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Radio frequency (RF) fingerprint identification is a nonpassword authentication method based on the physical layer of
communication devices. Deep learning methods have thrown new light on RF fingerprint identification. In this paper, a
conventional neural network- (CNN-) based RF identification model is proposed. The CNN models are designed to be
lightweight. Raw data that reflects the characteristics of the I channel, the Q channel, and the 2-dimensional I +Q data is
successively fed into a CNN model. Therefore, three submodels are generated. The final predictive labels are determined by the
results of the three submodels through a voting scheme. Experimental results have demonstrated that in the SNR setting at
5 dB, the final recognition accuracy of four transmit devices could achieve as high as 97.25%, while the identification accuracies
based on the I channel data, Q channel data, and I +Q channel data are 94.5%, 95%, and 94.5%, respectively. The training
time for the 4 devices is around 30 seconds.

1. Introduction

By analysing the subtle differences of transmitters’ RF fin-
gerprints, RF fingerprint-based learning models could dis-
tinguish varieties of devices, thereby being difficult to
clone and fake [1–4]. These subtle differences of transmit-
ters are normally hard to be identified, and artificial intel-
ligence (AI) methods could be appropriate to mitigate this
problem [5–7].

AI models are divided into two main categories, includ-
ing machine learning and deep learning. Machine learning
(ML) needs first to extract the features of data samples and
then select an appropriate model to train the samples to
get model parameters. The ML methods include decision
tree, naive Bayesian, K-nearest neighbor, and support vector
machine. For communication signals, the extracted features
include carrier frequency, phase noise, constellation, high-
order moments, power spectrum, and fractal features. In
[8], Hu et al. extracted primary features, such as information
dimension, constellation feature, and phase noise spectrum
of the transmitted signal. The ML models, including the sup-

port vector machine, bagged tree, and weighted K-nearest
neighbor, were used for RF fingerprinting recognition.

The feature extraction process requires professional
knowledge. Moreover, specific information in original data
might be lost after feature extraction. To mitigate the issues,
unlike ML models, deep learning (DL) models could directly
process raw data, transform the original data into higher-
level representations, and automatically learn better feature
representations. The automatic learning process could
replace feature extraction, thus avoiding the procedure of
feature engineering that may be at the cost of extracomput-
ing resources. Examples of DL methods include feedforward
neural networks [9], CNN, and recurrent neural networks
[10, 11]. Particularly, the CNN has widely been applied in
signal processing. In [12], Merchant et al. developed a
framework for training a CNN algorithm using the time-
domain complex baseband error signal. Building on seven
2.4GHz commercial Zigbee devices, the experimental results
demonstrated 92.29% identification accuracy. The robust-
ness of the method over a wide range of signal-to-noise
ratios (SNRs) was also illustrated. In [13], raw I/Q data
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was used as a 2-dimensional input dataset into the CNN
model to perform modulation classifications. In [14], raw I
/Q data was used as a complex dataset and an RF-based deep
complex residual network model that effectively extracts the
I/Q-related information in the electromagnetic signal wave-
form was proposed. The authors showed that the recogni-
tion accuracy of the proposed method was 99.56%,
compared with the contour stellar-based method 90.4%,
and the deep complex CNN-based method 94.8%. However,
the complex-valued method is complicated and not widely
generalized.

In our paper, the raw data directly sampled from the I
channel and the Q channel and a new 2-dimensional I +Q
data are fed into a CNNmodel. The final identification result
depends on the aggregated results of the three submodels.
Specifically, if two or three predictive results of the three
submodels are the same, the final result is determined by
the two or three submodels. On the other hand, if all the
results from the three submodels are different, the final
result is determined purely by the result that is obtained
from I +Q data.

The main contributions of this paper are as follows:

(i) The raw sampled data from the I channel and the Q
channel and a new 2-dimensional I +Q data are
trained by a typical CNN structure like LeNet-5
[15]. The identification accuracies for 4 transmit
devices by the three CNN submodel are compared
under 0 dB, 5 dB, and 10dB SNRs

(ii) The CNN submodel is designed to be lightweight. A
small number (32 or 64) of sample points are used
for training. Only two conventional layers are
included in the CNN structure. The output size of
each layer is decreased to a half of the input size.
The training time for the 4 devices is about 30 sec-
onds. This is useful to extract the RF fingerprint in
real time

(iii) A voting scheme is proposed to synthesize the above
three identifications, which further improves the
identification accuracy

2. CNN-Based RF Fingerprint
Identification Method

2.1. RF Fingerprint Identification and CNN Introduction.
The RF fingerprints refer to the hardware features of wire-
less devices based on the signals transmitted by the devices.
The hardware features for RF fingerprint identification
attribute to the differences between wireless devices due to
the tolerances of electronic components [16]. The CNN is
a feedforward neural network that includes convolutional
computation and has a deep structure. A CNN model can
classify the categories of input information, which is also
called “a translation-invariant artificial neural network.”
The relevant research began from the 1980s. With the
introduction of deep learning theory and the improvement
of computing equipment, CNN models have been rapidly

developed and widely used in computer vision, natural lan-
guage processing, and other fields.

2.2. CNN-Based RF Fingerprint Identification Method. The
CNN-based RF fingerprint identification method is shown
in Figure 1. A small slice is selected from the original raw I
/Q data to reduce computation time. For each transmitter,
200 out of 10000 transmission records and 32 or 64 out of
8000 sample points are extracted for the following signal
processing. The selected samples are then normalized to
eliminate the amplitude differences due to the distances
between the transmitter and receiver. The normalization
method is illustrated in the following equations.

XImn =
N∙xImn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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� �

q
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where xImn is the sample data at the I channel of the nth
sample point of the mth transmission, xQmn is the sample
data at the Q channel of the nth sample point of the mth
transmission, XImn is the normalized result of xImn, XQmn

is the normalized result of xQmn, and N is the total sample
points, which equals to 32 or 64.

Additive White Gaussian noise is then added to the nor-
malized sample data by employing MATLAB function
“awgn.” For each case, 200 transmissions are equally split
into a training dataset and a testing dataset. The training
process is then carried out by CNN models. Three predicted
results by the I channel data, Q channel data, and I +Q
channel data are obtained and denoted as pI, pQ, and pIQ,
respectively. The final identification is voted by the three
predicted results, which means that the final predicted
device is the one receiving the most votes among the three
predicted results. For example, if the predicted results of
RF fingerprint identification by the I channel data and the
Q channel data are both device 1, while the predicted result
by the I +Q channel data is device 2, that means that device
1 receives 2 notes, device 2 receives 1 note, and device 3 and
device 4 receive 0 notes, so the voted result, denoted as pV , is
device 1. If all the three predicted results are different from
each other, the final identification is the same as the pre-
dicted result by the I +Q channel data, because I +Q chan-
nel data contains more information. For example, if the
predicted result by the I channel data is device 1, the pre-
dicted result by the Q channel data is device 2 and the pre-
dicted result by the I +Q channel data is device 3; then,
the final identification is device 3. The voting scheme can
be simply summarized as Figure 2.

A CNN structure like LeNet-5 is applied to carry out the
RF fingerprint identification. The structure consists of 10
layers. The CNN model is designed to be lightweight. Only
two conventional layers are included in the CNN structure.
The output size of each layer is decreased to a half of the
input size. The parameters of each layer are given as follows.
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Figure 1: A radio frequency fingerprint identification method based on CNN.
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The first layer is the data input layer. The size is ½L ×N
× 1�, where L = 1 for the I channel data or the Q channel
data, L = 2 for the I +Q channel data, and N is the number
of sample points that equals 32 or 64, which denotes that a
segment of 32 data points can represent one signal transmis-
sion. The second layer is a 2D convolutional layer which is
the major building block in the CNN. The convolutional
layer performs a convolutional operation that involves the
multiplication of a set of weights with the input to simulate
a traditional neural network. The filter size is ½L × 2 × 1�. The
number of filters is 4. The stride is set as 2. The output data
size is ½4 ×N/2 × 1�. The third layer is a rectified linear unit
(ReLU) layer that performs a threshold operation to each
element of the input, where any value less than zero is set
to zero. The fourth layer is a 2D max pooling layer that
manipulates downsampling by dividing the input into rect-
angular pooling regions and computing the maximum of
each region. The pool size is ½1 × 2�. The stride is also set
as 2. The output data size is ½4 ×N/4 × 1�. The fifth layer is
a 2D convolutional layer. The filter size is ½1 × 2 × 1�. The
number of filters is 16. The stride is still set as 2. The output
data size is ½4 ×N/8 × 1�. The sixth layer is a ReLU layer. The
seventh layer is a 2D max pooling layer. The pool size is ½1
× 2�. The stride is 2. The output data size is ½4 ×N/16 × 1�.
The eighth layer is a fully connected layer that compiles
the data extracted by previous layers to form the final out-
put. The output size is flattened to be 4, corresponding to
the classifications of 4 devices. The ninth layer is a softmax
layer that turns arbitrary real values into probabilities. The
tenth layer is a classification layer that computes the cross-
entropy loss for classification. A flow chart of the CNN
structure is shown in Figure 3.

The CNN training models are implemented by the
MATLAB deep learning toolbox. The MATLAB program
is run by the Intel Xeon CPU E5-2678 v3 @ 2.5GHz of a
Dell PowerEdge T430 computer with a RAM size of 128GB.

3. Results and Discussion

An experimental hardware platform consisting of four trans-
mitters and one receiver is built and shown in Figure 4.
Three low-cost USRP RIO-1082 (universal software radio
peripheral-radio reconfigurable input/output) devices are
used. Each USRP RIO-1082 device contains 2 radio fre-

quency transmitting channels and 2 radio frequency receiv-
ing channels. The four transmitters are comprised of two
USRP RIO-1082 devices and four antennas. The receiver is
comprised of a USRP RIO-1082 device and an antenna. An
NI-PXIe 1085 device is used to collect and store the signal
data. The QPSK-modulated signals are transmitted with
the carrier frequency of 2GHz and symbol rate 10 kbps.
The sample rate of the receiver is 1MHz.

During the experiment, each transmitter separately
transmitted 10000 times. Each transmission was sampled
at the I channel and Q channel simultaneously. After an syn-
chronization, 8000 sample points of each transmission were
stored. Therefore, we obtained four 10000 × 8000 × 2 arrays
of raw I/Q data corresponding to the four transmitters.

The influences of the sample size and SNR on the accu-
racy of RF fingerprint identification have been observed.
Figure 5 shows the training progresses of the CNN with
the I channel data, Q channel data, and I +Q channel data
under 0 dB SNR and 32 sample points. After 1400 iterations,
the accuracies of the I channel data and I +Q channel data
are both about 90%, while the accuracy of the Q channel
data is about 80%.

Figure 6 shows the training progresses of the CNN with
the I channel data, Q channel data, and I +Q channel data
under 5 dB SNR and 32 sample points. After 1400 iterations,
the accuracies of the I channel data and Q channel data are
both about 95%, while the accuracy of the I +Q channel data
is about 97%.

Figure 7 shows the training progresses of the CNN
with the I channel data, Q channel data, and I +Q channel
data under 10 dB SNR and 32 sample points. The accuracy
of the I channel is about 95% after 1400 iterations, while
the accuracies of the Q channel data and I +Q channel
are nearly 100% after 1000 iterations, which means that
the CNN model is overfitting during the late stages of
training.

Figure 8 shows the training progresses of the CNN with
the I channel data, Q channel data, and I +Q channel data
under 0 dB SNR and 64 sample points. After 1400 itera-
tions, the accuracies of the I channel data, Q channel data,
and I +Q channel data are about 97%, 95%, and 99%,
respectively.

Figure 9 shows the training progresses of the CNN with
the I channel data, Q channel data, and I +Q channel data
under 5 dB SNR and 64 sample points. The accuracy of the
I channel is about 95% after 1400 iterations, while the accu-
racies of the Q channel data and I +Q channel are nearly
100% after 1000 iterations, which means that the CNN
model is overfitting during the late stages of training.

Figure 10 shows the training progresses of the CNN with
the I channel data, Q channel data, and I +Q channel data
under 10 dB SNR and 64 sample points. The accuracies of
the three CNN models are all near 100% after 600 iterations,
which means that the CNN model is overfitting during the
late stages of training.

Table 1 shows the elapsed time of the training progress
when the I channel data, Q channel data, and the I +Q
channel data are input into the CNN model under 0 dB,
5 dB, and 10 dB SNRs, respectively, and 32 and 64 sample

Input pI, pQ, pIQ

pI=pQ

Yes

pV=pI pV=pIQ

No

Figure 2: Algorithm flow of voting scheme.
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points. The elapsed time is between 24 s and 35 s, which is
capable to extract the RF fingerprint in real time.

Table 2 shows the model accuracy rates of the submo-
del based on the I channel data, the submodel based on
the Q channel, the submodel based on the I +Q data,
and the final aggregated model. Generally, it can be seen

that the identification accuracy of the final model is higher
than that of all the other three ones. Under the same SNR,
the model accuracy with 64 sample points is higher than
with 32 sample points. When the sample points are set
as 32, the model accuracy rates are 87.25%, 93.75%, and
98.25% under SNR 0dB, 5 dB, and 10dB, respectively.
When the sample points are set as 64, the model accuracy
rates are 93%, 97.25%, and 99.5% under SNR 0dB, 5 dB,
and 10 dB, respectively.

Tables 3–8 show the confusion matrices of the voted
results for the four device identification problems in con-
sideration of different sample sizes and SNRs. The sum
of every row in the confusion matrices is 100, which is
the total number of running epochs. The diagonal num-
bers are the numbers of iterations for correct predictions,
while the other numbers are the numbers of iterations
for wrong predictions.
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Figure 5: The training progresses of the CNN under 0 dB SNR and
32 sample points.

Image input
layer

2D conventional
layer

ReLU
layer

2D max pooling
layer

2D conventional
layer

ReLU
layer

2D max pooling
layer

Fully connected
layer

So�max
layer

Classification
layer

L⨯N⨯1

Filter size: L⨯2
Number of filters: 4

Stride: 2

4@1⨯N/2⨯1

Pool size: 1⨯2
Stride: 2

4@1⨯N/4⨯1

Filter size: 1⨯2
Number of filters: 16

Stride: 2

Pool size: 1⨯2
Stride: 2

4@1⨯N/8⨯1 4@1⨯N/16⨯1

4 catagories 

Figure 3: A flow chart of the CNN structure.
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Figure 6: The training progresses of the CNN under 5 dB SNR and
32 sample points.

5Wireless Communications and Mobile Computing



Table 3 shows the confusion matrix when the number of
sample points is 32 and the SNR is 0 dB. Out of 100 epochs,
device 1 is predicted to be device 1 for 89 times, device 2 for
one time, and device 3 for 10 times. Device 2 is predicted to
be device 1 for one time, device 2 for 98 times, and device 4
for one time. Device 3 is predicted to be device 1 for 5 times,
device 2 for 2 times, device 3 for 74 times, and device 4 for
19 times. Device 4 is predicted to be device 3 for 12 times
and device 4 for 88 times.

Table 4 shows the confusion matrix when the number of
sample points is 32 and the SNR is 5 dB. Out of 100 epochs,
device 1 is predicted to be device 1 for 98 times and device 3

for 2 times. Device 2 is predicted to be device 1 for one time
and device 2 for 99 times. Device 3 is predicted to be device 1
for 3 times, device 3 for 81 times, and device 4 for 16 times.
Device 4 is predicted to be device 3 for 3 times and device 4
for 97 times.

Table 5 shows the confusion matrix when the number of
sample points is 32 and the SNR is 10 dB. Device 1, device 2,
and device 4 are correctly predicted for all 100 times. Out of
100 epochs, device 3 is predicted to be device 1 for one time,
device 3 for 93 times, and device 4 for 6 times.

Table 6 shows the confusion matrix when the number of
sample points is 64 and the SNR is 0 dB. Out of 100 epochs,
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Figure 8: The training progresses of the CNN under 0 dB SNR and
64 sample points.
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Figure 9: The training progresses of the CNN under 5 dB SNR and
64 sample points.
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Figure 10: The training progresses of the CNN under 10 dB SNR
and 64 sample points.
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Figure 7: The training progresses of the CNN under 10 dB SNR
and 32 sample points.
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device 1 is predicted to be device 1 for 94 times and device 3
for 6 times. Device 2 is predicted to be device 1 for one time,
device 2 for 98 times, and device 4 for one time. Device 3 is
predicted to be device 1 for 9 times, device 3 for 85 times,

and device 4 for 6 times. Device 4 is predicted to be device
3 for 5 times and device 4 for 95 times.

Table 7 shows the confusion matrix when the number of
sample points is 64 and the SNR is 5 dB. Out of 100 epochs,

Table 1: Elapsed time of the training progress.

N = 32, SNR = 0
dB

N = 32, SNR = 5
dB

N = 32, SNR = 10
dB

N = 64, SNR = 0
dB

N = 64, SNR = 5
dB

N = 64, SNR = 10
dB

I channel 28 s 27 s 33 s 30s 33 s 26 s

Q channel 29 s 25 s 30s 29 s 34 s 26 s

I +Q
channel

27 s 25 s 33 s 28 s 35 s 24 s

Table 2: Accuracy of RF fingerprint identification under different conditions.

N = 32, SNR = 0
dB

N = 32, SNR = 5
dB

N = 32, SNR = 10
dB

N = 64, SNR = 0
dB

N = 64, SNR = 5
dB

N = 64, SSNR = 10
dB

I channel 0.79 0.8675 0.965 0.8 0.945 0.985

Q channel 0.7725 0.9225 0.965 0.8025 0.95 0.98

I +Q
channel

0.7875 0.93 0.965 0.92 0.945 0.9825

Voted results 0.8725 0.9375 0.9825 0.93 0.9725 0.995

Table 3: Confusion matrix of the voted RF fingerprint
identification. N = 32, SNR = 0 dB.

Predicted devices
1 2 3 4

Actual devices

1 89 1 10 0

2 1 98 0 1

3 5 2 74 19

4 0 0 12 88

Table 4: Confusion matrix of the voted RF fingerprint
identification. N = 32, SNR = 5 dB.

Predicted devices
1 2 3 4

Actual devices

1 98 0 2 0

2 1 99 0 0

3 3 0 81 16

4 0 0 3 97

Table 5: Confusion matrix of the voted RF fingerprint
identification. N = 32, SNR = 10 dB.

Predicted devices
1 2 3 4

Actual devices

1 100 0 0 0

2 0 100 0 0

3 1 0 93 6

4 0 0 0 100

Table 6: Confusion matrix of the voted RF fingerprint
identification. N = 64, SNR = 0 dB.

Predicted devices
1 2 3 4

Actual devices

1 94 0 6 0

2 1 98 0 1

3 9 0 85 6

4 0 0 5 95

Table 7: Confusion matrix of the voted RF fingerprint
identification. N = 64, SNR = 5 dB.

Predicted devices
1 2 3 4

Actual devices

1 99 0 1 0

2 0 100 0 0

3 4 0 93 3

4 0 0 3 97

Table 8: Confusion matrix of the voted RF fingerprint
identification. N = 64, SNR = 10 dB.

Predicted devices
1 2 3 4

Actual devices

1 100 0 0 0

2 0 100 0 0

3 2 0 98 0

4 0 0 0 100
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device 1 is predicted to be device 1 for 99 times and device 3
for 1 time. Device 2 is correctly predicted for all 100 times.
Device 3 is predicted to be device 1 for 4 times, device 3
for 93 times, and device 4 for 3 times. Device 4 is predicted
to be device 3 for 3 times and device 4 for 97 times.

Table 8 shows that the confusion matrix when the num-
ber of sample points is 64 and the SNR is 10 dB. Device 1,
device 2, and device 4 are correctly predicted for all 100
times. Out of 100 epochs, device 3 is predicted to be device
1 for 2 times and device 3 for 98 times.

4. Conclusions

The CNN-based RF identification models on the I channel-
related data, the Q channel-related data, and the I +Q
-related data are used to recognize four transmitters. The
final identification labels are determined by a voting scheme
of the three submodels. It has been shown that the accuracy
of the final model is higher than those of all the three sub-
models. Additionally, experimental results illustrate that
the recognition accuracy with 64 sample points is higher
than that of 32 sample points in the same settings of SNRs.
The model accuracy is more than 90% under 32 sample
points in the setting of SNR at 5 dB. The elapsed time of
training the CNN model is between 24 s and 35 s, which
proves that the model is capable to extract the RF fingerprint
in real time.
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