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Due to continuous progress of urbanization in China, large area of natural surface has become impervious. Automatic extraction
of impervious surface (IS) from high-resolution remote sensing images is important to urban planning and environmental
management. Artificial identification of IS is time-consuming and laborious. It is valuable to develop more intelligent
recognition patterns. In recent years, semantic segmentation models based on convolutional neural network (CNN) have made
great progress in extraction of IS from remote sensing images. However, most existing models focus on improving accuracy
and rarely consider computational efficiency. In order to keep balance between computing resource consumption, computing
speed, and segmentation accuracy, we propose a lightweight semantic segmentation network model based on CNN, and we
named it LWIBNet. LWIBNet uses an efficient encoding-decoding structure as the skeleton and connects the encoding part
and the decoding part by the Skip Layer. Moreover, in order to reduce the number of parameters and speed up the calculation,
we introduce improved Squeeze-and-Excitation (SE) module, inverted residuals, and depthwise separable convolution to form
the Inv-Bottleneck (IB) module and use it as the core to build the LWIBNet model. On the computational complexity,
LWIBNet and LWIBNet-TTA have the lowest FLOPs (14.14G), and SegNet has the second lowest FLOPs, but SegNet is 3.2
times higher than LWIBNet (45.05G vs 14.14G). Both the LWIBNet model and classic models are tested and compared on
the same data set. The results show that the LWIBNet model achieves a bit higher segmentation accuracy with less
computation cost, and its computation speed is faster.

1. Introduction

The rapid urbanization in China has continued for decades,
and it changed the pattern of land use and land cover,
mainly manifested in the disappearance of natural surface
cover and the increase of IS [1]. IS is a typical feature of
urban areas and is defined as artificially constructed hard
surfaces impermeable to surface water, such as buildings,
squares, roads paved with asphalt and concrete, and parking
lots [2]. An excessively high IS ratio will not only destroy the
surface heat balance and cause a serious heat island effect in
the city but also weaken the city’s hydrological regulation

capacity and cause floods. Therefore, timely grasp of the spa-
tial distribution information of IS is of great significance to
urban environmental research [3].

The traditional method of extracting IS information is
visual interpretation, but this method has high technical
requirements for interpreters, and it has problems such as
low production efficiency and high cost. With the develop-
ment of remote sensing technology and diversification of
data, a large number of remote sensing thematic information
retrieval technologies have been proposed and widely used
(such as spectral mixture analysis, index method, decision
tree model method, and regression model method), but most
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of the algorithms are only suitable for IS extraction of low-
resolution and medium-resolution remote sensing images
and are not suitable for high-resolution remote sensing
images containing only near-infrared and visible light bands
(Xu and Wang 2016). General remote sensing classification
methods, such as object-oriented method [4], support vector
machine (Okujeni et al. 2015), and random forest (Breiman
2001), are applicable to IS extraction of remote sensing
images of all resolutions and can achieve good results, but
they also have some shortcomings: Affected by people’s sub-
jective consciousness, intelligence and automation are poor,
and the extraction efficiency is increasingly unable to meet
the massive remote sensing data processing. Obviously,
there is an urgent need to explore newer and more intelli-
gent IS extraction methods.

Deep learning (DL) is one of research hotspots in the
field of machine learning in recent years, and it has unique
characteristics of automatic learning ability and nonlinear
complex function and fitting ability [5], and CNN belongs
to DL, has excellent performance in image processing, and
has been successfully applied to remote sensing visual recog-
nition tasks such as ground object classification, target detec-
tion, and semantic segmentation in remote sensing images.
Some scholars have applied CNN to IS extraction from
high-resolution remote sensing images: He et al. extracted
the IS of Chengdu, Sichuan Province, China, from remote
sensing images by using CNN and studied the changes of
IS from 2009 to 2017 [6]. Fu et al. combined deep convolu-
tion neural network with object-based image analysis
(OBIA) to accurately extract IS from high-resolution remote
sensing [1]. Huang et al. combined CNN with object-
oriented segmentation, fuzzy C-means clustering, and
improved watershed algorithm to improve the accuracy of
automatic recognition of IS [7].

However, most of the mainstream CNN models cur-
rently applied to IS extraction and even to the whole remote
sensing field are complex in structure and have a large num-
ber of parameters. Although they have excellent perfor-
mance in accuracy, the limited hardware resources and
computing power will lead to difficulties in model training,
time-consuming, and even impossible to implement, which
will hinder the realization of more research and industrial
applications.

To handle the above problems and achieve rapid and
high-precision segmentation, we proposed a lightweight
semantic segmentation network model based on CNN
(LWIBNet), aiming at obtaining IS extraction graphs with-
out loss of segmentation accuracy with less consumption of
computational resources and time.

2. Dataset

The dataset used in this paper is divided into training set,
verification set, and test set. The training set and verification
set are taken from Nanchang City, Jiangxi Province, China,
while the test set is from Chongqing City, China. All remote
sensing images are collected from LocaspaViewer, with a
spatial resolution of 0.262m and three bands of RGB. The
dataset was obtained by ArcGIS visual interpretation and

strict registration with the original image position. Due to
the large size of the high-resolution image (which would lead
to memory overflow), the sliding window cutting method
with a repetition rate of 0.1 was adopted to cut the images
of the training set and the verification set into 256 × 256 sub-
graphs to improve the training efficiency. In addition, in
order to avoid overfitting caused by too few images in the
training set, we enhanced the training set by horizontal flip,
vertical flip, and diagonal flip and generated 82880 training
images (the size of each image is 256 × 256), 20220 verifica-
tion images (the size of each image is 256 × 256), and 2 test
images (the size of each image is 3091 × 1451). Finally, we
shuffled the training set and the verification set to make
the distribution of samples more reasonable.

3. Methodology

3.1. Construction of LWIBNet Model. The structure of the
LWIBNet model is shown in Figure 1, and its basic structure
is an encoding-decoding structure with excellent perfor-
mance in DL semantic segmentation [8]. The role of the
encoding part is to learn the semantic information of the
input image and extract features that IS, while the role of
the decoding part is to enhance the feature extraction results
of the encoding part and restore the spatial information and
resolution of the feature map (FP). Tables 1 and 2 show the
detailed information of encoding-decoding structure.

Generally, feature extraction of the network model
requires appropriate receptive field to obtain sufficient rich
context information. The traditional method is to combine
convolution layer with pooling layer and then use this com-
bination extensively. Although it can capture more transla-
tion invariance features, too many convolution layers
greatly increase the computation in the learning process,
and a large number of pooling operations will also cause
the loss of internal data structure and spatial hierarchical
information, which will lead to the inability to reconstruct
some detailed information during decoding [9]. Therefore,
in order to reduce computation and retain more informa-
tion, we built the Inv-Bottleneck (IB) module and used it
as the main model, supplemented by standard convolution
+upsampling to build the model.

As shown in Figure 1 and Tables 1 and 2, the coding part
is divided into five modules, which are composed of eleven
IB modules, two standard convolutions, and one maximum
pool and will output five feature maps with different scale
information to the decoding part. The decoding part is also
divided into five modules, which are composed of four IB
modules, four standard convolutions, and five upsampling
layers. The decoding part will fuse the five feature maps out-
put by the encoding part in turn to form thicker feature
information. The encoding-decoding connection mode
adopts Skip Layer (E-FP1 connects D-FP4, E-FP2 connects
D-FP3, E-FP3 connects D-FP2, E-FP4 connects D-FP1,
input E-FP5 to D-FP5), which makes low-level features
splice with high-level features, making full use of shallow
local detail information and deep global information. At
the end of the network is a softmax classifier, which can
summarize the pixels with the same semantics according to
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Figure 1: The network structure of the LWIBNet model. E-FP and D-FP, respectively, represent the feature maps of the encoding and
decoding parts, each with 5 layers.

Table 1: The specific structure and information of the encoding part.

FP Input Operator Up Output SE Activation Stride Contact

E-FP1
2562 × 3 Conv+BN, 3 × 3 — 1282 × 16 — Hard_swish 2

D-FP4
1282 × 16 IB, 3 × 3 16 1282 × 16 — 1

E-FP2
1282 × 16 IB, 3 × 3 72 642 × 24 — 2

D-FP3
642 × 24 IB, 3 × 3 88 642 × 24 — 1

E-FP3

642 × 234 IB, 5 × 5 96 322 × 40 √ Hard_swish 2

D-FP2322 × 40 IB, 5 × 5 240 322 × 40 √ Hard_swish 1

322 × 40 IB, 5 × 5 240 322 × 40 √ Hard_swish 1

E-FP4

322 × 40 IB, 5 × 5 120 322 × 48 √ Hard_swish 1

D-FP1322 × 48 IB, 5 × 5 144 322 × 48 √ Hard_swish 1

322 × 48 Maxpooling, 2 × 2 — 162 × 48 — — —

E-FP5

162 × 48 IB, 5 × 5 288 82 × 96 √ Hard_swish 1

(To)D-FP5
82 × 96 IB, 5 × 5 576 82 × 96 √ Hard_swish 1

82 × 96 IB, 5 × 5 576 82 × 96 √ Hard_swish 1

82 × 96 Conv+BN, 1 × 1 — 82 × 96 — Hard_swish 2
∗Note that columns 1 to 9, respectively, represent the name of the feature map, the size of the input feature map, the size of the output feature map, the current
operation, the number of channels changed, whether improved Squeeze-and-Excitation (SE) is used, the type of activation function, the step size, and the
connection method.

3Wireless Communications and Mobile Computing



the training results and output an IS information map with
the same size as the input image.

In addition, we found that traditional dropout can
degrade the performance of the small base model; so, we
dropped the function of dropout and add batch normaliza-
tion (BN) after each convolution operation to reduce the risk
of overfitting.

It should be noted that IB module is the key to reduce
the number of parameters and the amount of calculation
and can help the model more accurately identify the IS in
the complex features. Figure 2 shows the structure diagram
of IB module and its components. IB module is composed
of inverted residuals, depthwise separable convolution, and
improved SE module.

Inverted residual structure can increase the ability of fea-
ture expression and solve the gradient disappearance prob-
lem caused by the increase of network depth during
training. Its specific structure is shown in Figure 2(b). We
take the inverse residual structure as the backbone of IB
module and introduce the h-swish activation function [10],
which has less computation but can improve the model
accuracy.

Depth separable convolution is a key tool of the efficient
neural network model, which splits a standard convolution
into two independent operations: Depthwise convolution
(DW) and pointwise convolution (PW), which can effec-
tively reduce the amount of computation and cost while
achieving similar (or slightly better) performance as stan-
dard convolution [11]. We use 5∗5 DW and 3∗3 DW in IB
module to make the model more robust.

SE module is a mechanism that enables the model to cal-
ibrate features. It can make the effective weight larger and
the invalid or ineffective weight smaller, but it will increase
the total number of parameters and the total calculation
amount of the model. Therefore, we use the improved SE
(first, the result after exclusion 1 is changed to 1/4 of the
original one, which reduces the parameter amount. Sec-

ondly, the sigmoid function is replaced by h-swish, which
reduces the calculation amount.). The improved SE is shown
in Figure 2(c), which is applied to the last layer of IB module.

3.2. Model Training and IS Extraction. In the training stage,
the loss function adopts the cross entropy function, the opti-
mizer abandons Adam and adopts a better Nadam optimiza-
tion algorithm, the classifier adopts the softmax activation
function, the batch size is set to 36, and the initial learning
rate is set to 1e-4. When three epoch pass and the loss of
the verification set do not drop, the learning rate is halved.
Finally, set the loss of the verification set for 10 consecutive
rounds and stop training if there is no decline. In the predic-
tion stage (IS extraction), there are two prediction methods:
one is ordinary remote sensing large image prediction
(firstly, overlapping cutting, then image prediction, and
finally, splicing prediction results by ignoring edges). The
other is the prediction method combined with postproces-
sing (test time augmentation, TTA) on the basis of the for-
mer (firstly, the input test images are enhanced, then the
results of different ways of data enhancement are predicted,
and finally, all the prediction results are averaged). LWIBNet
combined with TTA (LWIBNet-TTA) can improve the
accuracy, and the comparison of its results will be exhibited
in Section 3.

4. Results

To verify the effectiveness of the proposed model, we com-
pare the extraction results of LWIBNet with those of classi-
cal models (U-Net, SegNet, and Deeplabv3+ (based on
ResNet50)) and all models adopt the same experimental
setup. The experimental hardware and software environ-
ment of this paper is shown in Table 3.

The qualitative segmentation results of all models are
shown in Figures 3 and 4. Among them, Figure 3 is a com-
parison diagram after the difference between the tag map

Table 2: The specific structure and information of the decoding part.

Contact FP Input Operator Up Output SE Activation Stride

E-FP4 D-FP1 82 × 96 Conv, 2 × 2+UpSamp, 2 × 2 — 162 × 48 — ReLU 1

E-FP3 D-FP2

162 × 48 IB, 3 × 3 144 162 × 48 √ Hard_swish 1

162 × 48 Conv+BN, 3 × 3 — 162 × 48 — ReLU 1

162 × 48 Conv, 2 × 2+UpSamp, 2 × 2 — 322 × 40 — ReLU 1

E-FP2 D-FP3

322 × 40 IB, 3 × 3 240 322 × 40 √ Hard_swish 1

322 × 40 Conv+BN, 3 × 3 — 322 × 40 — ReLU 1

322 × 40 Conv, 2 × 2+UpSamp, 2 × 2 — 642 × 24 — ReLU 1

E-FP1 D-FP4

642 × 24 IB, 3 × 3 88 642 × 24 — ReLU6 1

642 × 24 Conv+BN, 3 × 3 — 642 × 24 — ReLU 1

642 × 24 Conv, 2 × 2+UpSamp, 2 × 2 — 1282 × 16 — ReLU 1

E-FP5(To) D-FP5

1282 × 16 IB, 3 × 3 16 1282 × 16 — ReLU6 1

1282 × 16 Conv+BN, 3 × 3 — 1282 × 16 — ReLU 1

1282 × 16 Conv, 3 × 3+UpSamp, 2 × 2 — 2562 × 2 — ReLU 1
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of the whole remote sensing image and the prediction map
obtained by each model, which can clearly see the misclassi-
fied pixels. Figure 4 is a detailed comparison diagram of the
misclassified areas in Figure 3, which can more specifically
identify correctly classified and wrongly classified ground
objects. Overall analysis of Figure 3 shows that the SegNet
model has a large number of blue pixels and only a small
number of red pixels, which indicates that its extraction abil-
ity is uneven and its effect is the worst. The number of red
pixels in U-Net, Deeplabv3+, and LWIBNet is similar, while
the number of blue pixels in LWIBNet is slightly less.
LWIBNet-TTA has the least number of red and blue pixels,
which indicates that its extraction effect is the best.

From the detailed analysis of Figure 4, it can be seen that
each model has some problems: the concrete bare land cov-
ered by shadow is easily classified as permeable to water, and
the bare grassland with bare and yellow is easily classified as

impermeable to water, insensitive to black and dark IS
objects, and easily confused and misclassified. According to
these extraction difficulties, it can be seen that SegNet is
the most serious, LWIBNet-TTA is lighter, and LWIBNet
is similar to other models.

LWIBNet-TTA means adding TTA operation based on
the LWIBNet model. The black, gray, red, and blue pixels
represent the predictions of “Pervious Surface (PS),” “Imper-
vious Surface (IS),” “IS misclassified as PS,” and “PS misclas-
sified as IS”, respectively.

The quantitative results of each model are shown in
Table 4. The indexes in the table are producer accuracy (Prd
Acc), user accuracy (User Acc), overall accuracy (OA), F1
score, mean intersection over union (MloU), kappa coeffi-
cient, parameter quantity (Param), floating point operations
(FLOPs), training time (TT), and segmentation time (ST).
The first six indexes consider the basic performance indexes
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Figure 2: The structure of the IB module and its components. Up and down represent dimension increase and dimension decrease,
respectively.
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of the semantic segmentation model, while the last four
indexes consider the complexity of the model itself, computa-
tional complexity, and time consumption.

On the basic performance index, LWIBNet-TTA has the
best performance. Although SegNet has high drawing accu-
racy, its other indexes are very low; so, its overall performance
is the worst. The overall performance of U-Net, Deeplabv3+,
and LWIBNet has little difference, but LWIBNet still has
0.4-0.5 percentage points advantages in User Acc, MloU, and
Kappa. In terms of parameters, the parameters of the LWIB-
Net model are about 11 times (1.07 vs 11.55, 11.85) lower than
those of SegNet and Deeplabv3+ and even 29 times (1.07 vs
31.06) lower than those of U-Net. On the computational com-
plexity, LWIBNet and LWIBNet-TTA have the lowest FLOPs
(14.14G), and SegNet has the second lowest FLOPs, but Seg-
Net is 3.2 times higher than LWIBNet (45.05G vs. 14.14G).
In terms of segmentation time, each step of LWIBNet-TTA

(processing a 256∗256 size image) takes the most time, each
step of U-Net takes the second most time, and each step of
LWIBNet takes the least time.

5. Discussion

5.1. The Validity of IB Module. Inverted residuals, improved
SE module, and depthwise separable convolution are com-
monly used efficient structures for lightweight models [10,
11]. However, whether the IB module composed of them
can perform well is a problem. To verify the effectiveness
of this IB module in reducing the amount of calculation
and parameters and maintaining certain accuracy, we keep
the main structure of LWIBNet unchanged, replace IB mod-
ule with traditional convolution+pooling module, and carry
out comparative experiments. The experiment is divided
into three groups: A1 and A2 groups which do not use IB

Table 3: The experimental hardware and software environment.

Hardware or software Version

CPU Intel(R) Core i7-10875H

GPU NVIDIA GeForce RTX 2070

Operating system Windows10

Development tools Tensorflow-Gpu 2.3.0, python3.8, and CUDA10.1

(a) Ground Truth (b) U-Net

(c) SegNet (d) Deeplabv3+

(e) LWIBNet (f) LWIBNet-TTA

Figure 3: IS extraction diagram of label dimension.

6 Wireless Communications and Mobile Computing



module (traditional convolution+pooling module is used)
and B group which uses IB module. Among them, the chan-
nel number change of FP in group A1 follows U-Net and
SegNet, and the channel number change of FP in group A2
follows the IB module. Their experimental results are shown
in Table 5, it can be seen that group A1 has a large number
of parameters, and its performance is worse than that of
group B, while group A2 has the least amount of parameters
and calculation, but its performance is also the worst. Group

B using IB module has less parameters and the best perfor-
mance. The comparison results prove the efficiency and
applicability of using IB module as the core module to
extract impervious surface from high-resolution remote
sensing images.

5.2. Limitations of This Article. Although LWIBNet has
achieved good performance and efficiency, it still has limita-
tions. The ground objects in high-resolution remote sensing
images are complex and detailed [12], and the spectral sim-
ilarity between different objects and shadows of tall build-
ings or trees limits the correct extraction of IS. There is a
problem that the ground objects covered by shadows are
easy to be confused (it is difficult to distinguish by pixels
alone). In future research, we will add more spectral infor-
mation of bands, combine multisource remote sensing data
from different sensors, and integrate multidisciplinary
knowledge to further improve the automatic extraction abil-
ity of IS. Based on the constructed spectral homogeneity and

Image
(2562 × 56)

Ground truth U-Net SegNet Deeplabv3+ LWIBNet LWIBNet-TTA

Figure 4: Comparison of the details of areas with severe misclassification.

Table 4: Comparison of the quantitative evaluation indices.

Model Prd Acc User Acc OA F1 score MIoU Kappa Param/M FLOPs/G TT/ms ST/ms

U-Net 0.965 0.957 0.947 0.961 0.886 0.932 31.06 109.3 637 20

SegNet 0.994 0.853 0.881 0.918 0.743 0.848 11.55 45.05 233 8

Deeplabv3+ 0.970 0.946 0.943 0.958 0.877 0.927 11.85 52.57 277 9

LWIBNet 0.964 0.961 0.949 0.962 0.891 0.936 1.07 14.14 139 5

LWIBNet-TTA 0.962 0.974 0.957 0.968 0.908 0.946 1.07 14.14 139 25
∗The indices include the producer accuracy (Prd Acc), user accuracy (User Acc), overall accuracy (OA), F1 score, mean intersection over union (MIoU),
kappa coefficient, parameter quantity (Param), floating-point operations (FLOPs), training time (TT), and segmentation time (ST) (time consumption for
processing a 256 × 256 size image). The optimal value of each index is presented in bold.

Table 5: Experimental results with and without IB module.

Group OA MIoU Kappa Param/M FLOPs/G

A1 0.924 0.840 0.903 93.00 59.05

A2 0.902 0.791 0.876 0.970 11.28

B 0.949 0.891 0.936 1.070 14.14
∗The optimal value of each index is presented in bold.
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spectral heterogeneity indexes, the strategy of “coarse esti-
mation + precise determination” is adopted, and an optimal
segmentation result after multilevel optimization is gradu-
ally obtained.

6. Conclusion

In this paper, a lightweight semantic segmentation network
model based on CNN is proposed, which is used to automat-
ically extract impervious surface from high-resolution
remote sensing images. In order to strike a balance between
computing resource consumption, computing speed, and
segmentation accuracy, the model takes an efficient
encoding-decoding structure as the skeleton and IB module
(composed of inverted residuals, improved SE module, and
depthwise separable convolution) as the flesh and blood.

At the same time, the qualitative and quantitative results
show that the parameters and computation of the LWIBNet
model in this paper are far less than those of the classical
semantic segmentation model, which is in line with the char-
acteristics of lightweight network model. The LWIBNet
model is comparable to the classical models (U-Net, SegNet,
and Deeplabv3+) in segmentation accuracy, which prelimi-
narily achieves the balance of computing resources, comput-
ing speed, and segmentation accuracy. It can quickly extract
IS and can achieve similar or even slightly higher extraction
accuracy with less computational resources than the classical
model. In addition, the LWIBNet-TTA method can obtain
higher extraction accuracy without considering the time-
consuming segmentation.

In the future research, we will add more spectral infor-
mation, combine multisource remote sensing data from dif-
ferent sensors, and integrate multidisciplinary knowledge to
further improve the automatic extraction ability of IS.
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