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Cognitive communication behavior is becoming a research hotspot in the field of communication confrontation. In theory, the
behavioral intention of noncooperating parties can be obtained by analyzing communication signals. Considering the
complexity of the actual electromagnetic environment, even when the signal-to-noise ratio (SNR) is low, a certain accuracy still
needs to be guaranteed. In this paper, according to five types of physical burst waveforms defined by the shortwave radio
interoperability standard, a signal feature extraction method based on autocorrelation spectrogram features is proposed, and a
two-input convolutional neural network (CNN) for classification is designed to improve the identification ability of shortwave
communication behavior. The experimental results illustrate that the five kinds of shortwave radio communication behaviors
can be accurately identified even when the noise is large. The research in this paper can directly analyze the communication
behavior through physical layer signal without demodulation, which has the ability to grasp the communication behavior of
the shortwave radio station in real time.

1. Introduction

Behavior is the active response of an organism such as a per-
son or an animal to the internal and external environment
under the control of thought. Research on behavior recogni-
tion based on machine learning (ML) [1–3] and probabilistic
methods [4–7] has been developing rapidly. In recent years,
the proposal of cognitive electronic warfare (CEW) requires
that communication countermeasures be intelligent, and the
concept of cognition has begun to receive attention in the
field of communication. Research on cognitive radio [8],
cognitive radar [9], cognitive Internet of Things (IoT) [10],
and cognitive electronic jamming [11] has developed rap-
idly. Cognitive communication behavior is a potentially
hot area. In electronic warfare, if enemy behaviors can be
analyzed in real time, we can take actions in a timely man-
ner, which is conducive to gaining advantages.

In 2010, a project called Behavioral Learning for Adap-
tive Electronic Warfare (BLADE) [12] was proposed to meet
the needs of intelligent electromagnetic spectrum opera-
tions. The importance of behavioral learning was empha-

sized in the field of electronic warfare for the first time. It
is meaningful to carry out behavioral recognition research
based on wireless signals from communication radiation
sources (CRSs). CRS itself is a concept without biological
characteristics, but because of human operation, it has
observable behavioral information that reflects the behavior
of the operator. Taking a radio station as an example, its
operator will perform operations such as calling, data trans-
mission, image transmission, and switching on and off. The
radio station will change its working mode and send differ-
ent signals according to what the operator does; therefore,
it has observable behavioral information. By analyzing the
wireless signals obtained by reconnaissance, a series of
behavioral information can be unscrambled, and the opera-
tor’s task, situation, status, and other key information can be
understood.

In recent years, machine learning (ML) has been applied
in the field of signal processing, including signal modulation
pattern recognition [13–16], CRS individual recognition
[17–19], communication specific signal type recognition
[20, 21], and other fields, and a series of achievements have
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been achieved. However, research on CRS behavior recogni-
tion is still in the beginning stage. There have been very few
relevant studies in the published literature thus far.

Research on communication behavior can be divided
into communication group behavior [22, 23] and communi-
cation individual behavior [24–36]. The former mainly
refers to a series of combat tasks coordinated by groups
equipped with CRS, while the latter mainly refers to the
working modes, tasks of a certain CRS, and the actions of
the person or unit operating the CRS. Individual communi-
cation behavior is the focus of our research. At present, rel-
evant research is mainly based on the following three
methods. The first method is data mining for spectrum
monitoring data to gain communication relationships
[24–29]. The second method is to obtain the communication
behavior by parsing the communication protocol. [30, 31].
The third method transforms the problem of communica-
tion behavior recognition into the problem of radio signal
classification recognition by analyzing the behavior connota-
tion of intercepted radio signals [32–36]. Liu et al. proposed
a method to discover the communication relationship of
ultrashort-wave radio stations [24]. In the literature [25],
DBSCAN is improved and used to mine the hidden commu-
nication behavior of spectrum data. By mining the physical
characteristics of the spectrum monitoring signal and ana-
lyzing their statistical laws, individual communication
behavior can be known [26]. Mining of communication rela-
tions in the case of missing and disordered data is realized in
the literature [27]. Pan et al. proposed a communication
behavior structure mining algorithm, which can be used
without analyzing the signal content to obtain the communi-
cation relation and the communication node of the target
field communication [28]. Cheng et al. proposed a method
called DECBR, which DCGAN was used for data enhance-
ment and realized the identification of communication
behaviors under small sample conditions [29]. Zhang et al.
obtained the behavioral intention of the frequency hopping
transmitter by analyzing the TDMA protocol [30]. You
and Ge proposed a regular expression-based Fetion commu-
nication message identification method through the analysis
of specific fields in the Fetion protocol, so as to achieve the
purpose of inferring the Fetion communication behavior
[31]. Zhou et al. observed the differences in the deep-level
features of shortwave burst waveforms and demonstrated
the feasibility of directly identifying shortwave communica-
tion behaviors based on physical layer signals [32]. Wu
et al. used the improved LeNet to identify five communica-
tion behaviors [33]. Wu et al. [34] used the improved one-
dimensional DenseNet to identify seven automatic link
establishment (ALE) behaviors under the same types of
burst waveform BW0. Furthermore, literature [35] con-
ducted visualization research of the seven ALE behaviors
mentioned in literature [34] and observed the deep-level fea-
ture differences of the seven ALE signals. Based on this,
ACGAN was used to recognize seven types of ALE behavior
under small sample conditions [36].

In this paper, the relationship between burst waveforms
and communication behaviors is first introduced according
to the five types of burst waveforms specified by the MIL-

STD-188-141B standard, and then a feature extraction
method is proposed for extracting the features of the auto-
correlation spectrogram of the signal. The features extracted
by this method are not easily polluted by noise, especially
under the condition of low SNR, and more original features
of the signal can be presented on the spectrogram. The main
contributions of this paper are as follows:

(i) we use the autocorrelation method to preprocess the
signal and convert the noise-containing signal into
an autocorrelation time series. This method is sim-
ple to calculate, can effectively reduce the interfer-
ence of Gaussian white noise, and can facilitate
subsequent feature extraction

(ii) we perform bispectral transformation on the auto-
correlation time series and extract bispectral fea-
tures. The higher-order spectral domain can
present some feature differences that cannot be pre-
sented in the time domain. It is convenient to save
the extracted features in a format similar to a pic-
ture, which is beneficial to the processing of the
CNN. Compared with traditional method, this
method can significantly improve the recognition
accuracy under low SNR conditions

(iii) we design a two-input CNN for classification recog-
nition. The extracted autocorrelation spectral fea-
tures are input into the two branches of the neural
network, and then the outputs of the two branches
are processed. This two-input CNN can further
extract features and reduce the possibility of incor-
rect decisions, meanwhile, it does not require much
additional computing time

2. Background

The third-generation shortwave communication protocol
standard MIL-STD-188-141B is proposed to develop adap-
tive short-wave communication, realize shortwave link
establishment, link maintenance, shortwave network con-
struction, and improve communication quality. Corre-
sponding burst waveforms are defined in this standard for
the various kinds of signaling required in the short-wave
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HF subnetwork layer and higher layers

Session manager

Physical layer burst waveforms (BW0~BW4)
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Figure 1: 3G HF protocol suite.
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communication system, to meet distinctive requirements for
payload, duration, time synchronization, acquisition, and
demodulation performance in the presence of noise, fading,
and multipath. Figure 1 shows its basic architecture.

Among them, the physical layer defines five burst wave-
forms to perform different tasks, including BW0, BW1,
BW2, BW3, and BW4. In Figure 2, the details of the five types
of burst waveforms are summarized, which contain signal
parameters, application scenarios, and other information.

Further, the generation process of the five burst wave-
forms is shown in Figure 3.

Each type of burst waveform can achieve its own func-
tion in short-wave communication. BW0 is used for third-
generation automatic link establishment (3G ALE), BW1 is
used for traffic management (TM), BW2 and BW3 are used
for data transmission, respectively, high-rate data link
(HDL) and low-rate data link (LDL) transmission, and
BW4 is used for LDL acknowledgment. To clarify what these
behaviors are, we will explain them one by one.

ALE encompasses establishing a communication link for
shortwave communication. TM represents coordinating
traffic exchanges on connections established based on the
3G-ALE protocol, and establishing a traffic link on which
traffic can be delivered. HDL consists of providing reliable
high-rate point-to-point data transfer service over the estab-
lished links, while LDL means providing reliable low-rate
point-to-point data transfer service.

This also illustrates that different burst waveforms corre-
spond to different communication behaviors, which is sum-
marized in Table 1.

3. Methods

Figure 4 shows the simple technical route of our research.
On the basis of the burst waveforms of the physical layer,
we carry out research on the identification of the communi-
cation behavior of the shortwave radio. Since behavior is a
concept that describes biology, it is necessary to explain its
meaning in the field of communication. Then, the mapping
relationship between communication behaviors and burst
waveforms needs to be found; both steps are mentioned in
the second section. After the previous steps, the problem is
transformed into the problem of signal processing and clas-
sification. In this section, the method of signal preprocessing
is given, while the structure of the network model is
designed.

3.1. Signal Denoising by the Autocorrelation Method. Sup-
pose xðtÞ is a random signal, Rxx is the autocorrelation func-
tion of xðtÞ, which is defined as the degree of correlation of
xðtÞ at different times. Then the definition formula of Rxx is
as follows:

Rxx τð Þ = E x t + τð Þx tð Þf g ð1Þ

Therefore, assume nðtÞ is the additive white Gaussian
noise (AWGN), its mean is 0 and its variance is δ2n, xðtÞ is
the transmitter signal, nðtÞ and xðtÞ are uncorrelated, and s
ðtÞ is the receiver signal, that is,

s tð Þ = x tð Þ + n tð Þ: ð2Þ

Wave
form

Used for Burst duration Payload Preamble FEC coding Inter-
leaving

Data format Effective
code rate

BW0 3G-ALE PDUs 613.33ms
1472 PSK symbols

26 bits 160.00 ms
384 PSK
symbols

Rate = 1/2,
K = 7
convolutional
(No flush bits)

4 × 13 block 16-ary
orthogonal
walsh
function

16-ary
orthogonal
walsh
function

1/96

BW1 Traffic manage-
ment PDUs,
HDL acknow-
ledgement PDUs

1.30667 seconds
3136 PSK symbols

48 bits 240.00 ms
576 PSK
symbols

Rate = 1/3,
K = 9
convolutional
(No flush bits)

16 × 9 block 1/144

BW2 HDL traffic data
PDUs

640 + (n⁎400) ms
1536 + (n⁎960) PSK
symbols
n = 3, 6, 12, or 24

n⁎1881
bits

26.67 ms
64 PSK
symbols (for
equalizer
training)

Rate = 1/4,
K = 8
convolutional’
(7 flush bits)

None 32 unknown/
16 known 

Variable
1/1 to
1/4

BW3 LDL traffic data
PDUs

373.33 + (n⁎13.33) ms
32n + 896 PSK
symbols,
n = 64, 128, 256 or 512

8n + 25
bits

266.67 ms
640 PSK
symbols

Rate = 1/2,
K = 7
convolutional’
(7 flush bits)

24 × 24, 32 × 3444
× 48, or
64 × 65 convol-
utional block

16-ary
orthogonal
walsh
function

Variable
1/12 to
1/24

BW4 LDL acknow-
ledgement PDUs

640.00 ms
1536 PSK symbols

2 bits None None None 4-ary
orthogonal
walsh
function

1/1920

Figure 2: Details of different burst waveforms.
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(a) The generation process of BW0
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(64, 4)
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TLC/ACC
guard
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256 bits
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preamble
576 bits

3136 bits 8 PSK
modulation

Burst
waveform

modulation

Sending

(b) The generation process of BW1

Valid bit

1881 bits

32 bits CRC

7 bits
set

encoder
zero

Forward error correction
encoder (4, 1, 8)

Modulation
symbols

i = mod (FT, 4)

1920 bits 640 bits
32 bit octal symbols 16 bit zero

32 bit octal symbols 16 bit zero

32 bit octal symbols 16 bit zero

...

...

960 bits
octal

symbols

PN Sequence
FT

FT

n⁎960 bits
here n = 3

Acquisition
preamble
576 bits 

8 PSK
modulation

Burst
waveform

modulation

Sending

740 bits head zero
sequence

528 bits head zero
sequence

Bitout0

Bitout1

Bitout2
Bitouti

Bitout3

(c) The generation process of BW2

Figure 3: Continued.
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Then, according to Equation (1), the autocorrelation
function of sðtÞ can be expressed as

Rss τð Þ = E s t + τð Þ sð tð Þf g = E x t + τð Þ + n t + τð Þð Þ x tð Þ + n tð Þð Þf g
= Rxx τð Þ + Rxn τð Þ + Rnx τð Þ + Rnn τð Þ = Rxx τð Þ + Rnn τð Þ:

ð3Þ

Since nðtÞ has the following nature

Rnn τð Þ = E n t + τð Þ nð tð Þf g =
0, τ ≠ 0,
δ2n, τ = 0:

(
ð4Þ

Then, (Equation (3)) can be converted to (Equation (5))

Rss τð Þ =
Rxx τð Þ, τ ≠ 0,
Rxx τð Þ + δ2n, τ = 0:

(
ð5Þ

where τ is the time difference, which can take positive or
negative numbers.

Therefore, it is proven that the autocorrelation function
of sðtÞ is not easily affected by AWGN. When the SNR is
0 dB, the time domain waveform of BW0 is shown in
Figure 5. The abscissa represents the duration of the signal,
and the ordinate represents the amplitude of the signal.

Valid bits
(8n + 25) bits
here n = 64

32 bits CRC

7 bits
set

encoder
zero

576 bits

i = mod (FT, 2)

Forward error correction
encoder (4, 1, 8)

576 bits

Ininter
weaving

24⁎24
Walsh

sequence
(16, 4)
spread

spectrum

Acquisition
preamble
640 bits

8 PSK
modulation

Burst
waveform

modulation

Sending

PN sequence
2304 bits

Bitout1

Bitout2
Bitouti

(d) The generation process of BW3

Valid bit

2 bits 16 bits
Reapt

80 times 1280 bits

PN Sequence
1280 bits

1280 bits

Acquisition
preamble
256 bits 

1536 bits
Octal

number

8 PSK
modulation

Burst
waveform

modulation

Sending

Walsh
sequence

(16, 2)
spread

spectrum

(e) The generation process of BW4

Figure 3: Signal generation process of burst waveforms.

Table 1: The connection between burst waveforms and behaviors.

Physical layer signal Behavioral meaning

BW0 burst waveform Automatic link establishment

BW1 burst waveform Traffic management and HDL acknowledgment

BW2 burst waveform Transfers of traffic data by the HDL protocol

BW3 burst waveform Transfers of traffic data by the LDL protocol

BW4 burst waveform LDL acknowledgment
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According to Equation (5), the autocorrelation denoising
curve of BW0 is shown in Figure 6. The abscissa is the time
difference, and the ordinate is the autocorrelation function.

3.2. High-Order Spectral Analysis of Signals. Compared with
the power spectrum, the higher-order spectrum contains
more useful information, therefore, it can be considered as
the development of the power spectrum. The bispectrum
of the signal, also called the third-order spectrum, is the
most basic higher-order spectrum. It has the advantages of
requiring a small amount of calculation, suppressing AWGN
to a certain extent [37], and retaining the original informa-
tion of the signal as much as possible, so it is widely used
in the field of signal processing.

The bispectrum S3x and third-order cumulant c3x of xðtÞ
are defined as follows:

S3x ω1, ω2ð Þ = 〠
∞

τ1=−∞
〠
∞

τ2=−∞
c3x τ1, τ2ð Þe−j ω1τ1+ω2τ2ð Þ, ð6Þ

c3x τ1, τ2ð Þ = E x tð Þx t + τ1ð Þx t + τ2ð Þ½ � − E x tð Þ½ �E x t + τ1ð Þx t + τ2ð Þ½ �
− E x t + τ1ð Þ½ �E x tð Þx t + τ2ð Þ½ � − E x t + τ2ð Þ½ �E x tð Þx t + τ1ð Þ½ �
+ 2E x tð Þ½ �E x t + τ1ð Þ½ �E x t + τ2ð Þ½ � = cum x tð Þx t + τ1ð Þx t + τ2ð Þ½ �:

ð7Þ

Among them, the necessary and sufficient condition for
the existence of S3x is that the third-order cumulant c3x is
absolutely summable, that is,

〠
∞

τ1=−∞
〠
∞

τ2=−∞
c3x τ1, τ2ð Þj j <∞, ð8Þ

where τ1and τ2 are independent variables of c3x, represent-
ing two time differences, ω1 and ω2 are the axes of the bis-
pectral two-dimensional plane [38]. Through bispectrum
transformation, the signal is transformed from the time
domain to the spatial domain, which can retain more useful
information.

3.3. Feature Extraction Process. The autocorrelation spec-
trum of the signal sðtÞ can be calculated according to Equa-
tions (5), (6), and (7), and the specific process is as follows:

(a) According to Equation (5), calculate the autocorrela-
tion function Rss of sðtÞ.

(b) Calculate the third-order cumulant c3s of Rss, and
then calculate the bispectrum S3x of Rss according to Equa-
tion (7). Here, we denote S3x as the autocorrelation spectrum
of sðtÞ.

When the SNR is 0 dB, we plot the autocorrelation spec-
trogram pictures of five kinds of burst waveforms, as shown
in Figure 7, where f1 and f2 are normalized frequencies.

Description of communication behaviors

Burst waveforms (BW0~BW4)

Autocorrelation denoise method

Bispectrum transform

Data
preprocessing 

CNN model
Datasets

Classsfication

Communication behavior recognition results

Description
reflection

Figure 4: Simple technical route.
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For the convenience of observation, in Figure 8(a), we
draw the contour map of Figure 7(a). The contour map
can be considered as a two-dimensional representation of
the three-dimensional autocorrelation spectrogram image.
As a comparison, we also draw the autocorrelation spectro-
gram contour map of BW0 when the SNR is 5 dB, as shown
in Figure 8(b).

According to Figure 8, we know that when the SNR is
0 dB, the autocorrelation spectrogram contour map is clut-
tered due to the influence of noise. When the SNR increases
to 5 dB, the noise part is basically invisible, which proves the
effectiveness of the autocorrelation method we select in
denoising. It is feasible to extract the autocorrelation spec-
trogram features of the signal.

The process of extracting features is shown in Table 2.

3.4. Neural Network Model. In this section, we design a two-
input CNN. Compared with the traditional CNN, two inde-
pendent inputs represent two different networkmodels, which
can further learn the extracted features, which further reduces
the probability of misclassification. The network model we
designed can be considered to have two independent model
structures because of its two branches. These two independent
models only have convolutional layers, pooling layers, and
fully connected layers, which are simple in structure, easy to
implement, and fast to compute. Figure 9 is the framework
of the two-input CNN we designed, which shows the basic
structure of the network in this paper.
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Figure 7: Autocorrelation spectrogram (SNR = 0 dB).
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The extracted features are subjected to convolution oper-
ations in the two models, and then two outputs are obtained.
The two outputs are merged through the add layer, and then
through the subsequent layers, the classification task can be
completed.

Figure 10 shows the specific structure of the two
branches Model 1 and Model 2. Among them, the first
branch has a small number of layers, only two convolution
layers and two fully connected layers. After convolution cal-
culation, features can be learned quickly and effectively. The
second branch has more convolutional and fully connected
layers than the first branch. The operation time of this
branch is longer, but further features can be learned. Com-
pared with traditional CNN, the model has stronger learning
ability by using two branches to learn features separately. At

the same time, because the number of layers in the first
branch is relatively small, the extra calculation time con-
sumption brought by the design of the two inputs is not
much.

In this paper, the inputs of both two branches are auto-
correlation spectrogram feature matrix M extracted in
Table 2.

The training process of our neural networks is summa-
rized in Table 3.

BW0
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Figure 8: Contour maps of autocorrelation spectrogram.

Table 2: The process of extracting autocorrelation spectrogram
features.

Step Detailed process

Step
1

signal generation: According to the MIL-STD-188-141B
standard, generate five types of burst waveforms with noise

Step
2

calculate the autocorrelation function: Based on Equation
(5), calculate the autocorrelation function Rss, to achieve

the purpose of noise reduction

Step
3

bispectrum transformation: According to Equation (6) and
(7), calculate the bispectrum transformation matrix S3s of

Rss. The dimension of S3s is 256 × 256

Step
4

down sampling: For matrix S3s, sample one sample point
for every two points, so that the matrix dimension becomes
256 × 128, to realize the dimension reduction of the matrix

Step
5

constructing a three-dimensional matrix: Extract the odd
and even rows of the matrix, respectively, and construct
matrices S3s1 and S3s2 with a dimension of 128 × 128. S3s1
and S3s2 are the first and second channels of the three-

dimensional matrix M, and the dimension of M becomes
128 × 128 × 2

M is the extracted feature matrix

Input_1

Model_1

Add

LeakyReLU

BatchNormalizatin

Dropout

Dense

Softmax

Communication
behavior

Model_2

Input_2

𝛼 = 0.05

0.2

256

5

Figure 9: Network framework.
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4. Experiments

The experiments consist of the following parts. First, the rec-
ognition accuracy of the proposed algorithm for five com-
munication behaviors is compared under different SNR
conditions, meanwhile, the effects of different parameters
on the experimental results are compared. Then, the
improvement in the results of our proposed algorithm is ver-
ified by comparison with the previous algorithm. Finally, the
recognition results of different network models are
compared.

The experimental parameters are set as follows: 5000
samples are selected. The number of training sets and test
sets is divided into 4 to 1, and 25% of the training sets are
randomly selected as validation sets. We use the momentum
optimizer, which dynamically adjusts the learning rate. The
initial learning rate of the network is 0.01; the attenuation
factor of the learning rate is 1e-6; the batch size is 64, and
the epoch is 500.

Experimental Environment: Windows 10 Operating Sys-
tem, 11th Gen Intel (R) Core (TM) I5-11260H CPU, NVI-
DIA GeForce RTX3050, Python 3.7, TensorFlow 2.5.0, and
Keras 2.8.0.

4.1. Verify the Validity of the Algorithm. According to the
experimental parameters, the algorithm should first be veri-
fied. When the SNR is 0 dB, 5 dB, 8 dB, 10 dB, and 15dB,
respectively; the recognition results on the test set are shown
in Figure 11. The results illustrate that BW1 and BW2 are
most easily classified into wrong classes. When the SNR is
not lower than 5dB, the recognition accuracy of each com-
munication behavior can reach more than 80%, and with

the reduction of noise, the recognition accuracy can reach
close to 100%.

Figures 12–14 show the comparison of different initial
learning rates, different attenuation factors, and different
batch sizes, respectively.

The experimental results show that when the initial
learning rate is 0.01, and the attenuation factor is 1e-6; the
learning ability of our designed network is the best. When
the batch size is 64, 32 and 16, the learning ability of the net-
work is not much different. However, according to Table 4,
when the batch size is 64, the learning time per epoch is
the shortest. As a result, it is reasonable to set the batch size
to 64.

4.2. Experimental Comparison of Different Algorithms. Cur-
rently, the research on radio behavior recognition based on
signals from the physical layer is in its infancy, and only
the study in [33] carries out communication behavior recog-
nition based on five types of burst waveforms. When the
SNR is 15 dB, the recognition accuracy can reach 99.3%,
but with the increase in noise, the recognition accuracy obvi-
ously decreases. When the SNR is lower than 8dB, the over-
all recognition accuracy is lower than 80%. When the SNR is
0 dB, it is even lower than 50%. In this experiment, we com-
pare the algorithm proposed in this paper with the algorithm
in the literature [33] as well as the network model in this
paper plus, the features in the literature [33], and the net-
work model in this paper plus the features in the literature
[33]. The experimental results are illustrated in Figure 15.

It can be observed that the algorithm proposed in this
letter offers the best results, especially on the lower SNR
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Figure 10: Network model.

Table 3: Training process.

Step Training process

Step1 send the feature matrix M obtained by Table 2 to the two inputs of the network

Step2 convolutional calculations, obtain two outputs X1 and X2, both of them have 256 dimensions

Step3 consider X1 and X2 as two new inputs, and through the add layer, X is obtained, X = X1 + X2

Step4 let X pass through the last few layers, the communication behavior identification is completed
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Figure 11: Confusion matrices for five communication behaviors.
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conditions. Since the autocorrelation denoising method can
effectively eliminate noise; our algorithm can significantly
improve recognition accuracy. Even if the SNR is 0 dB, the
accuracy can still reach 91%. When the SNR is 5 dB, 8 dB,

and 10dB, the accuracy of the algorithm in this letter can
increase by 23.8%, 15.9%, and 3.6%, respectively, compared
to the algorithm in literature [33]. When the SNR is 15 dB,
the influence of noise can be ignored, and the autocorrela-
tion method to reduce noise will cause the loss of informa-
tion from the original signals, which results in the loss of
features. This part of the loss offsets the influence of noise,
making the accuracy slightly lower than in the literature
[33], but it can still reach 99.2%.

If we extract the autocorrelation spectrogram features
and select the network model in the literature [33], the rec-
ognition accuracy under low SNR conditions can still be
effectively improved. When the SNR is 0 dB, 5 dB, 8 dB,
and 10dB, the recognition accuracy can increase by
43.6%,23.0%, 15.9%, and 3.4%, respectively. When the SNR
is 15 dB, due to the loss of features caused by the denoising
method, the recognition accuracy is lower than that of liter-
ature [33]. Compared with the method in this paper, the rec-
ognition accuracy is also lower due to the simple network.

In addition, when the extracted features are autocorrela-
tion spectrogram features, the recognition accuracy can be
further improved by using the network in this paper.

4.3. Comparison of Different Network Models. This experi-
ment compares the recognition accuracy of several classical
convolutional neural networks. First, as representatives of
simple convolutional neural networks, AlexNet and LeNet
are chosen as comparison objects. Classic network models
such as VGG-19 and ResNet34 are also compared. When
the network tends to be stable, the experimental results of
different network models are shown in Figure 16.

AlexNet itself is easy to implement due to its simple
structure, and its experimental results are better than those
of LeNet and VGG-19, and slightly inferior to ResNet34.
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Figure 12: Comparative experiments with different initial learning rates.
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Table 4: Training time for a single epoch.

Batch size Time(s)

64 4.079

32 5.055

16 8.044
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When the SNR ranges from 0 to 15 dB, our network model
can perform better recognition, which is superior to tradi-
tional CNNs.

5. Conclusions

In this paper, we carry out research on the identification of
shortwave radio communication behavior, starting from five
types of burst waveforms in the physical layer. A signal fea-
ture extraction method based on autocorrelation spectro-

gram features is proposed. A neural network model is
improved to further optimize the algorithm. The experimen-
tal results prove that the autocorrelation spectrogram fea-
tures are not easily affected by noise, and the proposed
network can further improve the recognition results. Our
proposed algorithm can dramatically improve recognition
results under low SNR conditions. Behavioral learning is
increasingly important in communications, as a typical
CRS, shortwave radio is just the first research object in a
series of relevant works. Our subsequent work will continue
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to focus on behavior recognition research on the CRS. In the
future, we aim to expand related research to more types of
CRS and wider communication scenarios, and consider
more environmental factors, which is quite meaningful for
communication confrontation.

Data Availability

Each burst waveform is generated according to the third-
generation shortwave communication protocol standard.
The dataset we use is made according to the feature extrac-
tion process mentioned in this paper. You can also ask for
the data by contacting lihaitao_01@163.com.
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