and IF was in the
second level. The AEs reconstructed the input feature subset
and calculated the RMSEs. The IF performed the classifica-
tion based on all the RMSEs.

Two public datasets, CES-CIC-IDS 2018 and MQTT-
IOT-IDS2020, were used to verify the performance of the
proposed method. The results showed that our method is
superior to the other methods. However, our approach did
not perform well in detecting some attack types, such as
“DoS attacks-Hulk.” In our future studies, we plan to opti-
mize our method to improve the detection rate of attacks
that are hard to classify.
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