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With the rapid development of mobile Internet and communication technology, location-based services (LBS) are widely used in
our daily life. The server stores a large amount of user location data, and these location data constitute user trajectories. If
trajectory information on the server is leaked, it will seriously endanger users’ privacy. Trajectory k-anonymity technology is
one of the most important methods to protect the privacy of user trajectory. However, current trajectory k-anonymity methods
have less discussion on the semantic of stop point when selecting dummy trajectory, which leads to the fact that attacker can
still exclude the dummy trajectory from the k-anonymity set and infer the real trajectory by combining background knowledge
with the semantic information of stop points. To address this problem, this paper decomposes the real trajectory into location
pairs set; the set consists of start-end points and stop points. According to the similarity of location pairs, the similar location
pairs in history trajectory set are used to generate dummy trajectory: firstly, extracting the start-end points and stop points
from real trajectory and assigning semantic to them. Then, based on the semantic, temporal, and geographical attributes,
eligible location pairs are selected from history trajectory set to construct equivalence class. Finally, according to the location
pairs in equivalence class, k—1 dummy trajectories are generated to form a k-anonymity set. We evaluate our method
thoroughly with real dataset. The results show that our method achieve an effective data availability and higher privacy

protection than other methods.

1. Introduction

In recent years, with the rapid development of 5G technol-
ogy and the Internet of Things (IoT), smart city is gradually
becoming a reality. As an important cornerstone of smart
city, location-based services (LBS) are used in more and
more areas, such as check-in, road conditions, and social
networking [1, 2]. When a user requests an LBS service, he
submits his current location to the service provider. The ser-
vice provider stores user’s location sequence on the server as
a trajectory. Some service providers regularly release trajec-
tory data to governments and research institutions for anal-
ysis and mining [3-5]. For example, the U.S. government
updates and optimizes transportation facilities based on
users’ GPS trajectory data [6]; the Chinese government con-
structs epidemic prevention maps based on COVID-19
patients’ trajectories, etc.

However, the servers that store trajectory data are not
absolutely secure. If the service provider is attacked by
attacker, the trajectory data may be leaked without any
protection. By analysing the spatial-temporal information
in user’s trajectory, attacker combined with background
knowledge can deduce user’s hobbies, mobility patterns,
health status, work and home address, and other personal
information, which can cause economic losses and even
threaten user’s personal safety. Accordingly, scholars at
home and abroad pay a large amount of attention to this
thing: how to better protect the trajectory privacy.

The existing trajectory privacy protection methods can
be divided into three categories: trajectory k-anonymity
method [7-14], suppression [15, 16], and differential privacy
[17-21]. The suppression method assumes that attacker has
some specific background knowledge, protecting trajectory
privacy by suppressing sensitive information in the
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trajectory. However, suppression method requires predeter-
mined sensitive information; if sensitive information is not
set properly, it can seriously damage data availability. Differ-
ential privacy ensures unconditional privacy, i.e., individual
information cannot be obtained by analysing specified statis-
tical data. However, differential privacy can only protect a
limited amount of information. Compared to the first two
methods, trajectory k-anonymity method transforms the
1:1 relationship between user and trajectory into k : 1 rela-
tionship between multiple trajectories and user by generat-
ing k-1 dummy trajectories. It is the main method to
achieve trajectory privacy protection because of its simple
implementation and flexible application scenarios.

How to choose the dummy trajectory is the key issue in
trajectory k-anonymity. For availability purposes, dummy
trajectory in k-anonymity set should contain the most possi-
ble available information. For privacy purposes, dummy tra-
jectory and real trajectory must be indistinguishable. Based
on these two demands, many trajectory k-anonymity
methods are proposed [12, 14, 22, 23]. In the similarity cal-
culation process, these methods calculate the similarity
based on all location points in the trajectory, which leads
to huge computational effort and the low data availability
after privacy processing. In fact, not every location point in
trajectory is necessary for privacy protection [24]. It is the
stop points in the user’s trajectory that really reveal the
user’s privacy. According to this idea, many methods calcu-
late the similarity between trajectories based on the stop
points in the trajectory, which can reduce the calculation
volume while maintaining a level of privacy [13]. However,
the above methods do not consider the semantic impact in
trajectory privacy protection. In a trajectory, stop points
combined with semantic attributes reveal the user’s identity
and action patterns. By analysing the semantic information
of stop points, attacker can easily identify certain dummy
trajectories from k-anonymity set or even obtain the user’s
real trajectories directly.

As shown in Figure 1, suppose Tom, an employee of a
company, leaves the company at 18:00 on Wednesday to
watch a movie at the cinema and then returns to his home.
Tom’s trajectory is represented by Tra,. According to trajec-
tory k-anonymity method, now, we generate the dummy tra-
jectories Tra; and Tra; to protect Tom’s trajectory. The
three trajectories have greater similarity in trajectory shape,
geographic location, and overall direction. However, by ana-
lysing trajectory’s stop points, attacker can still find the dif-
ference between three trajectories. By extracting stop points
from three trajectories, attacker can get the semantic trajec-
tory of three trajectories as: A, (Planetarium) — C, (KFC)
— E, (Hostel) ; A,(Company) — C,(Cinema) — E, (
Community); E;(Hospital). Compared with Tra, and Tra,,
Tra, has only one stop point, and hospital’s working hours
is from 8:00 to 18:00, so attacker speculates that Traj is likely
to be a dummy trajectory. In addition, although both Tra,
and Tra, have three stop points, attacker knows that Tom
is an employee of a company according to the background
knowledge. So, attacker can infer that Tra, is more consis-
tent with Tom’s action pattern and then determine that
Tra, is the real trajectory.
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To solve the problem that low trajectory utilization and
stop point’s semantic lead to trajectory k-anonymity failed,
this paper proposes a trajectory privacy protect method based
on location pair reorganization (DSTPP). Specifically, we
decompose the real trajectory into a set of location pairs con-
sisting of start-end point and stop points. For each location
pair, we select eligible location pairs from the history trajectory
set for constructing candidate location set. Finally, we use the
location pairs in candidate location set to generate dummy tra-
jectories that satisfy the similarity measure; k — 1 dummy tra-
jectories are generated to form a k-anonymity set.

The main contributions of this paper are as follows:

(i) We design a candidate location set generation
method. For each location pair in the real trajectory,
according to the defined location pair similarity, the
eligible location pairs are selected from the history
trajectory dataset and added to the candidate loca-
tion. Location pairs in the candidate location have
high spatial-temporal and semantic similarity and
can be used to generate dummy trajectory that
match user action patterns

(ii) We design a dummy trajectory generation method
that conforms to user action patterns. According
to the similarity measures, dummy trajectory is sim-
ilar to real trajectory in terms of geography, seman-
tics, and direction

(ili) We evaluated the privacy and availability of DSTPP
with two similar methods [13, 25] on real dataset
[26-28]. The experimental results show that the tra-
jectory k-anonymity set constructed by DSTPP
meets the privacy protection requirements and has
high data availability

The rest of this paper is structured as follows: relevant
work is reviewed in Section 2. Section 3 provides a descrip-
tion of relevant concepts and measure standards. Section 4
elaborates the trajectory privacy protect method based on
location pair reorganization. In Section 5, we compare with
existing solutions in terms of availability and privacy, and
this paper is concluded in Section 6.

2. Related Work

Typical privacy-preserving methods include suppression, gen-
eralization, and perturbation. Among them, k-anonymity
technique based on generalization are widely used in trajectory
privacy protection. The k-anonymity model was proposed by
Sweeney [29] in 2002, which is the first complete model of pri-
vacy protection. This model prevents attacker from uniquely
identifying a specific user in the dataset, making it impossible
to obtain further accurate information about that user. Grute-
ser and Grunwald [30] first applied k-anonymity techniques
to LBS services. For the purpose of protecting user privacy,
they replace the user’s exact location points with a location
region that contains k location points, so the probability of
users being identified is reduced. However, this method can-
not resist the privacy leakage problem caused by trajectory
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FIGURE 1: Example of identifying dummy trajectory.

data leakage, nor can it resist the background knowledge
attack. For this reason, trajectory k-anonymity method was
developed. This type of method constitutes a k-anonymity
set that includes k — 1 dummy trajectories and real trajectory.
k trajectories in the anonymous set have indistinguishability,
which reduces the identification probability of real trajectories
to 1/k. According to the way of generating dummy trajectory,
the existing trajectories k-anonymity can be divided into two
categories: local method and integral method.

For a trajectory, user really cares about certain specific
geographic location, not all locations. Based on this idea,
the local method is proposed. The local method means only
protecting trajectory’s sensitive locations by k-anonymity,
not the whole trajectory. Pan et al. [31] considered the user’s
movement direction and velocity when generating the gen-
eralized region, ensuring the user trajectory’s privacy while
improving the service quality. Zhang et al. [9] proposed a
double-k mechanism to protect user’s sensitive locations.
They send the user’s sensitive location and k — 1 fake loca-
tions to k anonymizers. Then, each anonymizer is k-anon-
ymized for a location. This method has a higher degree of
privacy. However, this method has a high computational
volume, and the trajectory availability is lower. To address
this problem of high computational volume, Zhou and
Wang [11] combined fog computing and k-anonymity to
reduce the computational consumption of generating k
-anonymity sets. Zhao et al. [10] consider the start-end
points of user’s trajectory are sensitive locations. Based on
user’s behaviour, they generate secure start-end candidate
point set for constructing dummy trajectory. Ye et al. [32]
propose protect location points within sensitive areas; they
build the cloaking region for sensitive areas, which contains
another k similar POIs to the sensitive place, and randomly
select one to replace the sensitive place. However, the local
method requires presetting sensitive locations. If the sensi-
tive locations are set improperly, it can seriously affect data
availability. In addition, user privacy can also be leaked
based on location points in nonsensitive areas.

In order to solve the defects caused by the local method,
the integral method is proposed. The integral method is to
select k — 1 dummy trajectories that are similar to real trajec-
tory to form a k-anonymity set. Xu et al. [12] evaluated the
trajectory similarity based on four features: angle, velocity,
time, and space. Then, they selected k — 1 historical trajecto-
ries that were similar to the real trajectories to form a k
-anonymity set. Wang et al. [22] propose constituting k
-anonymous set by exchanging the locations of neighbour
nodes, protecting user privacy by interchanging the location
between neighbour nodes on the K-core subnet of the rela-
tionship network. But this method ignores the privacy needs
of different location points, which leads to insufficient avail-
ability. According to the spatial and temporal characteristics
of trajectory data, Li et al. [23] propose a data partitioning
method to store and calculate trajectory, which reduces
computational volume. Liu et al. [25] generated k-1
dummy locations for each location point in the real trajec-
tory and randomly generated dummy trajectory based on
these dummy locations. The dummy trajectory generated
by this method have some unreachable positions, so the data
availability and privacy are insufficient. Dai et al. [33] pro-
posed simplifying real trajectory into a trajectory that is only
consisting of stop points. Then, each stop points constructs a
k-anonymity set. The k-anonymity set contains k — 1 seman-
tically similar location points. According to these k-ano-
nymity sets, generate dummy trajectory randomly. The
dummy trajectory generated by this method only considers
stop points, which may pass through unreachable locations.
Meanwhile, it does not consider whether the direction of
dummy trajectory is similar to real trajectory. Xu et al. [13]
evaluated the trajectory similarity based on the number of
stop points and average velocity. Then, select k — 1 historical
trajectories that are similar to the real trajectories to form a k
-anonymity set. The integral method selects history trajec-
tory or fake trajectory as dummy trajectory. However,
although using fake trajectory can ensure the similarity
requirement, the fake trajectory may pass through or be at
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TaBLE 1: Summary of notation.
Symbol Notion
D
Tra Historical trajectory dataset/ith trajectory in historical trajectory dataset
i

T={t]i=1,2,--,n}
SEM = {sl;|i=1,2,---,n}
TC={tgli=1,2,---,n}
STC={st¢j|li=1,2,--+,n}
Can={Cili=1,2,--,n}
ES={fs|i=1,2,---,n}
FT

F={fli=1,2,n)
simg/simg

sim

Real trajectory/ith location point
Semantic trajectory/ith semantic location point
Trajectory equivalence class/ith trajectory in the class
Semantic trajectory equivalence class/ith semantic trajectory
Set of candidate location/ith candidate location

Fake semantic trajectory

The set of k — 1 dummy trajectories forming the k-anonymity set

Fake trajectory in FT

Geographical similarity/semantic similarity/directional similarity

unreachable locations. Therefore, the availability and privacy
are insufficient. If using history trajectory, the problem that
the trajectory number is insufficient may be faced; mean-
while, although the whole trajectory does not satisty the sim-
ilarity requirement, some trajectory segments in these
trajectories can still be utilized. But the integral method can-
not utilize these trajectory segments.

In conclusion, existing dummy trajectory selection
methods have the defects in low trajectory utilization and
pay less attention to stop point’s semantic, which leads to
the fact that attacker combining with background knowledge
can still exclude the dummy trajectory from the k-ano-
nymity set. In order to solve above problem, this paper con-
structs dummy trajectory by the location pairs. Location
pairs consist of stop points in history trajectory set. The his-
tory trajectory is taken from real user’s trajectory, so dummy
trajectory does not pass through or reach unreachable loca-
tions. At the same time, we defined semantic, geographical,
and directional similarities, which ensure the similarity
between dummy trajectory and real trajectory. This method
can effectively resist background knowledge attack and
improve data availability.

3. Preliminaries

To facilitate reader’s understanding of the various system
parameters used in this paper, Table 1 provides a description
of the various system parameters used in this paper.

3.1. Related Concepts

Definition 1. GPS trajectory: the GPS trajectory can be repre-
sented as a polyline in three-dimensional space (two-dimen-
sional coordinates and time dimension), denoted as
T={t,,t),,t5 >ty t,}, where t;=(x;, ¥, time,) indi-
cates that the position (xy,y,) of the trajectory T at time
timey,t, <t, <:--<t,, and e is the number of sampling
points of real trajectory T.

The location points in real trajectory can be divided into two
categories: moving point and stop point. Stop point is a loca-
tion where the user stays (speed is 0 and lasts for a period of
time) or visits (speed is not 0, but repeatedly wanders
around a location). Moving point is a location that the user
simply passes through. The specific description of stop point
is given by Definition 2.

Definition 2. Stop point: a stop point is a geographic area
where user stays within a distance threshold 0; longer
than a time threshold 0,. In the real trajectory T, the sub-
trajectory is denoted as SubT =<t t;,, -, 1; >, where, V
k € (i, j), Disge,(t;> t) <6y, and Disgyo(t;, ;) > 6,. Then, <
tistip> -+ t;> can be combined into a stop point s.
Denote as: s=(x, y, time,, time,, time;), where:

Z{(,.tk.x

= k=t R 1

¥ subT]” @
Theite

7= subT| @

represent the latitude and longitude of stop point s,
respectively. t,.x and t,.y denote the longitude and lati-
tude of location point ¢,.

time, denotes the time of entering the stop point s, time,
denotes the time to leave the stop point s, and time; denotes
the stay time at stop point s. The values are calculated using
the first position point f;, the last position point #;, and the
time difference between t; and ¢; in the SubT, respectively.
According to Definition 1 and Definition 2, trajectory can
be composed of stop points and moving points between
top points.

Definition 3. Semantic category: the semantic category of
location point can be represented by points of interest
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FIGURE 2: Example of the semantic information levels and the semantic codes.

(POI). Each location point (x;, y;) has an independent POI,
and the semantic category can be obtained through Chinese
POI standard [34].

According to Chinese POI standard, POI semantic cate-
gory is divided into three levels: major category, middle cat-
egory, and minor category. Each level consists of a 2-digit
code. The codes L, for the major category, L, for the middle
category, and L, for the minor category are arranged in
order to form a fixed 6-bit semantic code (L,, L,, and L,),
as shown in Figure 2.

Definition 4. Semantic location point: the semantic location
point sl can be represented as <loc, cat, time >, where loc
denotes the center coordinates of semantic location point;
cat denotes the semantic category of semantic location point,
consisting of the triplet <L,,L,,L; >; and time represents
the temporal characteristics of semantic location point,
which consists of the triplet <time,, time;, time;>. The
three attributes indicate visit time, leave time, and stay time,
respectively.

Definition 5. Semantic trajectory: a semantic trajectory SEM
is an ordered list of start-end points and a set of semantic
points:

SEM = {sl;, sl,, ---, 51, }. (3)

Definition 6. Semantic distance d: d,., refers to the
semantic difference between two semantic location points.

It is expressed by semantic encoding difference of two

semantic location points:

d

sem

(I, L, ls)SEMl - (li’ Ly l;) SEM,

= ‘10000(11 —l{) + 100(12 —l;) + (13 —l;) ‘

(4)

According to the specification:

When the semantic distance d,, € (0,100), it means that
two semantics differ only in minor category. The two points
have a high degree of similarity.

When the semantic distance d,,,, € [100,9999], it means
that two semantics differ only in middle category. The two
points have a low degree of similarity.

When the semantic distance d,,, € [100, 9999], it means
that two semantics differ only in major category. No similar-
ity between the two points at all.

Definition 7. Geographical distance dg,: d,, refers to the
geographical difference between two semantic location
points, which can be calculated by the Euclidean distance:

dgeoz\/(xz_xl)2+(y2_yl)2' (5)

Definition 8. Location pair similarity [14]: suppose <sl,_;,
sl;> and <cl,_,,cl;> are the location pairs in real seman-
tic trajectory SEM and semantic trajectory equivalence
class STC, respectively. Two location pairs satisfy the
location pair similarity if they satisfy the following
conditions:
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(1) dsem( -1 Cli—l) < Ssem’ dsem (Sli’ Cli) < 5sem
(2) dgeo( -1° Cli—l) < 8geo’ dsem (Sli’ Cli) < 6geo
(3) dime(Sli_1> €liy) < Sime> Aiime (51> L) < Siime
where, 8y, Ogeo» and Oy, are semantic distance thresh-

old, geographic distance threshold, and time threshold,
respectively. Equations (1) and (2) ensure that location
pairs are semantically and geographically similar. Equa-
tion (6) ensures that two location pairs are similar in
velocity and time period by calculating the location time
difference.

3.2. Similarity Measure. In the k-anonymity set, we want the
generated dummy trajectory to be semantically and geogra-
phically indistinguishable from real trajectories. In this sub-
section, geographic similarity and semantic similarity are
proposed to evaluate the differences between dummy trajec-
tory and real trajectory.

We first give two theorems and utilize them to prove that
the difference between two probability distributions is the
expectation of the difference between the features of the cor-
responding positions.

Theorem 9. Suppose X, is a random variable with probabil-
ity distribution P(X,)). X ={X;|li=1,2,---,n} is a set of ran-
dom variables, the corresponding probability distribution is
P(X,). For each X, there is a probability distribution differ-
ence with X, the probability distribution difference between
P(X,) and P(X;) is denoted by d(X,, X;). The probability of
the probability distribution difference between P(X,) and P(
X;) is Py (X;). Therefore, the probability distribution differ-
ence d(X,, X;, -, X;) between Xy, X,, -+, X; and X, is the
expectation of each difference, i.e.,

X;)ed(Xy, X;). (6)

Proof. Py (X;) and d(X,,X;) are functions of variables X,
and X;. When the value of X, remains unchanged, the
results of two functions depend only on X,. If X, is also
deterministic, then both Py (X;) and d(X,, X;) are constants.
That is, there is a one-to-one correspondence between Py (
X;) and d(X,, X;). Therefore, Py (X;) can be regarded as
the probability of d(X,, X;) in all probability distributions
difference. Accordingly, d(X,, X;, -+, X;) is the expectation
of probability distribution difference d = {d(X,, X,)|i=1,2,
-+, n} and its probability d = {Py (X;)|i=1,2, -, n}. O

Theorem 10. Suppose X' and Y' are two sets of random
variables with probability distributions P(X' =x;) and P(
Yy’ =y,), where X'={x|i=1,2,---,m} and Y' = {yili=1,
2,---,m}. For Vx; and y,, the probability distributions dif-
ference of P(X' =x;) and P(Y' =y,) is d(x;, y,). The proba-
bility of probability distributions difference between
P(X'=x;) and P(Y' =y,) is P,/(Y' =y,). The probability
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distribution difference between X' and Y' is the expectation
d(X',Y") of all d(x;y,), ie.,

d(x',y") = ZP (Y =y )edy) )

Proof. For Vx; € X !, according to Theorem 9, the differ-
ence between x; and Y' is Y7 Py (Y =y, X' =x;)ed(
x,y;)- Then, d(X',Y") =X 3 Py (Y =y, X' = xp)ed(
xr,yl) However, for d(X',Y"), if i#i’, then P,/(Y' = yl,
X' —0) and d(x,,y,) are 0. That means d(X', Y) o
P,/(Y'=y,)ed(x; y,). Therefore, the probability distribu-

tion difference of X' and Y’ is the expectation d(X',Y")
of all d(x;,y,). O

For VF € FT and real trajectory T, semantic distance,
geographic distance, and its corresponding probability dis-
tribution (the probability of distance difference) depend only
on F. Therefore, according to Theorem 10, we define geo-
graphical similarity and semantic similarity between F and
T as the expectation of distance difference.

Definition 11. Visit probability: P,(p) represents the
probability of a user visiting location P, which is calculated
as follows:

Num(p)

Pv(p) = N > (8)

where Num(p) represents the number of people visiting
location P and N denotes the total number of people.

The larger the value of P,(p), the more people visit loca-
tion P, and the higher the probability that location P will be
visited.

Definition 12. Geographical similarity [14]: for VF € FT and
real trajectory T, Dg(t;, f;) denotes the geographic distance
between t; and f;, and the probability distribution of geo-
graphic distance is denoted by Pg(f;). The geographical
similarity between T and F can be defined as the expectation
of all Dy(t;, f,):

iPG(fi)'DG(ti’fi)' 9)

Attacker’s goal is to infer user’s real trajectory from the
k-anonymity set. In order to achieve this goal, attacker
usually assumes a location (called hypothetical location)
to be the real location and evaluate the probability that
this location is the true location by background knowl-
edge. In the candidate location C;, we assume that e; is
the hypothetical location. Without considering background
knowledge, the probability that e; is the true location is
denoted by P(e,|C;). In this paper, there is an equal prob-
ability that any location in C; is assumed to be the true



Wireless Communications and Mobile Computing

location, so, P(¢;|C;) = 1/k. For f,, the background knowl-
edge that f, is the hypothetical location e; is attacker
believes f, is the true location t;, i.e., the joint probability
P(f.,t;). So, the probability that f,; is assumed to be t; is
P(f; t;)*P(¢;|C;). The higher the probability, the higher
the probability that e; is t;, which means that attacker
believes that f, and t; are more similar. Therefore, we
use this probability to calculate the probability distribution
of geographic distance Pg(f)):

Po(fi) = 1= P(f t;)*P(e]|C;) = 1 = P, (f;)*P, (1;)+P(e;| Ci),
(10)

According to the above formula, the geographical
similarity sim;(F, T) between F and T is calculated as
follows:

n

simg(F,T) = Y (1= Po(f)eD(tp f))y (1)

Zgi01

where 1/z, is a constant used to normalize the geograph-
ical similarity value to lie in the range [0,1]. z, is the sum
of the maximum location distance difference in each can-

didate location C; and user location ¢;:

]

zy= EZmax{DG(ti,f])}. (12)

=1

Definition 13. Semantic similarity: for VF € FT and real
trajectory T, Dg(t;,f;) denotes the semantic distance
between t; and f,, and the probability distribution of the
semantic distance is denoted by Pg(f;). The semantic sim-

ilarity between T and F can be defined as the expectation
of all Dg(t, f,):

Zn:PS(fi)°DS(ti’fi)' (13)

i=1

Similar to Definition 12, for Equation (13), we still
calculate Pg(f;) by P(ft;)*P(e;|C)):

Pg(f;) =1-P,(f;)*P,(t;)*P(¢;|C;). (14)

According to the above formula, the semantic similar-
ity simg(F, T) between F and T is calculated as follows:

=

1
simg(F, T) = -
s

(1=Pg(f;)*Ds(t;> 1)) (15)

I
—_

where 1/zg is a constant used to normalize the geographi-
cal similarity value to lie in the range [0,1]. zg is the sum
of the maximum semantic distance difference in each can-

didate location C; and user location ¢;:

IC

z,= igmaX{DS(ti’fj)}' (16)

J

Attacker can also analyse the trajectory’s movement
direction in the published trajectory set. If a trajectory dif-
fers from other trajectories, attacker deduces that this tra-
jectory is likely to be a dummy trajectory. Therefore, it is
necessary to ensure the movement direction similarity
between dummy trajectory and real trajectory T. We use
the least squares method to fit the slope of the overall
trajectory movement direction and determine whether
dummy trajectory direction is similar to real trajectory
direction by the slope ratio. The slope is calculated as
follows:

1= Z;leiyi_nx}j — Z?:l(xi_x)()/i_y) (17)
Yix; - nx? Y (- %)’ ,

where x=1/nY" x5 y=1/ny v,

Definition 14. Directional similarity: for VF € FT and real
trajectory T, according to Equation (17), calculate the slope
of two trajectories I; and [;. The directional similarity
between T and F is calculated as follows:

simy (F, T) = ;i, simy (F, T) € [0, 1]. (18)

The larger the value of sim, (F, T'), the more similar the
overall direction of the two trajectories.

4. Scheme Description

4.1. Scheme Framework. This scheme is designed to protect
user’s trajectory privacy. To prevent attacker from identify-
ing user’s real trajectory from the k-anonymity set. In this
paper, we construct k — 1 dummy trajectories based on stop
point location pairs to form k-anonymity set, thus protecting
user privacy and security. The scheme is divided into three
steps:

Trajectory preprocessing stage: based on the start time
and end time of real trajectory, the trajectories with simi-
lar time periods are selected from the history trajectory
dataset D. The trajectory equivalence class TC consists of
these historical trajectories. According to Definition 2
and Definition 3, we extract stop points in real trajectory
T and the equivalent class TC, then assign semantic to
start-end points of T and all stop points to generate the
corresponding semantic trajectory SEM and semantic tra-
jectory equivalent class STC.

Selection of candidate location stage. For each location
point s; in semantic trajectory SEM, we select the location
points that satisfy Definition 8 from STC and then add
them to candidate location C; to form the candidate
location set Can.
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(1) Dummy trajectory generation stage. We generate
dummy semantic trajectory FS based on candidate
location set Can. If FS meets similarity measure,
moving points between stop points in FS are also
added to the trajectory FS to generate corresponding
dummy trajectory F. Repeat this step until k-1
dummy trajectories are generated to form a k-ano-
nymity set. The overall process is shown in
Figure 3. We will then describe each step separately

in chapter 4.

4.2. Trajectory Preprocessing. This subsection preprocesses
real trajectory. It can be divided into the following two steps:
(1) construct a trajectory equivalence class TC for T and add
trajectories with similar time periods to TC; (2) extract stop
points in real trajectory T and the equivalent class TC and
assign semantic to them, and construct the corresponding
semantic trajectory SEM and semantic trajectory equivalent
class STC.

4.2.1. Construct Trajectory Equivalence Class. In k-anonym-
ity set, if the time period of a trajectory is different from
other trajectories, attacker may infer that this trajectory is
a dummy trajectory. Therefore, we need to ensure that the
trajectory in the equivalent class TC is similar to real trajec-
tory T in terms of time period. According to the set time off-
set A,, if a trajectory Tra in history trajectory dataset D
satisfies the following conditions:

{ Tra.tg € [T.t,— A, T.t,+ A, (19)
19

Tra.t, € [T.t,— A, Tt + Al

Then, Tra is added to the equivalent class T'C, where ¢,
and t, denote the start time and end time of trajectory Tra,
respectively.

The specific steps are shown in Algorithm 1.

Algorithm 1 traverses the trajectories in the trajectory
dataset D by a for-loop and calculates whether they satisty
Equation (19). The time cost of Algorithm 1 is num(D),
i.e., the algorithm time complexity is O(n).

4.2.2. Construct Trajectory Equivalence Class. Stop point
contains richer information than moving point, and attacker
can identify k-anonymity set’s dummy trajectory by analys-
ing stop point. The dummy trajectory that constitutes the k
-anonymity set have to be semantically similar to the real
trajectories T. So, in this subsection, we extract stop points
in real trajectories T and equivalence class TC and assign
semantic to start-end points of T and all stop points to con-
struct the corresponding semantic trajectory and semantic
trajectory equivalence class STC.

When the distance between a segment of consecutive
location points f; and f;(i<j) is less than the distance
threshold 0, and the interval time is greater than the time
threshold 6,, the location points from ¢; to ¢; are aggregated
into a stop point. If the Euclidean distance between #; and ¢;
is greater than the distance threshold 6, then ¢; and ¢; can-
not be aggregated into a stop point. Next, the interval time
between f; and ¢, ; is calculated to determine whether it is
greater than the time threshold 6,, if the interval time is
greater than the time threshold 6,, then #; to ¢, is aggre-

gated as a stop point. If the interval time is less than the time



Wireless Communications and Mobile Computing

1.TC— @
2.forall Tra € Ddo

4. TC—TCUTra
5. returnTC

Input: Real trajectory T; time offset A,; history trajectory dataset D
Output: Trajectory equivalent class TC

3. ifTra meets the candidate of Formula (19) then

ArcoriTHM 1: Construct trajectory equivalence class

threshold 6,, the location points ; to ¢; are all moving points

and repeat this operation from ¢;,.

For example, in the subtrajectory tr={t,,t,, -+, ts, ts }
Dis,, (1, ts) <64 Disgeo(tl,té), and Disy,. (¢, t5) = 6,. We
can aggregate the location points ¢, to t; as a stop point.
After acquiring stop points, we assign semantic of the closest
POI to stop point based on the PAT. The step is repeated,
and the semantic trajectory is finally generated.

The specific steps are shown in Algorithm 2.

In Algorithm 2, lines 2-5 assign semantic to start-end
points of real trajectory T and add them to semantic trajec-
tory SEM. Lines 6-15 extract stop points in real trajectory T
based on the threshold 6, and distance threshold 6; and
assign semantic. Then, add these points to SEM. Lines 15-
27 traverse the trajectories in the equivalence class T'C, con-
vert the trajectory to semantic trajectory, and add them to
semantic trajectory equivalence class STC.

Algorithm 2 transforms real trajectory T into semantic
trajectory SEM by two layers of while-loop. In the worst
case, the time consumption is num(7T) * num(T), and the
time complexity is O(n?). Second, the trajectories in TC
are traversed by a for-loop, and then, the equivalence class
is transformed into semantic trajectory equivalence class
STC by two layers of while-loop. In the worst case, the time
consumption is num(TC) * num(T) * num(T), and the
time complexity is O(n?). Therefore, the total time con-
sumption of Algorithm 2 is num(TC * T * T) + num(T?),
and the total time complexity is O(n?).

iSe0

4.3. Construct Candidate Location Set. The purpose of this
subsection is to select the location pairs used to construct
the dummy trajectory. We traverse semantic trajectory
SEM and compute the similarity of location pairs in STC
according to Definition 8. If there is a location pair that sat-
isfies the condition, this location pair is added to the candi-
date location C; and C,,,. After traversing all position pairs,
the composition of Can={C,,C,, -, C,,} ={<C;, C,><
C,,Cy>, -+ <C,_1,C, >}

The specific steps are shown in Algorithm 3.

For the location pair <sl;, sl;,; > in the semantic trajec-
tory SEM, Algorithm 3 traverses each trajectory in STC. If
there exists position pair similar to <sl;, sl;,; > in this trajec-
tory, this location pair will be added to C; and C,,;. Then,
traverse the next trajectory until all trajectories have been
traversed. Algorithm 3 finally returns the candidate location
set Can.

Algorithm 3 constructs the candidate location set Can by
a three-level for-loop. The first level for-loop traverses the
location pairs in SEM with a time consumption of num(
SEM). The second level for-loop traverses the trajectory in
STC with a time consumption of num(STC). The third-
level for-loop traverses the location pairs in the trajectory
stc with a time consumption of num(stc). Therefore, the
total time consumption of Algorithm 3 is num(SEM = STC
* stc), and the time complexity is O(n?).

4.4. Construct Location Pair Graph. In the previous subsec-
tion, we picked candidate location for each semantic loca-
tion point in SEM. The next goal is to generate k-1
dummy trajectories based on these candidate positions to
form a k-anonymity set. If location points are randomly
selected from each candidate location and combined into a
dummy trajectory, the generated dummy trajectory may
have some unreachable locations. Specifically, as shown in
Figure 4, the solid line and dotted line represent the location
pair that exist in Can and the location pair that do not exist
in Can, respectively. A dummy trajectory consisting of loca-
tion pairs <A;,B,> and <B,,A;> will pass through
unreachable locations. So, attacker can easily identify this
trajectory as dummy trajectory.

This subsection constructs the location pair graph G = (
V,E, W). Among them, V consists of all semantic location
points in Can, and each semantic location point represents
a node in G. ¢; is a location in the candidate position C;
and E(c;, c;,;) is a directed edge connecting ¢; and ¢;,;. W(
¢ ¢y ) is the weight of edge E(c;, ¢;,), and the value is a
binary consisting of geographical similarity and semantic
similarity. Algorithm 4 describes the graph generation pro-
cess as follows.

Algorithm 4 first traverses each candidate location C;
and picks locations from C; and C,,; respectively to form
the location pair <c;, ¢; >. Next, determine whether the loca-
tion pair <c;, ¢, > exists in STC. If it exists, add E(c;, c;,)
and W(c;, c;,;) to the graph G.

Algorithm 4 constructs the location pair graph G by a
three-level for-loop. The first level for-loop traverses the
candidate location of Can, and the time consumption is
num(Can). The second level for-loop traverses location
point ¢; in candidate position C;, and the time consumption
is num(C;). The third level for-loop traverses the location
point ¢; in the candidate position C;,;, and the time con-
sumption of num(C,,;). The total time consumption of
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Input: Real trajectory T; time threshold 6,; distance threshold 8;; point-of-interest set
PAT

Output: Semantic trajectory Sem; Semantic trajectory equivalence class STC

1.SEM «— &, STC «— &

2.5l = assign_sem(t,, PAT)

3.SEM «— SEM Usl

4.s] = assign_sem(t,, PAT)
5.SEM «— SEM U sl
6.whileallt; € {t,,t5,---,t,_, }do
7je—i+1

8.whilet; € {t,, 5, -, 1, ; }do
9. ifDis_geo(t;, t;) < 6, then

10. ifDis_time(t;, t;) > ,then

11. sp = gen_sp(t;, ;)

12. sl = assign_sem(sp, PAT)
13. SEM «— SEM Usl

14. je—j+1

15. f—j+1

16. forall Tc € TCdo

17. whileall tc; € Tcdo

18. je—i+1

19. whiletc; € Tcdo

20. ifDis_geo(tc;, tcj) < 0,then
21. ifDis_time(tc;, tc;) > 6,then
22. sp = gen_sp(tc;, tcj)
23. cl = assign_sem(sp, PAT)
24. stc «—stc U cl

25. je—j+1

26. f—j+1

27. STC «— STC U stc
28. returnSEM, STC

ArcoriTHM 2: Construct semantic trajectory

Input: Semantic trajectory SEM; semantic trajectory equivalence class STC; location
pair similarity threshold &, 840> S

sem” “geo> ~ time

Output: Candidate location set Can

1.Can «— O

2forall <sl;, sl;,, > €SEMdo

3.C; —sl;, Ciyy sl

4 forall stc € STCdo

5. forall clj € stedo

6. if <sl;, sl;> and <cl]-, clj+1>
meets the candidate of
Definition8then

7. Cie—d;, Cpy —cljyy

8. exit

9.Can «— C;, Can «— C;;

10. returnCan

AvrcoriTHM 3: Construct candidate location set

Algorithm 4 is num(Can * C; * C,,;), and the total time ity sets. These dummy trajectories are semantically, geogra-
complexity is O(n?). phically, and directionally similar with real trajectories T.

To achieve this goal, dummy semantic trajectory FS is first
4.5. Construct k-Anonymity Set. The goal of this subsection  generated. If FS satisfies the requirements in semantic simi-
is to generate k — 1 dummy trajectories to form k-anonym-  larity and geographic and directional similarity, a dummy
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11

FIGURE 4: Example of constructing fake trajectory.

equivalence class STC
Output: Location pair graph G
LE— O, We—J
2. forall C; € Cando
3. forall¢; € C;do
4 forall ¢, € C;,,do
5 if<cj, G > eSTCthen
6. E«—E(c;, )
7 We—W(cq)
8. returnG

Input: Semantic trajectory SEM; location candidate set Can; semantic trajectory

ArGcoriTHM 4: Construct location pair graph

trajectory F is generated based on FS. The dummy trajectory
F consists of each semantic position pair in FS and the mov-
ing points between corresponding location pairs.

Algorithm 5 describes the generation process of dummy
trajectory. First, the directed edges that do not satisfy the
threshold requirement are removed from the location pair
graph G. Then, iteratively generate dummy trajectory up to
k-1 trajectories. Lines 3-12 show the detailed steps of
dummy trajectory generation. First, a dummy semantic tra-
jectory is randomly generated (line 5). If the generated tra-
jectory happens to be the user semantic trajectory, a new
semantic trajectory is regenerated (lines 5-6). If it is not
the user semantic trajectory, determine whether FS satisfies
the similarity requirement (line 8). If the requirement is sat-
isfied, iteratively traverse the location pair in FS, find the
location pair in STC, then add stop points and moving
points contained in location pair to the dummy trajectory
F (lines 9 to 11). Finally, the eligible dummy trajectories
are added to FT. The specific algorithm is as follows.

Algorithm 5 generates k — 1 dummy trajectories by while-
loop, and the time consumption is k — 1. In the dummy trajec-
tory generation process, the dummy trajectory F is constructed
by two-level for-loop. In the worst case, the time consumption
is num(FS) * num(STC). Therefore, the total time consump-
tion of Algorithm 5 is ((k— 1) * num(FS) * num(STC), and
the total time complexity is O(n?).

According to the above analysis, the total time complex-
ity of this scheme is O(n?).

5. Experiment Analysis

5.1. Data Set and Experimental Environment. In this paper,
we use the GeoLife dataset [26-28] to evaluate the perfor-
mance of the trajectory privacy protect method based on
location pair reorganization. The dataset collected 5 years
of trajectories of 182 volunteers, and this dataset contains
17,621 trajectories. Most of the trajectories in GeolLife data-
set are recorded in Beijing, China. Therefore, this paper
extracts the trajectory data of the Beijing area for experimen-
tal analysis. We select 5 attributes in GeoLife to compose the
history trajectory dataset D. The 5 attributes are user ID,
longitude, latitude, date, and time. We generate the trajec-
tory k-anonymity set on the historical trajectory dataset D.

In this paper, the point of interest set (PAT) includes a
total of 211,615 POIs within the 6th Ring Road of Beijing.
The semantic categories adopt the three-level classification
of Chinese POI standard, including 15 major categories, 51
middle categories, and 145 minor categories.

The hardware environment of the experiment is: Intel i7-
8750H 2.20 GHz, 16.00 GB memory, the operating system is
Microsoft Windows 10, and the algorithms are all imple-
mented under Pycharm2020.

5.2. Experimental Parameter and Evaluation Indicator. To
verify the performance of the DSTPP algorithm, we ran-
domly select 10 user trajectories from the trajectory dataset
D for the experiment. Each user’s semantic trajectory
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Input: Semantic trajectory SEM; location pair graph G; semantic similarity threshold Jg;
Geographical similarity threshold §; directional similarity threshold & ,;
Semantic trajectory equivalence class STC

Output: Dummy trajectory set FT

LFT — @, n(FT) — 0

2. Calculate the slope [, of SEM

sem

3. Remove all E(c;, ¢;,;) which W(c;, ¢;,;) do

not satisfy Def(10) and Def(11) from G
4.whilen(FT) <k - 1do

5. Random generates a fake semantic trajectory FS

6. ifFS = SEMthen

7. n(FT) = n(FT)

8. else

9. ifsimg(SEM, FS) < 85 and sim;(SEM) < §andsim, (SEM, FS) > 8,
then

10. forall < fs,, fs;,, > €FS

11. forall stc € STCdo

12. if<fs,, fs,;,, > estcthen

13. all point between fs;and fs,,, join F

14. FT «—FTUF

15. returnFT

ArGorITHM 5: Generate fake trajectory set

contains at least 4 semantic location points. The experimen-
tal parameters are set as shown in Table 2.
In this paper, we verify the performance of DSTPP by

TaBLE 2: Experimental parameters.

Parameter Range
comparing with Random algorithm [25] and MTPPA [13] 5 -
algorithm in terms of both privacy and availability. Random ! 10 min
algorithm randomly selects k — 1 locations from the candidate 04 100 m
location to generate dummy trajectory. MTPPA algorithm Sgeo 200m
selects k—1 history trajectories to form k-anonymity set. s 08
Under the same conditions, we run 3 algorithms on 10 user sem
trajectories. To ensure the accuracy of the experimental Otime 10 min
results, each group of experiments was measured 100 times. d¢ 0.3
Finally, the average of 100 results was taken as the final result. s 03

S .
5.3. Privacy Analysis. In this section, we use identification 84 0.85
probability (IP) to evaluate k-anonymity set’s privacy. In k Anonymity level 3-10

-anonymity set, there are m trajectories that are similar to T.
The identification probability is 1/m. The larger the value of
m, the more difficult it is for attacker to identify true trajectory 104
T from k-anonymity set and the better privacy. The identifica-
tion probability is calculated by the following equation.

0.9 1
0.8 1
0.7 4
0.6 1
0.5 1
0.4 1

0.3 1
0.2 4
0.1 1

1
IP = ,
tra_num kg, 8¢, 8 4, 8s)

set>

(20)

where tra_num(k,, 8, 84, ) is used to calculate the number
of trajectories that satisfy the similarity measure in the trajec-
tory k-anonymity set.

Avetage identification probability

We evaluate the privacy by the average identification oo b
probability of 10 trajectories. Figure 5 shows the three 3 4 5 6 7 8 9 10
methods’ average identification probability under different Anonymity set size k

values of k. As shown in Figure 5, the average identification
probability of all methods tends to decrease when the k value
increases. This is because as the k value increases, the more
trajectories in k-anonymity set and the more trajectories that
are similar to the real trajectory. Under the same k value, FIGURE 5: Privacy vs. k.

—=— Random
—e— MTPPA
—4— DSTPP
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random algorithm has the highest average identification
probability; this is because (1) the dummy trajectory passes
through some unreachable locations and (2) the dummy tra-
jectory do not consider geographic and semantic attribute.
Attacker can easily filter dummy trajectories in k-anonym-
ity set by analysing the stop points; (3) the dummy trajectory
may differ significantly from the real trajectory in the overall
direction.

The average identification probability of MTPPA algo-
rithm is lower than random algorithm. This is because
MTPPA algorithm selects history trajectories to form a k
-anonymous set, so there are no unreachable locations.
Meanwhile, dummy trajectory is selected based on the
number of stop point, which can ensure the semantic sim-
ilarity of trajectories in the k-anonymity set to a certain
degree.

Compared to the above two methods, DSTPP has a
lower average identification probability. This is because
DSTPP constructs dummy trajectory based on real position
pairs, so no unreachable locations appear. In addition,
dummy trajectory and real trajectories are similar in terms
of overall direction, semantic property, and geographical

property.

5.4. Availability Analysis. After the service provider pub-
lishes the k-anonymity set, researchers can conduct statis-
tics, research, and other studies by mining the trajectories
in the anonymity set. Therefore, the k-anonymity set’s avail-
ability is to be evaluated. According to the research needs,
availability can be divided into two categories: trajectory
availability and data availability.

5.4.1. Trajectory Availability Analysis. Trajectory availability
means: for traffic optimization, logistics management, and
other needs, researchers want to use trajectory data to eval-
uate traffic flow. This requires that the dummy trajectory
must have a high degree of shape similarity and geographic
similarity to the real trajectory.

In this subsection, we evaluate the trajectory availability
of k-anonymous sets by trajectory difference (TD). The tra-
jectory difference is calculated by the following equation.

|F|
TD = Zi:lFIET’ Fi)’ (21)

where F(T, F;) is the Fréchet distance between two trajecto-
ries. Fréchet distance is calculated by the following equation.

F(A, B) =inf, g cpo,y max {d(A(a(t)), B(A(1))}- (22)

A and B are two trajectories for comparison, with ¢ rep-
resenting a specific moment and A(«(t)), B(S(¢)) represent-
ing A and B’s location point at moment t, respectively.
d(A(a(t)), B(B(t))) denotes the Euclidean distance between
two location points.

We use the average trajectory difference of the 10 trajec-
tories to evaluate the k-anonymity set’s trajectory availabil-
ity. For the k-anonymous set, larger TD values represent
weaker trajectory availability. Figure 6 shows three methods’
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FIGURE 6: Trajectory difference vs. k.

average trajectory difference of under different k values. As
shown in Figure 6, three methods’ trajectory difference
shows an increasing trend when the k value increases. This
is because, as the k value becomes larger, the number of
required dummy trajectories increases. So, the dummy tra-
jectories’ overall quality decreases. Under the same k value,
DSTPP has the lowest trajectory difference. This is because
DSTPP considers the overall direction and geographic loca-
tion, and the generated dummy trajectory is more similar to
the real trajectory. Random’s average trajectory difference is
higher than DSTPP. This is because Random randomly gen-
erates dummy trajectory based on fake location points. The
generated dummy trajectory has some geographical similar-
ity, but the overall direction is not considered. The MTPPA
algorithm has the largest average trajectory difference. This
is because MTPPA does not consider trajectory shape simi-
larity and overall direction at all when selecting dummy
trajectory.

5.4.2. Data Availability Analysis. Data availability is pointed
out for needs such as interest recommendation and location
prediction [26, 35]; researchers want to analyse semantic
properties in trajectories. This requires that there must be
enough available data in the k-anonymity set and the data
must be accurate.

In this paper, the available data rate (AD) is used to eval-
uate the amount of available data in the anonymous set,
which is calculated as follows.

_ num_reach (k)

AD = , (23)

num_all(kq,)

where num_all(k,,) denotes all the location points in the k
-anonymous set and num_reach (k) denotes the reachable
location points in the k-anonymous set.

We use information loss (IL) to evaluate the accuracy of
the anonymous set. Less information loss indicates more
accurate data and better data availability. Information loss
depends on the size of the anonymity zone; the method
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FIGURE 7: Availability vs. k.

was similar with Xu et al. [13]. The calculation formula is as
follows.

_ Zli]iM‘Area(loci, time;)/Max_Area(k,,,)
SEM|

IL , (24)

where Area(loc;, time;) denotes the ith semantic location
point’s anonymous set size, and Max_Area(k,) denotes
the size of the trajectory k-anonymous set, and |SEM]
denotes the number of semantic location points.

We evaluate the k-anonymity set’s data availability by
the average available data rate and the average loss informa-
tion for the 10 trajectories. Figure 7 illustrates the effect of k
value on data availability.

Figure 7(a) evaluates three methods’ available data rate.
Among them, Random has the lowest available data rate.
This is because, this method contains or passes through
some unreachable locations that are not available for data
analysis. The available data rate of both MTPPA and
DSTPP is 1. This is because the dummy trajectory of
MTPPA is taken from history trajectories set, and the
dummy trajectory by DSTPP is also taken from history
trajectories. Therefore, no unreachable positions will be
present or passed.

Figure 7(b) evaluates three methods’ data accuracy.
When k value increases, the information loss of all three
methods shows an increasing trend. This is because the qual-
ity of dummy trajectory decreases as the k-anonymity set
increases. When k values are constant, Random has the
greatest loss information. This is because the dummy trajec-
tory generated by Random does not consider semantic sim-
ilarity. So, there is too much noise in the query results of
each query. MTPPA’s information loss is in the middle;
MTPPA considers the number of stop point between trajec-
tories. Therefore, the query result of each query contains a
high amount of semantic information, which can be used

for data analysis. DSTPP has minimal information loss. This
is because the dummy trajectory generated by DSTPP not
only considers the number of stop point but also considers
the semantics of stop point are similar to the real trajectory.
The query results contain rich semantic information for
researchers to analyse.

6. Conclusions

With the rapid development of information technology and
5G technology, human society has entered the era of big
data. Analysing the user’s daily action trajectory is of great
help in optimizing national resource scheduling and
improving public facilities. User trajectories contain sensi-
tive information: how to ensure the availability of trajecto-
ries on the premise of ensuring user privacy and security.
Aiming at this problem, this paper proposes a trajectory pri-
vacy protect method based on location pair reorganization.
The real trajectory is decomposed into location pairs con-
sisting of start-send point and stop points. Then, k-1
dummy trajectories are generated by selecting eligible loca-
tion pairs from the historical trajectory set to form trajectory
k-anonymous. Finally, this paper experiments privacy and
availability on real dataset. By comparing with MTPPA algo-
rithm and Random algorithm, our method reduces informa-
tion loss and improves privacy protection. Overall, MTPPA
algorithm is better than MTPPA algorithm and Random
algorithm.

Data Availability

The trajectory data used to support the findings of this study
can be downloaded from https://www.microsoft.com/en-us/
download/details.aspx?id=52367 and the detailed instructions
can be found in https://www.microsoft.com/en-us/research/
publication/geolife-gps-trajectory-dataset-user-guide/.
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