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Graph neural networks, as the promising methodology in data mining for graph data, currently attract much attention and are
broadly applied in graph-based tasks. Existing GNN methods mostly follow the assumption of homophily, where the
connected nodes are similar and share the same labels. Most graphs in the real world can satisfy the assumption. However, for
the particular nodes, the situation is not always satisfied. The connections between different-labeled nodes will introduce noise
in feature aggregation and result in node representation deviating in the wrong direction. In this paper, we focus on the
different-labeled neighbors of labeled nodes in the graphs. By regarding aggregation among neighbors as the procedure of node
feature reconstruction, we devise a novel metric neighbor consistency to measure the difference between nodes and their
neighborhoods. In this way, we can evaluate the reliability of nodes after aggregation. Furthermore, we propose a novel
method, Neighbor Consistent Graph Neural Networks (NC-GNN), to promote the training of graph neural networks by
reweighting the influence of labeled nodes based on neighbor consistency scores. Systematic experiments are conducted on
benchmark datasets, and the results demonstrate the effectiveness of our method.

1. Introduction

Graphs are widely observed in our daily lives, as graphs can
well capture objects’ features and the abundant interactions
between objects. For instance, following-relations in users
form friendship graphs in social networks [1], users’ interac-
tions on goods construct user-item graphs in recommenda-
tion systems [2], and the communications between mobile
phones construct graphs in cellular networks [3]. As an
important part of data mining, graph learning attracts much
attention to learning latent information in real-world graph
data recently. Graph neural networks promote graph learn-
ing by introducing deep learning frameworks and achieve
great success in most graph mining tasks, like node classifi-
cation [4, 5], link prediction [6, 7], and graph classification
[8–10]. The frameworks are also widely applied in real-life
graph tasks, from recommendation [11, 12], social networks
[1], text extraction [13, 14], knowledge graphs [15], etc.

The goal of graph neural networks is to encode nodes in
the graph into dense and low-dimensional embeddings with
node features and graph topology information preserved

simultaneously. In this way, nodes or graphs can be repre-
sented by the embeddings, and then, we can find out the
latent information for downstream tasks. Existing graph
neural frameworks mostly follow the manner of message
passing neural network (MPNN) [16], namely, updating
nodes’ representations by aggregating information from
neighborhoods. In this way, the representation of nodes is
smoothed in each iteration, and the final representation
can be used for downstream tasks. The most popular model,
GCN [4], simplifies the message passing strategy by using
the first-order polynomial, namely, only considering the
direct neighbors of nodes. A lot of variants of GCN are then
proposed [5, 17].

As graphs in the real world contain abundant nodes,
existing graph neural networks primarily focus on the semi-
supervised scenario where partial nodes are tagged with
labels. MPNN-based GNNs achieve great success by follow-
ing the assumption of homophily, which assumes that con-
necting nodes in the graph are similar in features and
share the same labels. In this way, beneficial information will
be aggregated to nodes and can help models learn better
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representations. Most graphs in the real world can satisfy the
assumption, while for the particular node in the graph, the
situation is not always satisfied. For instance, there exist mis-
takes when collecting graph data that link nodes of differ-
ently labeled nodes. The adversarial attack in graphs is
often conducted by connecting nodes of different classes as
message passing will amplify noise from different-labeled
nodes. Besides, nodes in the boundaries between classes con-
nect to different-labeled nodes in the connected graph. We
did simple statistics on benchmark datasets by counting
the nodes with different-labeled neighbors. We call the
nodes neighbor inconsistent nodes (NI-Nodes). The results
are shown in Table 1. From the table, we can figure out that
NI-Nodes are common even in widely used homophily
graphs.

When performing message passing in these nodes,
unnecessary information will be aggregated. Consequently,
the final node representation will deviate in the wrong direc-
tion. Here is a toy example:

In Figure 1, we conducted 1-step aggregation in the sam-
ple graph, and different colors indicate different labels.
According to the figure, as the node a and node d share
the consistent neighbors, respectively, their colors remain
the same after aggregation. However, node b and node c
change their colors with different-colored neighbors’ infor-
mation propagated, resulting in unreliable final representa-
tions. What is worse, the noisy information will influence
other nodes with the procedure of iterative aggregation.

Consequently, how to evaluate messages from neighbors
becomes crucial for better graph neural networks. The most
popular method, GCN, treats every neighbor node equally
by mean aggregator without considering noise from the
neighborhood. GAT [5] introduces attention scores to eval-
uate the influence of every neighbor and then reweight mes-
sages from the neighborhood. Nevertheless, it still assumes
that all neighbors are beneficial for the model training. Some
other methods [18, 19] also try to modify the topology struc-
ture to help better aggregate information. Besides, some self-
supervised learning methods [20–23] try to construct multi-
view graphs and apply contrastive learning to alleviating the
noise from unreliable neighbors. However, the methods usu-
ally train multiple models for different graph views and learn
multiple representations for nodes, which is time and space
consuming.

In this paper, we focus on different-labeled neighbors in
the aggregation of nodes. Instead of modifying models from
the structure or neighbor weights, we attempt to consider
this problem from the point of labeled nodes as the frame-
work is optimized by the nodes. We argue that considering
aggregation in graph neural networks can be seen as the pro-
cedure of node feature reconstruction. And we can divide
the information captured in aggregation into two parts, node
features and context features. Then, we measure the differ-
ence between the node feature and the context feature to
evaluate the reliability of node representation after aggrega-
tion. In particular, we devise a novel metric NC (neighbor
consistency) to evaluate the reliability. Furthermore, we pro-
pose the method called Neighbor Consistent Graph Neural
Networks (NC-GNN) to improve the training of graph neu-

ral networks by reweighting the influence of labeled nodes.
The greater the neighbor consistency is, the more reliable
is the node representation after aggregation, which indicates
that the node representation can help more in the model
training and vice versa. Empirical results for node classifica-
tion demonstrate the effectiveness of our method. We sum-
marize the main contributions of this paper as follows:

(i) We devise neighbor consistency (NC) to measure
the difference between labeled nodes and their
neighborhoods. By regarding aggregating informa-
tion from neighborhoods as node feature recon-
struction, NC can evaluate the reliability of labeled
nodes after aggregation effectively

(ii) We devise a novel method NC-GNN to promote
the training process of graph neural networks.
The method can obtain better embeddings from
neighbor-consistent nodes by reweighting the influ-
ence of labeled nodes according to neighbor consis-
tency scores

(iii) We conduct extensive experiments on node classifi-
cation, and the results indicate the effectiveness of
our method

The remaining part of the paper is organized as follows.
Section 2 reviews the related works involving graph neural
networks and some modifications of aggregation. In Section
3, we introduce some preliminaries and the framework of
graph neural networks. In Section 4, our method is then pre-
sented with a detailed description. Extensive experiments are
conducted in Section 5 to evaluate the performance of our
method. At last, Section 6 concludes the paper with discus-
sions and future works.

2. Related Works

In this section, we briefly review the related works, including
graph neural networks and modifications for aggregating
neighbor nodes in graph neural networks. Since graph neu-
ral network is a very active research area, we only introduce
the most relevant models. For more details, we refer readers
to some surveys [24, 25].

2.1. Graph Neural Networks. The research of graph neural
networks is popular in graph learning. It is aimed at trans-
ferring traditional convolutional networks from Euclidean
space to graph domain. Graph convolution is first proposed
in [26] in graph signal processing, and there are many works
to simplify the framework in both spectral and spatial

Table 1: Nodes with different-labeled neighbors in the benchmark
graphs.

Nodes NI-Nodes Proportion (%)

Cora 2078 932 34.42

Citeseer 3327 1360 40.88

PubMed 19717 8759 35.57
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domain. For example, [27] introduces the Chebyshev poly-
nomials with orders of K to approximate the eigen-
decomposition. And Kipf and Welling [4] in GCN simplify
the model by using the first-order polynomial, namely, only
considering the direct neighbors of nodes. Due to the sim-
pleness and conciseness of GCN, it becomes the baseline
and popular in graph learning. Existing graph neural net-
work models usually follow the framework of MPNN (mes-
sage passing neural network) [16], which aggregates
messages from neighbor nodes to update the embeddings
of target nodes. For instance, GraphSage [17] applies differ-
ent strategies to aggregate features from neighbor nodes.
GAT [5] evaluates the importance between target nodes
and neighbor nodes so that the model can aggregate more
related information. GIN [9] develops a simple structure to
ensure that the aggregator is injective and the representa-
tional power is equal to the power of WL-test. SGCN [28]
simplifies GCN through successively removing nonlinear-
ities and collapsing weight matrices between consecutive
layers.

The models based on MPNN mostly follow the assump-
tion of homophily, which states that nodes connected by
edges are similar and beneficial information can be propa-
gated in the graph. However, the assumption is not always
satisfied as there always exists unintentional or intentional
noise in real-world graphs. In the following subsection, we
will introduce some modifications on aggregating neighbor
nodes considering the situation.

2.2. Modifications on Aggregating Neighbor Nodes. As homo-
phily is not always satisfied in the real world, aggregating
beneficial neighbors becomes crucial in graph neural net-
works. To alleviate the influence of different-labeled neigh-
bors, many works are then proposed. For instance, [29]
compares the original prediction with the counterfactual
prediction calculated by presenting multiple data indicators
to assess the trustworthiness of neighbor nodes. Besides, as
neighborhood information is preserved in the graph struc-
ture, many frameworks are then designed to modify the
graph structure so as to conduct aggregation better. Methods
like self-enhanced GNN [30] and EGAI [31] add or remove
edges based on the predicted neighbor labels learned by the
model. Bayesian GCN [32], LDS [18], SimP-GCN [33], and
IDGL [34] adopt different strategies to optimize the graph
structure and node embeddings simultaneously to make
graph structure more suitable for model learning. Some con-
trasting models try to construct multiviews by modifying
neighbor structures [35–37]. In the real-world scenario,
some models adopt neighbor aggregation modifications to
better fit downstream graph tasks, like modifying graph

structure [20, 38] or evaluating the dependencies between
nodes [39, 40].

Though the above methods achieve great progress in
encoding nodes into better embeddings with modified struc-
ture, the modification of graph structure sometimes discards
the important interactions between nodes, resulting in infor-
mation loss.

3. Background

3.1. Notations and Preliminaries. This paper mainly focuses
on undirected graphs, but the method can also be used in
directed graphs. We present G = ðV ,E,XÞ as a graph,
where V consists of the set of nodes in G , with jV j =N . E
is the collection of edges. X ∈ℝN×F denotes node feature
matrix, where xi ∈ℝF represents the attributes of node vi,
and F is the dimension of node features. Adjacency matrix
A ∈ f0, 1gn×n is the topological structure of graph G , where
Aij > 0 indicates that there is an edge between nodes i and
j. Otherwise, Aij = 0.

Given topological structure A and feature matrix X as
input, our objective is to learn low-dimensional dense
node embedding matrix Z ∈ℝN×d with d≪ F without
human annotation. The learned node embeddings can well
preserve topology and feature information so as to be
applied to downstream tasks. In this paper, we focus on
semisupervised node classification. V L ⊂V is the labeled
node set, and we have jV Lj≪ jV j. Y ∈ℝN×k is the label
set for nodes in the graph, yi ∈ℝ

k is the one-hot label vec-
tor of node vi, and k is the number of classes. Then, we
aim to train a classifier ŶU = gð·Þ by utilizing the learned
node embedding Z as input to predict the labels for unla-
beled node set V U =V −V L.

3.2. Graph Neural Networks. Graph neural networks are a
popular class of graph embedding methodologies that model
the graph structure and node features to encode representa-
tions for nodes in the graph. Existing GNN frameworks
mostly learn node representations by aggregating the fea-
tures of neighbor nodes. The output of the k-th layer of
the framework can be generally expressed as

h kð Þ
i = σ h k−1ð Þ

i , AGG h k−1ð Þ
j

� �� �
, j ∈N ið Þ, ð1Þ

where hðkÞi is the node representation of node vi at the k-th

layer with hð0Þi = xi and N ðiÞ is the direct neighbors of node
vi. σð·Þ is the nonlinear method to combine the information
from the previous layer to update node representations.
AGGð·Þ is the method to aggregate information from

a ab bc cd d
Aggregation

Figure 1: An example of 1-step aggregation in graph neural networks.
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neighbor nodes, which is usually mean, max, sum methods.
Different GNN method varies in the formulations of σð·Þ
and AGGð·Þ methods.

4. Our Approach

We propose a method called Neighbor Consistent Graph
Neural Networks, short as NC-GNN, to promote the train-
ing of GNNs by evaluating the consistency between nodes
and the corresponding neighbors. The overview of the
method is shown in Figure 2. The model consists of two
components. In the preprocessing procedure, we evaluate
neighbor consistency for labeled nodes. After that, with the
calculated neighbor consistency scores, the influence of
labeled nodes is reweighted in the model training procedure.
We will introduce each component in detail as follows.

4.1. Node Feature Reconstruction. Graph neural networks
essentially utilize the message passing strategy of aggregating
information from neighbor nodes to update node representa-
tions. For every node, the desiring situation is that connected
neighbor nodes are all similar, namely, the assumption of
homophily, so that the final node representation can be more
accurate and generalized for node classification. However, the
hypothesis is not always satisfied for particular nodes as dis-
cussed above. Therefore, the information fromneighbor nodes
should be evaluated before messaging passing.

Based on the framework of GNNs shown in Section 3.2,
the update of the representation for nodes can be divided
into node features and context features, which preserve all
the neighbor features. As node feature remains unchanged,
GNN is trying to transform node representation towards
context features. With infinite iterations of aggregation and
update, the node representation can be transferred into the
mixture feature constructed by neighbors. If node features
are blank, the final representation of the node is then
decided by the context features thoroughly. Based on the
above discussion, we can regard the information aggregation
as node feature reconstruction, which represents the nodes
with the weighted combination of context features from
neighbor nodes and node features.

Therefore, the context features play a critical impact in the
final embeddings of nodes after aggregation. In particular, to
ensure the final embeddings can well represent the nodes,
the context feature constructed by neighbor nodes should be
similar to the node features. And the corresponding labels of
context features can well capture the information.

In the Euclidian space, we assume a virtual center node
exists for every class. Therefore, if neighbor nodes are similar
to the target node and share the same label, the nonnegative
weighted sum of neighbor features, namely, context features,
should always be closer to the class center node than the
neighbor node which is furthest away. Otherwise, the label
of the representation after aggregation cannot be guaranteed.

Consequently, we devised a simple metric, called
neighbor consistency, to better evaluate the consistency
between nodes and the corresponding context features by
measuring the difference between the labels of nodes and
their neighbors.

4.2. Evaluation of Neighbor Consistency. To help GNNs learn
better node embeddings, nodes with consistent context rep-
resentations should be more important. When the consis-
tency is high, the final embedding of the node is
representative. Firstly, we calculate the context feature as

ci =〠αi,jx j, j ∈N ið Þ, ð2Þ

where N ðiÞ is the neighbor set of vi. Actually, the equation
can be seen as encoding the neighborhood of vi to a virtual
context node. αi,j is the weight between vi and vj. If we focus
on the direct neighbors in the graph just as the aggregation
in GCN, we can simply set αi,j = 1/jN ðiÞj. Or we can con-
struct the ego-network of vi with limited k-order neighbors
and then calculate αi,j through Personalized PageRank. In
this way, we can reconstruct node features through a wider
receptive field.

There exist many methods to measure the difference
between features. In this paper, as we focus on labeled nodes,
we propose the Multilayer Perception (MLP) to classify con-
text features. In particular, we regard labeled nodes as the
training set for the classifier, and then, we can get the
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Figure 2: Overview of our proposed NC-GNN. The blue-colored node represents labeled node. We evaluate neighbor consistency of labeled
nodes in preprocessing section. After that, we reweight the influence of labeled nodes in the loss function with neighbor consistency scores.
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following label distribution for the corresponding context
features, namely,

ŷci =MLP cið Þ, ð3Þ

where ŷci ∈ℝk is the predicted label distribution for context
feature of node vi and k represents the number of classes.

Compared with other methods like Euclidian distance,
MLPð·Þ trained by labeled nodes can better capture class
information among all the training samples, so the MLPð·Þ
is more generalized to calculate robust label distributions
for context features.

The learned MLPð·Þ is overfitting with labeled nodes. So
it can well classify the context features. While the model can-
not perform well in unlabeled nodes, that is the reason why
we do not consider evaluating neighbor consistency for
unlabeled nodes in the whole graph.

Ŷ
c
L can then be used to evaluate neighbor consistency by

comparing with labels YL of corresponding labeled nodes.
When the context feature’s predicted label is the same as
the corresponding labeled node, we can conclude that the
labeled node is neighbor-consistent. The higher confidence
in the prediction indicates the greater consistency between
the node and the neighborhoods. Otherwise, if the context
feature is classified as a different label, the neighbors are
inconsistent with the labeled node. In this paper, we utilize
prediction confidence to evaluate the consistency between
neighbors and nodes. So we define neighbor consistency
score (NC) as

NCi =
max ŷcij

n o� �
, argmaxj ŷcij

n o� �
= l, yil = 1,

−1 ∗max ŷcij
n o� �

, otherwise,

8><
>:

ð4Þ

where max ð·Þ function is used to identify the maximum
value in the label distribution. argmaxð·Þ is to figure out
the class label of the context feature with the highest
probability.

The calculated NC scores can capture the consistency
between labeled nodes and their neighbors well, with larger
values indicating greater consistency.

4.3. Promoting GNN by Loss Weight Reweighting. In this sec-
tion, we introduce NC-GNN, a training weight schedule
mechanism to promote the training of graph neural net-
works. As discussed above, graph neural networks are
trained through aggregating neighbor features for target
nodes to update node representations iteratively, and the
model is optimized by calculating the classification loss of
labeled nodes. As a result, the labeled nodes with consistent
neighborhoods can help more in the training process. Based
on the calculation of neighbor consistency, we can figure out
the labeled nodes whose neighbors’ features may not be
helpful in aggregation and even bring extra noise. So we
can utilize NC scores to make nodes with consistent neigh-
bors play a more active role in model learning. Specially,

we devise a simple method for the calculation of node
weights according to neighbor consistency scores,

W = softmax μ · NC + I NCð Þ · bð Þ, ð5Þ

I xð Þ =
1, x > 0,
−1, x < 0,

(
ð6Þ

where W ∈ℝL are the weight matrix for labeled nodes and μ
and b are the parameters of scaling the neighbor consistency
scores and initial weight for nodes, respectively. Ið·Þ is the indi-
cator function to give the initial weight difference between
neighbor-consistent nodes and neighbor-inconsistent nodes.
Here we choose softmaxð·Þ to avoid future normalization in
calculation.

Then, the training loss for a better graph neural network
is computed by the following equations,

Ŷ = softmax F X ,A, θð Þð Þ, ð7Þ

LN = −
1
Lj j 〠i∈L

wi 〠
k

l=1
yil log ŷil, ð8Þ

where F denotes any GNN framework, θ is the parameter of
F, Ŷ is the GNN output. wi is the loss weight of labeled node
vi calculated in Equation (8), ŷi is the prediction of vi, and yi
indicates the original label for node vi in one-hot embed-
ding. By encouraging positive effects from the aggregation
of consistent neighbors which share the same label with tar-
get nodes and alleviating the negative effects from the aggre-
gation of neighbors with different labels, our method can
promote graph neural networks by reducing noise in model
training, so as to represent nodes with robust embeddings.

4.4. Complexity Analysis. In our NC-GNN method, we con-
struct context representations for labeled nodes and predict
the corresponding label distribution to evaluate the neighbor
consistency between labeled nodes and their neighbors. And
the method can be split into two procedures, preprocessing
and GNN training.

In the GNN training procedure, we use common GNN
frameworks and the time complexity is the same as the
frameworks. Here we consider GCN as an example. The
time complexity of an L-Layer GCN model is OðLjA0jF + L
NF2Þ, where N is the number of nodes, jA0j is the number
of nonzeros in A, and F is the number of features. In the pre-
processing procedure, we first construct the context represen-
tations for labeled nodes. For the mean method, the time
complexity isOðdjLjÞ, where d is the average degree of nodes
in the graph and jLj is the number of labeled nodes. For the
PPR method, the complexity is Oðd2jLjÞ. Due to the sparsity
of graphs, d < <N . Then, we useMLPð·Þ as the classifier to pre-
dict the contexts’ label distributions. For the L-Layer network,
the time complexity isOðLjLjF2Þ. And the overall complexity
of the procedure is OðjLj + LjLjF2Þ.

For space complexity, GCN needs OðLF2Þ memory for
storing the weight matrix and OðLNFÞ for embeddings.
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Our method needs additional OðLjLjFÞ memory to store
the context representations and OðLF2Þ memory to store
the weight matrix of the classifier.

5. Experiments

In this section, we conduct adequate experiments to validate
the effectiveness of our method. We first evaluate whether
the calculated neighbor consistency matches the neighbor
distribution in the graphs. Then, node classification experi-
ments are conducted to demonstrate the effectiveness of
our method. Furthermore, we discuss the relationships
between neighbor consistency and the performance of our
method and study the parameters’ influence on the model.

5.1. Datasets. Following previous works [4, 41], we utilize the
widely used Planetoid paper citation datasets(Cora, Citeseer,
and PubMed) and the Amazon purchase graphs (Photo and
Computers). In the citation datasets, nodes and edges repre-
sent documents and citation relations between documents,
respectively. Each node is represented by the bag-of-words
features extracted from the contents of the document. Each
node corresponds to a label with the one-hot encoding of
the document category. In Amazon purchase graphs, nodes
represent goods on the site, edges indicate that two goods
are frequently bought together, node features are bag-of-
words encoded product reviews, and class labels are given
by the product category. We employ data with DGL [42]
and Pytorch-Geometric [43] module, and the data distribu-
tion is shown in Table 2.

5.2. Experimental Settings

5.2.1. Baseline Methods. To evaluate the effectiveness of our
method, we compare with the following state-of-the-art
methods.

(i) DeepWalk [44]. It is the typical shallow network
embedding model by regarding node as words in
documents and utilizing skip-gram models to train
embeddings

(ii) GCN [4]. It is the baseline of graph neural net-
works. It generalizes the covolutional operation
from deep learning to graph domain, considering
aggregating messages from direct neighbors

(iii) GraphSage [17]. It is extending the mean aggrega-
tor of GCN to perform multiaggregation and per-
forming a sampling strategy before aggregation

(iv) GAT [5]. It is considering weighting the neighbors
in aggregation by introducing attention mechanism
to GCN and assigning different weights to neighbor
nodes according to attention scores

(v) DropEdge [45]. It is considering modifying the
structure by randomly removing a certain number
of edges at each epoch to improve the generaliza-
tion capacity of GCN

(vi) SimP-GCN [33]. It is considering modifying the
structure by combining kNN-graph calculated by
node features and original graph to preserve node
feature similarity with updated structure and
improve the homophily in the graph

(vii) NC-GNN. This is our method, and we choose the
GCN and GAT as our baseline methods

5.2.2. Parameter Settings. In parameter settings, we designed
2-layer graph neural networks with the same hidden layer
dimension and the same output dimension simultaneously
for every method. For baseline methods like DeepWalk,

Table 2: Data distribution of benchmark datasets.

Cora Citeseer PubMed Photo Computers

Nodes 2078 3327 19717 7487 13381

Edges 5278 4614 44325 119043 245778

Features 1433 3703 500 745 767

Classes 7 6 3 8 10

Training nodes 140 120 60 20 per class 20 per class

Validation nodes 500 500 500 30 per class 30 per class

Test nodes 1000 1000 1000 Rest nodes Rest nodes

Table 3: Proportion of NI-Nodes to the predicted nodes using
mean method.

Predicted nodes NI-Nodes Percentage

Cora 36 20 55.6%

Citeseer 46 37 80.4%

PubMed 7 6 85.7%

Photo 37 31 83.8%

Computers 67 52 77.6%

Table 4: Proportion of NI-Nodes to the predicted nodes using
Personalized PageRank method.

Predicted nodes NI-Nodes Percentage

Cora 28 20 71.4%

Citeseer 38 32 84.2%

PubMed 7 6 85.7%

Photo 34 28 82.4%

Computers 69 58 84.1%
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GCN, GAT, and DropEdge, we follow the instruction of
original codes in Github published by the authors. For
GraphSage, we only consider the situation with the mean
aggregator, and the model is implemented the same as the
authors’ guidance. With our methods, we set the parameters
of MLP almost the same as GCN, with the same hidden
layers, and the same dropout rate. Besides, for the NC-
GNN models, we follow most settings the same as the base
methods except that we use an early stopping strategy the
same as GAT with patience of 100 epochs in NC-GCN.

In data splitting, we follow the same data split as previ-
ous works in Planetoid citation datasets. For Amazon
copurchasing datasets, as there is no existing split setting,
we randomly sample 20 nodes per class as the training set,
30 nodes per class as the validating set, and the rest nodes
as the testing set, which is consistent with previous works.

5.3. Neighbor Consistency Evaluation. We first evaluate the
neighbor consistency measured by the difference between
nodes and the corresponding neighbors. According to the
discussion in Section 4.2, we can figure out that when the
value of the NC score is negative, the node is more likely
to connect to different-labeled neighbor nodes. So we con-
duct the experiments to determine whether the predicted
neighbor-inconsistent nodes are connecting to different-
labeled nodes. Besides, we compare the mean and Personal-
ized PageRank method in constructing context features. The
results are shown in Tables 3 and 4.

From Tables 3 and 4, we can find out that most nodes
with negative NC scores are neighbor-inconsistent, which
may bring unnecessary information for aggregation in
model training. The results prove that NC scores can well
capture the neighbor consistency of nodes. Compared
Tables 3 and 4, in most cases, Personalized PageRank
method performs better than mean method in finding
neighbor-consistent nodes, as the wider receptive field can
provide more neighbor information. Therefore, we utilize
Personalized PageRank method as the base method for con-
structing context features in the following experiments.

Visualization. We sampled some predicted nodes by our
method in the datasets to observe whether NC scores can
figure out neighbor-inconsistent nodes. The results are
shown in Figure 3.

From Figure 3, we can conclude that NC scores can dis-
cover the neighbor-inconsistent nodes in the graph well. As

there exist different-labeled nodes in the neighborhood, the
aggregated information can be noise for the central node
sometimes. Besides, in the right part of Figure 3(a), we can
find that only one noisy node in the neighborhood some-
times can bring a considerable negative impact on aggrega-
tion. The results indicate that attention to neighbor
consistency is essential to train GNN models.

5.4. Node Classification Comparison. To verify the effective-
ness of our proposed NC-GNN by reweighting train weights
of labeled nodes, we conducted extensive experiments on
node classification compared with baselines in benchmark
datasets. The results are shown in Table 5. From the table,
we can find the following observations:

Our method NC-GNN achieves the best or second-best
performance compared with baseline methods in all data-
sets. The promising results validate the effectiveness of our
method which reweighs the labeled nodes with calculated
neighbor consistency scores. Compared with NC-GCN,
NC-GAT shows fewer improvements compared with corre-
sponding baselines as GAT utilizes an attention mechanism
to measure the weights for neighborhoods. The attention
scores can alleviate the noise passed from different-labeled
neighbors.

DropEdge randomly removes a certain percentage of
edges in the graph to improve the generalization perfor-
mance of graph neural networks, which can be seen as
removing different-labeled neighbors randomly. However,
the randomicity sometimes discards the important interac-
tions between nodes, resulting in unsatisfying performance.
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Figure 3: Sampled predicted low neighbor consistency nodes in datasets. Numbers included are the node index, and different color indicates
different class.

Table 5: The results of node classification accuracy (%) on the
datasets.

Data Cora Citeseer PubMed Photo Computers

DeepWalk 67.2 43.2 65.3 - -

GCN 81.6 70.5 78.7 89.6 76.5

GraphSage 77.4 67.0 76.6 86.5 74.5

GAT 82.6 70.3 77.5 91.3 79.3

DropEdge 79.6 67.6 73.4 87.6 78.2

SimP-GCN 82.5 72.5 80.9 89.4 78.2

NC-GCN 83.0 74.2 79.3 90.9 83.3

NC-GAT 83.5 73.0 79.1 92.1 84.5
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Evaluating the neighbor consistency in our method can fig-
ure out the different-labeled neighbors without losing the
structure information, which is easier to control and stable.
SimP-GCN updates the graph structure by combining with
kNN-graph calculated by node features’ similarity, thus con-
necting similar nodes and improving homophily in the
graph. However, it ignores the different-labeled neighbors
which pass unnecessary information in aggregation.

GAT outperforms other baselines as they can weigh
neighbor nodes with attention scores so as to prevent the
information aggregated from different-labeled neighbors.
However, GAT still assumes that all neighbors are beneficial
no matter the neighbors’ labels. Therefore, the node remains
unreliable after aggregating information from different-
labeled neighbors. In contrast, our method improves the

model by reducing the impact of unreliable nodes in the
training procedure. In this way, we can better capture the
beneficial information to train the model. The results also
show that our method can learn better node embeddings.

Considering the specific dataset, we can find that our
method shows more improvements in Citeseer than Cora
compared with baseline methods. According to Table 4, we
can conclude that we find more neighbor-inconsistent nodes
in Citeseer; thus, our method contributes more to reducing
the negative impact of different-labeled neighbors and
enhancing the performance of the framework. As for PubMed,
NC-GNN only finds 6 neighbor-inconsistent nodes, so our
method can bring few improvements on baselines.

As for the baseline methods, GCN model performs bet-
ter than DeepWalk as graph convolution can capture node
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Figure 4: The results of classification accuracy in datasets with different neighbor consistency. Low, middle, and high indicate different
probabilities of neighbor-inconsistent nodes in the dataset.
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features and topology information simultaneously. GAT
outperforms GCN in some cases as GAT introduces atten-
tion to graph convolution to decide the more important
neighborhoods. The results are consistent with those in pre-
vious works.

5.5. The Influence of Neighbor Consistency. Our method
focuses on improving GNN frameworks with the neighbor
consistency of labeled nodes. Therefore, the neighbor consis-
tency of the labeled node set plays a considerable influence
on the performance of our method. We conduct experi-
ments to discuss the influence of different neighbor consis-

tency probabilities. In particular, we randomly sampled
three labeled node sets of 20%, 50%, and 80% neighbor-
consistent nodes with the same setting of 20 labeled nodes
per class in the previous works. And the probabilities corre-
spond to high, middle, and low neighbor consistency,
respectively. We conduct the experiments on Cora and Cite-
seer with our variants of GCN and GAT. The results are
shown in Figure 4.

In Figure 4, we can figure out that as the neighbor con-
sistency grows, all models perform increasingly better,
which indicates that neighbor consistency is crucial for
model performance. In most situations, our method leads
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Figure 5: Classification accuracy with different μ in Cora and Citeseer.
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Table 6: Running time(s) of the models on the datasets.

Data Cora Citeseer PubMed Photo Computers

GCN 1.71 1.87 6.17 3.76 7.75

NC-GCN 2.62(+53.2%) 2.98(+53.0%) 7.04(14.1%) 6.57(+48.1%) 9.58(+23.6%)

GAT 19.50 26.91 89.78 84.14 144.67

NC-GAT 20.39(+4.6%) 28.01(+4.1%) 90.67(+1.0%) 85.95(+2.2%) 146.48(+1.2%)
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to more improvements on baseline methods when neighbor
consistency of labeled nodes is low, while in the high neigh-
bor consistency situation, the gap between our method and
baseline decreases as there are fewer neighbor-inconsistent
nodes.

5.6. Parameter Study. In this section, we consider the param-
eters in calculating training weights for labeled nodes in the
model, including μ for scaling the node neighbor consistency
scores and b for giving the initial training weights. To verify
the effects of the corresponding parameters, the experiment
results of NC-GCN in Cora and Citeseer datasets with differ-
ent parameter settings are presented in Figures 5 and 6.

μ tries to scale the computed neighbor consistency
scores. A larger μ will highlight the neighbor consistency
differences, while a smaller value tries to mitigate the neigh-
bor consistency differences. From Figure 5, we can figure
out that NC-GCN performs best in both datasets when
the value of μ is positive, which indicates that the labeled
nodes with consistent neighbors contribute more in the
training process. We can conclude that valuing the neighbor
consistency is beneficial for node classification with graph
neural networks.

b assigns an initial training weight to the labeled nodes
with the corresponding sign given by the indicator method,
thus distinguishing between the neighbor-consistent nodes
and the neighbor-inconsistent nodes. A positive b indicates
that the nodes are vital in the training process, while a
negative value weakens the influence. Figure 6 presents
that the model achieves the best results in both datasets
when b is positive. We can conclude that labeled nodes with
consistent neighbors should be more noticed than neighbor-
inconsistent nodes in the training process. Besides, the per-
formance of NC-GCN degrades when the value of b is too
large, as the model can hardly capture the information of dif-
ferent neighbor consistency scores. So we recommend a small
b in model training.

5.7. Running Time Analysis. We report the running time of
our method NC-GCN and NC-GAT compared with corre-
sponding baselines in Table 6 (the experiments are con-
ducted in the machine with an Intel(R) Core(TM) i9-
10900K @ 3.70GHz CPU and a Nvidia GeForce GTX
3090 GPU).

The table shows that our method brings some time cost
when the baseline model is simple, whereas there is little
running time gain when the baseline is complex, such as
GAT. The observation indicates that our method can be
applied to massive graphs when choosing a suitable baseline
framework. Besides, the time consumption of our method
increases less compared with baseline methods when the
graph is larger and contains more nodes. This mainly lies
in that only partial nodes are labeled in real-world graph
tasks.

6. Conclusion

Existing graph neural network methods mostly follow the
assumption of homophily, which states that connected

nodes are similar and share the same labels. However, the
assumption is not always satisfied in real-world graphs. In
this paper, we focus on labeled nodes and try to evaluate
the consistency between the nodes and corresponding neigh-
borhoods. In particular, we regard information aggregation
in graph neural networks as node feature reconstruction
and represent the neighborhoods as context features. Then,
we design a novel metric neighbor consistency to evaluate
the difference between node features and the corresponding
context features so as to measure the reliability of labeled
nodes after aggregation. Furthermore, we propose the
method called Neighbor Consistent Graph Neural Networks
(NC-GNN) to promote the training of graph neural net-
works by reweighting the influence of labeled nodes. In this
way, the labeled nodes with consistent neighborhoods can
contribute more to the model training. Extensive experi-
ments are conducted on benchmark datasets, and outstand-
ing performance indicates the effectiveness of our method.

In the future, we aim to extend the neighbor consistency
from labeled nodes to all nodes in the graph to improve
aggregation in graph neural networks.
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