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In order to solve the problem of long product lead time, accurate demand forecasting for space science payload components is of
great significance to the development of China’s space science industry. In view of the unsteady, nonlinear, and small sample
characteristics of space science payload component demand, this paper proposes the EEMD-CC&CV-MPSO-SVR model to
predict the future demand of space science payload components. First, this paper effectively adopts EEMD to decompose the
normalized demand sequence and analyze the stationarity of each subsequence. The sequence complexity is distinguished by
sample entropy, and the optimum kernel function CC-MPSO-SVR and CV-MPSO-SVR prediction models are established for
high-complexity and low-complexity sequences, respectively. Finally, the prediction results of each subsequence are ensemble
to form a total prediction. Experimental results shows that the model proposed in this paper performs better than single
benchmark models and other hybrid models in terms of prediction performance and robustness. It can effectively predict the
quantity and trend of the demand for China’s space science payload components, which provide decision-making basis for the
government to formulate policies, demand-side procurement, and supply-side inventory control.

1. Introduction

With the development of China’s space science, space sci-
ence payload becomes the focus of widespread attention in
the industry. Space science payload is equipment loaded on
spacecraft platforms to achieve experimental goals such as
on-orbit space science research, space exploration, and verifi-
cation of new space technologies [1]. Generally, space science
payload has the characteristics of international leadership,
diverse needs, and strong exploratory nature in multiple disci-
plines. The components represented by the central processing
unit (CPU), memory, diodes, and resistors are the basic units
of space science payload supply chain management, which
are the foundation and key to ensuring the realization of space
science mission goals.

However, the current supply chain of China’s space sci-
ence payload components has shortcomings, and the manage-

ment method is relatively backward. The uniqueness of the
demand for components in the space science payload has led
to the widespread problems of long product lead time and
delayed arrivals in the component supply chain. This has
affected the development schedule of space science payloads.
It further affects scientists’ chances of achieving scientific
results and occupying commanding heights in related fields.

The main reason for this problem is that the space sci-
ence mission has the characteristics of discontinuity and
unsteady state, which leads to the uncertain and nonlinear
characteristics of the demand for space science payload com-
ponents. In addition, component manufacturers have a long
supply cycle in accordance with the “demand order serial
traction scheduling” model, there is no “demand” macro-
control measures on both the development and use of com-
ponents, and the less historical data scattered on each sup-
plier leads to difficulties in forecasting market demand.
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This paper accurately predicts and analyzes the total
demand and trend of space science payload components.
(1) It is helpful to provide management departments with
reference for financial budget decision-making based on
the total demand. (2) It is helpful to guide the government
to plan and adjust related policies in advance and correctly
guide the arrangement of purchase plan for the demand side
and the formulation of inventory strategy for the supplier
according to the development trend and other obvious sig-
nals. (3) It is helpful for managers to identify and warn of
supply risks and do a good job of risk control and emergency
management in advance.

Therefore, this paper solves the problem of demand fore-
casting for space science payload components and scientifi-
cally predicts the future demand quantity and trend of
space science payload components, which is of great signifi-
cance to promote the output of China’s space science
achievements and strengthen the supply chain management
of space science payload components. It is imperative to
establish a set of forecasting methods that meet the charac-
teristics of unsteady, nonlinear, and small sample demand
for space science payload components.

The main contributions of this research are as follows:

(1) Aiming at the unsteady state, nonlinear, and small sam-
ple data characteristics of space science payload compo-
nents, this paper introduces the “decomposition-
ensemble” idea and proposes an EEMD-CC&CV-
MPSO-SVR comprehensive model, which decomposes
the unpredictable time series with violent fluctuations
into relatively stable time series that are easy to predict

(2) Combine the sample feature learning ability of phase
space reconstruction rolling window prediction in
high-complexity time series with the relieving over-
fitting ability of K-fold cross-validation time series
prediction in low-complexity time series. This paper
adopts the idea of “divide and conquer” for the first
time, applying two different forms of model training
methods to the demand subsequences of different
complexity

(3) Considering the shortcomings of PSO, such as
dependence on initial parameters, premature con-
vergence, and being easy to fall into local optimum,
the PSO algorithm was modified by chaos strategy,
crossover and mutation operations, and adaptive
control process

2. Related Work

At present, the academic circle has formed a relatively
mature prediction theory system. The existing forecasting
theoretical methods include time series methods, causal
methods, artificial intelligence methods, gray methods,
simulation methods and other single methods, combined
forecasting models, TEI@I methodology, decomposition-
ensemble forecasting model, and other ensemble methods.
The demand forecasting methods that adopt in the field of
components are basic, including time series forecasting and

unary causality forecasting. For example, Wang and Chen
[2] built a dynamic ARIMA model to adapt to the volatility
of semiconductor products and conduct demand forecast-
ing. There are no scholars considering single methods such
as artificial intelligence method, gray method, and simula-
tion method, let alone ensemble methods. The unsteady
and nonlinear characteristics of the demand for space sci-
ence payload components determine that the single models
with limitations currently used are difficult to predict accu-
rately. The decomposition-ensemble prediction model
inspired by TEI@I methodology [3] has become the frontier
technology of time series prediction research due to its
advantages of being suitable for complex system analysis
and prediction, as well as strong interpretability. The
decomposition-ensemble prediction model has been applied
to energy prices [4, 5], PM2.5 concentration [6], foreign
exchange rates [7, 8], agricultural product futures prices
[9], tourism demand [10], and many other fields. However,
no research has been found to apply it to the demand fore-
casting for space science payload components.

When the data is a combination of sequences with differ-
ent frequencies and has nonlinear and fluctuating character-
istics, separating these sequences with different frequencies
from chaotic data is a solution that may improve the predic-
tion accuracy. The model based on decomposition shows
better performance than the traditional single model in the
prediction of unsteady and nonlinear data. Time series data
decomposition method includes wavelet transform (WT)
[11], Fourier transform (FT) [12], empirical mode decompo-
sition (EMD) [13], and singular spectrum analysis (SSA)
[14]. EMD is superior to other decomposition methods
because it is very suitable for complex unsteady and nonlin-
ear time series and easy to model, but it also has the problem
of modal aliasing [15]. In recent years, some improved EMD
methods, such as sliding window empirical mode decompo-
sition (SWEMD) [16], ensemble empirical mode decompo-
sition (EEMD) [17], complementary ensemble empirical
mode decomposition (CEEMD) [18], complete ensemble
empirical mode decomposition with adaptive noise (CEEM-
DAN) [19], variation mode decomposition (VMD) [20], and
weighted EMD [21], have been proposed. EEMD is a multi-
scale analysis method that deals with unsteady, nonlinear,
and complex time series data decomposition, which has
been successfully applied to many fields. It retains all the
advantages of EMD. At the same time, it effectively over-
comes the shortcoming of EMD mode aliasing by adding
white noise to the original time series [22]. Li et al. [17] com-
bined the signal decomposition method and ANN to predict
the long-term runoff time series. The experimental results
show that EEMD has better performance than EMD and
DWT. Therefore, multiscale decomposition-ensemble fore-
casting represented by EEMD is a new application direction
in the field of demand forecasting for space science payload
components, and it is expected to improve the accuracy of
forecasting.

In terms of prediction models, support vector regression
(SVR) is an artificial intelligence method suitable for solving
small sample, nonlinear, and high-dimensional problems. It
not only has good prediction performance but also can
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overcome the deficiency of overfitting. The prediction per-
formance of SVR depends on the data preprocessing
methods largely such as the normalization problem and fea-
ture extraction in the early stage, as well as the kernel func-
tion selection and parameter optimization in the later stage.

The existing normalization methods include logarithmic
function conversion, min-max normalization, arctan func-
tion, sigmoid function, and quantile method. Because the
demand of space science payload components is always pos-
itive, fluctuates violently, and has abrupt changes, this paper
adopts the logarithmic function conversion method to nor-
malize the data.

The academic community has not yet reached a consen-
sus on kernel function selection and parameter optimization
[23]. SVR mainly has two types of kernel functions: global
kernel and local kernel. For global kernel functions, such
as linear kernel function and polynomial kernel function,
the discrete data points are allowed to influence the kernel
value, and the extrapolation ability is stronger, focusing on
finding the global optimum solution. For local kernel func-
tions, such as Gaussian Radial Basis Kernel Function
(RBF), only the centralized data points are accepted to have
an effect on the kernel value, and the interpolation ability is
better, aiming to find the optimal local solution [24]. This
paper tries many types of kernel functions, and the optimum
kernel function is more suitable for the nonlinear changes in
the demand sequence of space science payload components.

Metaheuristic algorithm is considered to an intelligent
method to solve SVR parameter optimization problems.
Metaheuristic algorithms include genetic algorithm (GA),
Tabu Search (TS) algorithm, simulated annealing algorithm
(SAA), particle swarm optimization (PSO) algorithm, and
Cuckoo Search (CS) algorithm [25]. The parameter optimi-
zation of SVR is a continuous optimization problem. The
PSO algorithm has obvious advantages in dealing with such
problem. And because of its memory mechanism [26], fewer
parameters, and easy implementation [27], it is more suit-
able for searching SVR parameters. However, the PSO algo-
rithm also has the disadvantages of dependence on initial
parameters, premature convergence, and easy to fall into
local optimum [28]. It is difficult to find the global optimum
of the SVR model parameter set that solves the demand
sequence of space science payload components with multiple
peaks. Therefore, it is necessary to further optimize and
improve the traditional PSO algorithm. This paper proposes
a modified PSO algorithm to overcome the above shortcom-
ings. Its algorithm type is swarm intelligence in evolutionary
computation.

Currently, the SVR method is applied to realize data-
characteristic-driven time series prediction. Model training
and prediction include two types. The one is to use the
embedding dimension and delay time to reconstruct the
phase space of the time series data and realize one-step or
multistep prediction through rolling windows [6]. The sec-
ond is to use the time series data as the input of the model
directly, which uses the K-fold cross-validation (K-Fold
CV) method for model training and prediction [29]. The
above two methods have their own advantages and disad-
vantages in solving time series prediction problems of differ-

ent complexity. Therefore, this paper adopts the idea of
“divide and conquer” and uses different model training
methods for time series data of different complexity to fur-
ther improve the accuracy of ensemble forecasting for space
science payload components. Among them, the complexity
of the time series data has expressed by the confusion degree
of the sequence. The complexity measurement methods
include sample entropy (SE) [30], information entropy (IE)
[31], and permutation entropy (PE) [32]. This article
chooses the commonly used sample entropy to measure
the complexity of the sequence. There are many calculation
methods for embedding dimension and delay time, but gen-
erally, they can calculate just only one factor separately. The
C-C method adopted in this paper is different from other
methods in that it can estimate the delay time and embed-
ding dimension simultaneously based on the statistical
results [33].

3. Proposed Model

3.1. Ensemble Empirical Mode Decomposition. Ensemble
empirical mode decomposition (EEMD) is a local and adap-
tive time-frequency analysis method proposed by Wu and
Huang in 2009, which solves the inherent modal aliasing
drawbacks of empirical mode decomposition (EMD) [34].
The basic principle of EEMD is that it is assumed that there
are several fluctuation modes in time series data, which can
be decomposed into intrinsic mode function (IMF) and
residuals of different frequencies step by step. The time
series data contains both real information and noise. Ran-
dom white noise that obeys the normal distribution (mean
value is 0; standard deviation is σ) is added to the original
time series data. After ensemble averaging, the noise of each
subsequence cancels each other out, and the modal aliasing
phenomenon is reduced significantly. EEMD algorithm flow
for multiscale decomposition of time series data of space sci-
ence payload component demand is as follows:

Step 1. This method adds Gaussian white noise wneðtÞ that
obeys Nð0, σ2Þ to the original data xðtÞ to generate time
series data xneðtÞ. ne means the iteration number for adding
white noise. Iterate is set as i = 0, ri=0ðtÞ = xneðtÞ.

xne tð Þ = x tð Þ +wne tð Þ: ð1Þ

Step 2. This method determines the local maximum and
local minimum of the sequence riðtÞ. Then, connect all local
maximums and local minimums through cubic interpolation
to form the upper envelope and the lower envelope. After
that, calculate the average envelope value miðtÞ of the upper
envelope emax,iðtÞ and lower envelope emin,iðtÞ.

mi tð Þ =
emax,i tð Þ + emin,i tð Þ

2 : ð2Þ

Step 3. It is set as diðtÞ = riðtÞ −miðtÞ, if diðtÞ meet the two
conditions of the IMF.
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(1) The difference between the number of extreme
points and zero crossing points is at most 1

(2) The average value of the upper envelope and lower
envelope is 0

Then, diðtÞ is the IMFjðtÞ, the iterate is set as i = i + 1,
and residual is riðtÞ = ri−1ðtÞ − di−1ðtÞ. If diðtÞ does not meet
the conditions, then let riðtÞ = diðtÞ.

Step 4. Repeat steps 2 to 3, and terminate the iteration when
the number of extreme points of the residual riðtÞ does not
exceed 1.

Step 5. This method loops the above 4 steps NE times, add-
ing different Gaussian white noise each time, integrating and
averaging NE IMF as the final decomposition result.

IMFj tð Þ =
∑NE

j=1IMFj tð Þ
NE : ð3Þ

Finally, EEMD decomposes the original sequence xðtÞ
into M IMF and a residual term r.

x tð Þ = 〠
M

j=1
IMFj tð Þ + rM tð Þ: ð4Þ

See Appendix A.1 for the description of variables
involved in EEMD.

3.2. Support Vector Regression. Support vector regression
(SVR) is a kernel-based nonlinear regression method. Its
basic idea is to map the nonlinear raw data into a linear
mode of a high-dimensional feature space in order to find
the best regression hyperplane with the least structural risk
[35]. The specific form of the standard ε − SVR model is as
follows:

f xð Þ =wTϕ xð Þ + b: ð5Þ

Among them, x is the input vector, f ðxÞ is the predicted
value, wi is the weight vector, ϕð⋅Þ is the nonlinear mapping
function, and b is the bias term.

The original problem of the standard ε‐SVR model is as
follows.

min  
1
2 wk k2 + C〠

n

i=1
ξi + ξ

∧

i

� �

s:t:  w ⋅ ϕ xið Þ + bð Þ − yi ≤ ε + ξi

 yi − w ⋅ ϕ xið Þ + bð Þ ≤ ε + ξ
∧

i

 ξi, ξ
∧

i ≥ 0
 i = 1,⋯, n:

ð6Þ

Among them, ξi and ξ∧i are slack variables, yi is the true
value, and n is the number of samples. The insensitive

parameter ε indicates the maximum allowable error in the
insensitive area. The penalty factor C is greater than 0, which
is used to weigh the complexity of the model and the size of
the error loss.

The original problem can be transformed into a dual
problem:

min  
1
2〠

n

i=1
αi − α

∧
i

� �
αj − α

∧
i

� �
K xi, xj
� �

+ ε〠
n

i=1
αi + α

∧
i

� �
− 〠

n

i=1
yi αi − α

∧
i

� �

s:t: 〠
n

i=1
αi − α

∧
i

� �
= 0

 αi, α
∧
i ∈ 0, C½ �

 i = 1,⋯, n:

ð7Þ

Among them, αi and α∧i are the Lagrangian multi-
pliers, and Kðxi, xjÞ is the kernel function of the inner prod-

uct hwTϕðxÞi. This paper uses the quadratic programming
method and the KKT condition to solve the optimum solu-
tion of α, α∧i, and b in the above dual optimization problem.
The regression function of ε − SVR is obtained as follows:

f xð Þ = 〠
m

i=1
αi − α

∧
i

� �
⋅ K xi, xð Þ + b: ð8Þ

Among them, m is the dimension of feature space.
The kernel function of SVR is a symmetric function that

satisfies Mercer’s condition. Its function is to map low-
dimensional space to high-dimensional space. Table 1 shows
five different kernel functions.

Different kernel functions show different performances
in various types of problems. This article attempts to apply
five alternative kernel functions to the research of demand
forecasting for space science payload components and
chooses the kernel function with the best prediction result
as the optimum kernel function for this problem.

See the Appendix A.2 for the description of variables
involved in SVR.

3.3. Model Parameter Optimization. The optimum kernel
function ε − SVR model established in this paper has mul-
tiple parameters that need to be optimized jointly to
improve the accuracy and stability of demand forecasting
for space science payload components. They are the pen-
alty factor C, the insensitive parameter ε, and the kernel
function parameter τ. Among them, the kernel function
parameter τ may contain 0 to 3 hyperparameters due to
the difference of the kernel functions. In this section, aim-
ing at the shortcomings of the traditional particle swarm
optimization (PSO) algorithm, a modified particle swarm
optimization (MPSO) algorithm is proposed to screen
the parameter set ðC, ε, τÞ to realize the comprehensive
optimization of multiple parameters.
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3.3.1. Particle Swarm Optimization Algorithm. The particle
swarm optimization (PSO) algorithm is a swarm intelligence
algorithm originated from the foraging behavior of birds. It
regards a group of particles as candidate solutions to the
researched problem and finds the best solution by flying in
D-dimensional search space [36]. Each particle contains
two fixed attributes: position xi = fxi1, xi2,⋯, xiDg and
velocity vi = fvi1, vi2,⋯, viDg. The optimum position in the
individual history is Pi = fPi1, Pi2,⋯, PiDg, and the optimum
position in the global history is Pg = fPg1, Pg2,⋯, PgDg. The
update formula for the velocity and position of each particle
is as follows:

vi t + 1ð Þ =wvi tð Þ + c1r1 Pi tð Þ − xi tð Þ½ � + c2r2 Pg tð Þ − xi tð Þ
� 	

,
ð9Þ

xi t + 1ð Þ = xi tð Þ + vi t + 1ð Þ: ð10Þ
Among them, i = 1, 2,⋯,N and t = 1, 2,⋯, T − 1. N

indicates the number of particles. T indicates the number
of iterations. D indicates the number of parameters. w repre-
sents the inertia factor, which is used to control the moving
speed of particles and find a balance between global and
local search. A larger value will help the particle global
search but will slow down the convergence; a smaller value
will help the particles converge quickly but may lead to a
local optimum. c1 and c2 are the individual and social learn-
ing factors, and are generally taken as 2. r1 and r2 are ran-
dom numbers uniformly distributed in the interval [0, 1].

The fitness function of the particle is the mean square
error (MSE):

FMSE xið Þ = 1
n
〠
n

i=1
f xið Þ − yið Þ2: ð11Þ

Among them, f ðxiÞ represents the predicted value, yi
represents the true value, and n represents the number of
samples.

3.3.2. Modified Particle Swarm Optimization Algorithm. In
this paper, three methods are used to modify the particle
swarm optimization algorithm.

Firstly, in view of the shortcomings of PSO algorithm
relying on initial parameters, this paper adopts the Logistic
chaotic mapping method [37] to initialize the particle
swarm, so that the initial population distributes in the prede-

termined search space evenly, to achieve the purpose of
improving the diversity of the population.

μi+1,j = c ∗ μi,j ∗ 1 − μi,j

� �
, ð12Þ

xij = xmin,j + μi,j ∗ xmax,j − xmin,j
� �

: ð13Þ
Among them, i = 1, 2,⋯,N and j = 1, 2,⋯,D. N repre-

sents the number of particles. D represents the number of
parameters. Chaotic variable is μi,j ∈ ð0, 1Þ, and μ0,j ∈ ð0, 1Þ
, μ0,j ∉ f0, 0:25, 0:5, 0:75, 1g. Control parameter is c = 4.
xmin,j and xmax,j are the value ranges of optimization
variables.

Secondly, considering that the PSO algorithm is easy to
converge prematurely, this paper uses crossover and muta-
tion operations [19] to enhance the diversity of the popula-
tion in the iterative process of the algorithm. In the process
of each iteration, when the position of each particle in the
population is updated, three particles ðXm1

, Xm2
, Xm3

Þ are
randomly selected for particle Xi, ensuring i ≠m1 ≠m2 ≠
m3. It is assumed that Xbest and Xworst are the optimum solu-
tion and the worst solution of the population in this itera-
tion. The solutions produced by crossover and mutation
operations are as follows.

Xmute1 = Xm1
+ rand1 × Xm2

− Xm3

� �
, ð14Þ

Xmute2 = Xmute1 + rand1 × Xbest − Xworstð Þ, ð15Þ

Xmute1 = xmute1,1, xmute1,2,⋯, xmute1,D
� 	

, ð16Þ

Xmute2 = xmute2,1, xmute2,2,⋯, xmute2,D
� 	

, ð17Þ

Xbest = xbest,1, xbest,2,⋯, xbest,D½ �, ð18Þ

Xworst = xworst,1, xworst,2,⋯, xworst,D½ �, ð19Þ

Xi = xi,1, xi,2,⋯, xi,D½ �, ð20Þ

xtest1,j =
xmute1,j, rand2 ≤ rand3,
xbest,j, rand2 > rand3,

(
ð21Þ

xtest2,j =
xmute1,j, rand4 ≤ rand3,
xij, rand4 > rand3,

(
ð22Þ

Table 1: Kernel function.

Kernel function Formula Condition Hyperparameter

Linear kernel function KLinear xi, xð Þ = xTi x — —

Polynomial kernel function KPolynomial xi, xð Þ = ηxTi x + c
� �d η > 0 & d ≥ 1 η, c, d

Multilayer perceptron kernel function KSigmoid xi, xð Þ = tanh βxTi x + θ
� �

β > 0 & θ < 0 β, θ

Laplace kernel function KLaplace xi, xð Þ = exp −δ xi − xk kð Þ δ > 0 δ

Gaussian Radial Basis Kernel Function KRBF xi, xð Þ = exp −τ xi − xk k2� �
τ > 0 τ
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xtest3,j =
xbest,j, rand5 ≤ rand4,
xij, rand5 > rand4,

(
ð23Þ

xtest4,j =
xmute1,j, rand6 ≤ rand5,
xmute2,j, rand6 > rand5,

(
ð24Þ

Xtest5 = rand7 × Xworst + rand8 × Xbest − Xworstð Þ: ð25Þ
Among them, rand1~rand8 are random numbers in the

range of [0, 1]. Choose the particle with the best fitness func-
tion value in Xtest1 , Xtest2 , Xtest3 , Xtest4 , Xtest5 , and Xi to replace
Xi.

Thirdly, in order to balance the global and local search
capabilities of the PSO algorithm and prevent the algorithm
from falling into the local optimum, this paper introduces a
nonlinear inertia factor [38] to improve the PSO algorithm
and dynamically adjust the inertia factor w through an adap-
tive control process. With the gradual increase in the num-
ber of iterations, the modified inertia factor w decreases
nonlinearly from wmax = 2 to wmin = 0. A slow drop in the
initial stage is conducive to the global search, and a fast drop
in the later stage can enhance local optimization.

w =wmax − et/T − 1
� �

∗
wmax −wminð Þ

e − 1ð Þ : ð26Þ

Therefore, this paper proposes a modified particle swarm
optimization (MPSO) algorithm to search for the optimal
parameter set ðC, ε, τÞ of the optimum kernel function ε‐S
VR model. The algorithm flow is shown in Algorithm 1.

See the Appendix A.3 for the description of variables
involved in MPSO.

3.4. Criteria for Prediction Performance Evaluation. In order
to evaluate the pros and cons of prediction methods, this
paper constructs reasonable evaluation criteria to examine

the prediction performance of the model from multiple
angles. Specifically, the mean absolute percentage error
(MAPE) and the root mean square error (RMSE) are
selected to evaluate the accuracy of the prediction, the stan-
dard deviation of the absolute percentage error (SDAPE) is
selected to evaluate the stability of the prediction, and the
directional accuracy of the prediction is evaluated by Dstat.

MAPE = 1
n
〠
n

i=1

yi − f xið Þ
yi










 ∗ 100%, ð27Þ

RMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
〠
n

i=1
yi − f xið Þð Þ2

s
, ð28Þ

SDAPE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
〠
n

i=1

yi − f xið Þ
yi

−MAPE
� �2

s
, ð29Þ

Dstat =
1
n
〠
n

i=1
ai ∗ 100%: ð30Þ

Among them, n refers to the number of samples, yi refers
to the true value, and f ðxiÞ refers to the predicted value. ai is
a directional discriminant index. If ð f ðxi+1Þ − yiÞðyi+1 − yiÞ
≥ 0, then ai = 1; that is, the direction predicted by the model
in the period i + 1 is correct. On the contrary, ai = 0, the
model predicts the wrong direction.

In addition, in order to test the difference in prediction
performance between models from the perspective of statis-
tical significance, this paper also introduces the classic DM
statistics [39] to determine whether model A is significantly
better than model B’s prediction accuracy through statistical
test. The null hypothesis of the DM test is that there is no
significant difference between the prediction performance
of model A and model B. If the test result (p < 0:05) rejects
the null hypothesis at a certain level of significance, it

Input: time-series data, number of particles N , number of parameters D, number of iterations T , inertia factor w, individual
learning factor c1 and social learning factor c2
Output: the position Pg of the optimal parameter set ðC, ε, τÞ

1 Set t = 0, randomly generate chaotic variable μi,j according to formula (12)

2 According to formula (13), the initial position xij is obtained, and the initial velocity is randomly generated
3 Calculate the fitness function FMSEðxiÞ according to formula (11)
4 Assign the individual historical optimum position Pi directly, calculate the global historical optimum position Pg, and make t = 1
5 While (t ≤ T)
6 Generate r1 and r2 randomly, adjust the inertia factor w dynamically according to formula (26), and update the position xi

and velocity vi of each particle according to formula (9) and formula (10).
7 Calculate the best value and the worst value of the population in this iteration, perform population crossover and mutation

according to formula (14)–formula (25), and update the position xi of N particles.
8 Calculate the fitness function FMSEðxiÞ according to formula (11) and update the global historical optimum position Pg.
9 If (FMSEðxiÞ≤FMSEðxi−1Þ)
10 Update the best position in individual history Pi
11 End If
12 t = t + 1
13 End While

Algorithm 1: MPSO algorithm flow.
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indicates that there is a significant difference between the
prediction performance of model A and model B. At this
time, if DM< 0, it means that model A is significantly better
than model B’s prediction performance.

DM= �gffiffiffiffiffiffiffiffiffiffiffi
V�g

∧
/n

r ~N 0, 1ð Þ: ð31Þ

Among them, the average loss function is �g = 1/n∑n
i=1gi,

loss function value is gi = e2A,i − e2B,i = ðyi − f ðxA,iÞÞ2 −
ðyi − f ðxB,iÞÞ2, V�g

∧ = γ0 + 2∑∞
l=1γl, γl = cov ðgi, gi−lÞ ∘ f ðxA,i

Þ, and f ðxB,iÞ are the predicted values of model A and model
B in i period, respectively.

See the Appendix A.4 for the description of variables
involved in criteria for prediction performance evaluation.

3.5. Demand Forecasting Model Design. Taking into account
the nonlinear, unsteady state and small sample demand
characteristics of space science payload components, this
paper proposes an EEMD-CC&CV-MPSO-SVR model to
predict the demand of space science payload components.
The steps of the model are as follows.

Step 1. Data collection and preprocessing: this paper collects
historical data of space science payload component demand,

Demand sequence of space science 
payload components

EEMD

IMF1 IMF2 Residual…

ADF testADF testADF test

Subsequence forecasting Subsequence forecasting

Integrating forecast results

Forecast performance evaluation

…

…

CC–MPSO–SVR model training CV-MPSO-SVR model training…

Initialize the position of particles using chaos strategy;
Generate the speed randomly

Calculate the fitness value;
Calculate the global and individual historical optimal position

Adjust the inertia factor dynamically;
Update the position and speed of particles

Population crossover and mutation;
Update the position of particles

Reach the maximum number of iterations?

No

Input MPSO algorithm parameters

Output optimal parameter set (C,ɛ,τ)

Yes

Calculate the fitness value;
Update the global and individual historical optimal position

Measuring complexity using sample entropy

High complexity subsequence Low complexity subsequence

Figure 1: The framework of the demand forecasting model for space science payload components.
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Figure 2: Total component demand after logarithmic function
conversion.

Table 2: The statistical description of the data set.

Minimum Maximum Mean
Standard
deviation

Skewness Kurtosis

3.9120 11.6181 8.7421 1.7069 -1.1028 1.0461
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divides the training set and testing set, and adopts the loga-
rithmic function conversion method to preprocess the data.

Step 2. Sequence decomposition and verification: EEMD is
used to decompose the demand sequence of space sci-
ence payload components into M IMF and a residual
term r. ADF is used to test the stationarity of each
subsequence.

Step 3.Model training: the sample entropy [30] is introduced
to measure the complexity of each subsequence. The CC-
MPSO-SVR model is used to train high-complexity
sequences with sample entropy greater than 0.8, while the
CV-MPSO-SVR model is used to train low-complexity
sequences with sample entropy less than 0.8.

(1) CC-MPSO-SVR model: firstly, the C-C method [33]
is used to determine the embedding dimension and

3
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Figure 3: Result of ensemble empirical mode decomposition.
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delay time corresponding to the subsequence, and
the phase space of the subsequence is reconstructed.
Secondly, the five candidate kernel functions are
used as the model kernel function, respectively. Take
training samples to train the ε − SVR model of each
subsequence, and the modified PSO algorithm is
used to optimize the parameter set ðC, ε, τÞ of the
model.

(2) CV-MPSO-SVR model: five candidate kernel func-
tions are used as the model kernel function, respec-
tively. Take training samples to train the ε − SVR
model of each subsequence. The modified PSO algo-
rithm and K-fold cross-validation method are com-
bined to optimize the model parameter set ðC, ε, τÞ
to enhance the applicability of the model and pre-
vent overfitting.

Step 4.Model prediction: the ε − SVR model obtained by the
above training is used to predict the testing samples, and the
prediction results of each subsequence are ensemble in the
form of summation to form a total prediction. The kernel
function with the best prediction result is the optimum ker-
nel function.

Step 5. Model evaluation: the prediction performance evalu-
ation criteria of the established model are used to evaluate
the accuracy, stability and directional accuracy of the model.
Finally, perform statistical test and robustness analysis.

In summary, the demand forecasting model framework
for space science payload components designed in this paper
is shown in Figure 1.

4. Experiments

4.1. Data Source and Preprocessing

4.1.1. Data Sources. This paper selects the component pro-
curement data by the undertaking research and development
institution of Chinese space science payload from September
2017 to April 2022 as an example for empirical research and
analyzes the actual effect of applying the EEMD-CC&CV-
MPSO-SVR model to the demand forecasting of space sci-
ence payload components. The research object is the total
demand of components, and the sample points are divided
into units of each month. The number of samples n is 56.

4.1.2. Data Preprocessing. Due to the violent fluctuations in
the total component demand data, some data have large
mutations. In order to eliminate the influence of collinearity
and heteroscedasticity, the logarithmic function conversion
method is used to normalize the total component demand
data sequence. The data sequence ln Y of the total compo-
nent demand by logarithmic function conversion is shown
in Figure 2. It can be seen that the total component demand
data after logarithmic function conversion is unsteady, non-
linear, trending, and random.

The statistical descriptions are shown in Table 2. The
minimum and maximum of demand data are very different.
The ratio of the standard deviation to mean gives the coeffi-
cient of variation, which is 0.1952 and shows high fluctua-
tion. In addition, the skewness and kurtosis exhibit great
difference from normal distribution.

4.2. Sequence Decomposition and Verification

4.2.1. Sequence Decomposition. EEMD is used to decompose
the total component demand data sequence converted by
logarithmic function into M IMF and a residual term
(RES). According to the formula blog2ðnÞ − 1c, the number
M of IMF is 4. The number NE of iterations is 100. The
white noise standard deviation σ is 0.2. Each subsequence
is drawn as shown in Figure 3.

The high frequency part reflects that the demand for
space science payload components is affected by short-
term market demand imbalances, embargo policies, and
other irregular events, showing transient and frequent fluc-
tuations. The low frequency part reveals that the demand
for space science payload components is affected by the
country’s long-term macropolicies and other factors, show-
ing a permanent and stable trend of change.

4.2.2. ADF Test. To measure the effect of time series decom-
position, it is necessary to introduce a stationarity test
method to compare the effect before and after decomposi-
tion. This article chooses the most commonly used ADF
method to test the stationarity of the total component
demand data series and each subsequence after logarithmic
function conversion. Assuming that there is a unit root, that
is, the sequence is not stationary. If the significance test sta-
tistic is less than 1% confidence level, the null hypothesis can
be rejected at a probability level of 99%. The ADF test results
obtained by using the econometric software Eviews are
shown in Table 3.

The ADF test results show that the total demand
sequence converted by the logarithmic function is a unit root
process with intercept term and trend term, and the
sequence is nonstationary. After EEMD, IMF1, IMF2,
IMF3, IMF4, and R are stable excluding the intercept term
and the time trend term, which can be used to predict future
demand.

4.3. Model Training and Prediction. This paper calculates the
sample entropy of each subsequence, and the results are
shown in Table 4. The CC-MPSO-SVR model is used to
train and predict IMF1 with sample entropy greater than
0.8, and the CV-MPSO-SVR model is used to train and

Table 4: The complexity test results of decomposed time series.

Sample entropy value Complexity

IMF1 2.0424 High

IMF2 0.4513 Low

IMF3 0.2701 Low

IMF4 0.3033 Low

R 0.0281 Low
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predict IMF2, IMF3, IMF4, and residuals with sample entropy
less than 0.8. Among them, according to the C-C method, the
embedding dimension is 4 and the delay time is 1. After mul-
tiple rounds of experiments, the cross-validation fold number
K is taken as 3. Parameters of the modified particle swarm
optimization algorithm are set as follows. The maximum
number of iterations is 100. The number of particles is 20.
The inertia factor is 0.6. The range of penalty factor, insensi-
tive parameter, and kernel function parameter are [0, 100],
[0.01, 100], and [0.01, 1], respectively.

4.3.1. Model Training. The EEMD-CC&CV-MPSO-SVR
modeling process is shown in Figure 4. The model is imple-
mented in Windows 10, Matlab R2015a environment.

The EEMD-CC-MPSO-SVR model reconstructs the sub-
sequence into a phase space that uses the demand of the first
four months to roll forecast the demand of the next month
and generates 52 sets of data. The first 47 sets of data are
used for the training of the SVR model. The MPSO algo-
rithm optimizes the parameter set that minimizes MSE.
And the last 5 sets of data are used for the model prediction.

After the sequence is decomposed, the EEMD-CV-
MPSO-SVR model divides each subsequence into a training
set and a testing set. Each subsequence has 56 data. The
training set is the first 51 data, and the testing set is the last

5 data. Divide the training set into three equal parts. Use
each one as the validation subset in turn and the remaining
two as the training subset. For the three situations, the
MPSO algorithm continuously optimizes and iteratively
generates several parameter sets and uses the SVR model
to train each training subset to obtain the predicted value
and MSE of each validation subset corresponding to the dif-
ferent parameter sets. Integrating the MSE values in the
three situations, determine the parameter set that minimizes
the average MSE as the optimal parameter set of the SVR
model of the subsequence.

4.3.2. Model Prediction. For each subsequence, use the
trained model to predict the training set and testing set.
Add the prediction results of each subsequence to get the
total demand prediction result of space science payload
components converted by logarithmic function. Through
multiple rounds of comparison, it is found that the ensemble
prediction result is the best when RBF is used as the kernel
function. See Section 4.4.1 for the proof. Therefore, RBF is
selected as the optimum kernel function of the demand fore-
casting model for space science payload components.

The prediction results of each subsequence are shown in
Figures 5(a)–5(e). Calculate the MSE of each subsequence, as
shown in Table 5.
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Figure 4: EEMD-CC&CV-MPSO-SVR modeling flow chart.
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Figure 5 compares the original values and predicted values
of each subsequence obtained after EEMD. Table 5 quantita-
tively measures the mean square error of the original values

and predicted values of each subsequence. The results in
Figure 5 and Table 5 show that the predicted values of each
subsequence are basically consistent with the original values.
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Figure 5: The prediction results of each subsequence.
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It can be seen from Figure 5 that in recent years, the fluc-
tuation of the demand for space science payload compo-
nents in China has gradually decreased and stabilized,
while the demand quantity has gradually increased, showing
a rapid first and then a slow upward trend. The reason for
the change in demand is that with the formulation and
implementation of national policies, the development of
space science payload industry has become increasingly
mature, the demand for components has gradually stabi-
lized, and its scale has continued to expand. According to
analysis and speculation, the demand for China’s space sci-
ence payload components will gradually stabilize and slowly
rise in the future.

By analyzing the results in Tables 4 and 5, we find that
the greater sample entropy value of subsequence, the greater
corresponding MSE. It provides evidence that the higher
complexity of subsequence leads to the more difficult predic-
tion and the larger prediction error.

The ensemble prediction result is shown in Figure 6. The
forecast result is denormalized to obtain the actual forecast
result of the total demand for space science payload
components.

It can be seen from Figure 6 that the EEMD-CC&CV-
MPSO-SVR model adopting the decomposition-ensemble
concept can well predict the total demand for space science
payload components.

4.4. Model Performance Comparison. To prove the advanced
nature of the proposed method, this paper introduces several
performance evaluation criteria to evaluate the performance
of the model, including the model’s fitting effect on the
training set and prediction effect on the testing set.

4.4.1. Selection of Kernel Function. Compare the fitting effect
and prediction effect of the model when the kernel functions
are linear, polynomial, sigmoid, Laplace, and Gaussian
Radial Basis Kernel Function (RBF). The experimental
results are shown in Table 6.

The experimental results in Table 6 show that, taking the
fitness value MSE as the criterion, the priority order of ker-
nel function selection is RBF>Laplace>polynomial>linear>-
sigmoid. The RBF is superior to other kernel functions in
model fitting and prediction effects and is more suitable
for nonlinear changes in the demand sequence of space sci-
ence payload components.

4.4.2. Proof of Mixed Method. This paper compares the pre-
diction results of the EEMD-CC&CV-MPSO-SVR model
with other 13 models. The experimental results are shown
in Table 7.

In order to observe the fitting and prediction effects of
the 14 models more intuitively, the experimental results in
the above table are normalized. The evaluation value is
closer to 1; the effect is better. Among them, the reciprocal
of the MSE value of the MPSO-SVR model and the
EEMD-MPSO-SVR model is too large. For the convenience
of comparing the MSE values of other models, the MSE
values of the two models are set to 1 directly, and the MSE
values of other models are divided by 18 after taking the

reciprocal. Draw a radar chart to show the prediction perfor-
mance of 14 models, as shown in Figure 7.

The experimental results of Table 7 and Figure 7 prove
the advanced nature of the EEMD-CC&CV-MPSO-SVR
model compared to other models in unsteady, nonlinear
and small-sample time series forecasting problems.

Three classical single methods are selected as compari-
son models, namely, ARIMA model, GM(1,1) model, and
ANN model. In terms of fitting and prediction effect, the
experimental results show that (1) the method proposed in
this paper is superior to the traditional time series method,
gray forecasting method, and neural network method and
(2) the ARIMA model performs better than the GM(1,1)
model and ANN model.

Table 5: MSE of each subsequence.

MSE

IMF1 4:48 × 10−2

IMF2 5:51 × 10−3

IMF3 1:45 × 10−4

IMF4 6:81 × 10−4

R 1:28 × 10−4

3

4

5

6

7

8

9

10

11

12

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55

D
at

a

Demand period

Original
Predict

Figure 6: Ensemble prediction result of total demand for space
science payload components.

Table 6: Experimental results of kernel function selection.

Kernel function
Performance evaluation

Training set Testing set
MSE MAPE RMSE SDAPE Dstat

Linear 0.3314 3.7119% 0.4012 3.6748 40%

Polynomial 0.1709 3.9766% 0.4649 3.9369 60%

Sigmoid 0.4178 7.4346% 0.8387 7.3604 40%

Laplace 0.1065 3.5394% 0.3869 3.5041 80%

RBF 0.0628 2.5215% 0.2774 2.4963 100%
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Table 7: Experimental results of the proposed model and comparison model.

Model
Performance evaluation

Training set Testing set
MSE MAPE RMSE SDAPE Dstat

ARIMA 2.0375 4.2755% 0.4858 4.2329 40%

GM(1,1) 2.5430 6.3494% 0.6975 6.2861 40%

ANN 3.8137 4.8912% 0.6155 4.8426 40%

MPSO-SVR 0.0001 6.7824% 0.7679 6.7147 0%

EMD-CC&CV-MPSO-SVR 0.2985 3.3381% 0.3414 3.3047 100%

EEMD-MPSO-SVR 0.0013 3.8326% 0.4497 3.7944 60%

EEMD-CC-MPSO-SVR 0.2887 2.4358% 0.2959 2.4115 100%

EEMD-CV-MPSO-SVR 0.1396 3.9024% 0.4460 3.8635 40%

EEMD-GS-SVR 0.1572 3.4780% 0.4151 3.4434 60%

EEMD-CC&CV-GA-SVR 0.0949 3.4233% 0.4385 3.3893 60%

EEMD-CC&CV-PSO-SVR 0.1096 4.7800% 0.4776 4.7322 80%

EEMD-CC&CV-MPSO-ANN 0.1026 4.2522% 0.4831 4.2098 60%

EEMD-CC&CV-MPSO-LSTM 0.1583 3.9122% 0.4609 3.8732 40%

EEMD-CC&CV-MPSO-SVR 0.0628 2.5215% 0.2774 2.4963 100%
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Figure 7: Radar chart of 14 models’ prediction performance.
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All the decomposition-ensemble prediction models have
better prediction effect than MPSO-SVR model, which
proves the necessity of the time series decomposition to
solve the problem of unsteady state and nonlinear time
series forecasting. The fitting and prediction effect of the
model proposed in this paper are better than those of
EMD-CC&CV-MPSO-SVR, which proves that the EEMD
method is superior to the EMD method.

Compared with the method proposed in this paper, the
EEMD-MPSO-SVR model lacks phase space reconstruction
and cross-validation process. Experimental results show that
direct training and prediction of each subsequence make the
model obtain a better fitting effect, but the prediction effect
is significantly worse.

The EEMD-CC-MPSO-SVR model is slightly better than
EEMD-CC&CV-MPSO-SVR model in prediction effect, but
its fitting effect is very poor. After analysis, it is accidental
and unstable that the EEMD-CC-MPSO-SVR model has a
good prediction effect. That is, the prediction effect of a sin-
gle subsequence is not good, but better prediction results
happen to be obtained through ensemble. The fitting and
prediction effect of the EEMD-CV-MPSO-SVR model is
worse than that of the EEMD-CC&CV-MPSO-SVR model.
The EEMD-CC&CV-MPSO-SVR model combines the sam-
ple feature learning ability of the EEMD-CC-MPSO-SVR
model in high-complexity series and the mitigation overfit-
ting ability of the EEMD-CV-MPSO-SVR model in low-
complexity series. Without losing too much prediction
effect, it can obtain more stable fitting and prediction results.

Compared with the EEMD-GS-SVR model, the EEMD-
CC&CV-GA-SVR model, and the EEMD-CC&CV-PSO-
SVR model, the model proposed in this paper has better fit-
ting effect and prediction effect. It proves the advantages of
the modified particle swarm optimization algorithm in the
multiparameter combination optimization problem of the
SVR model.

Artificial intelligence models have better prediction per-
formance and better generalization ability than SVR, so we
replace SVR with ANN and LSTM in the EEMD-CC&CV-
MPSO-SVR model. The experimental results show that
ANN and LSTM models cannot learn the characteristics of
small sample time series well.

4.4.3. DM Statistics. In order to further evaluate whether the
difference between the proposed model and other models is
statistically significant, this paper uses DM statistics to deter-
mine the significance. The results are shown in Table 8.

The DM test results show that the model proposed in
this paper is different from other comparison models in
most cases. Compared with the ARIMA model, the
GM(1,1) model, the ANN model, the EEMD-CC-MPSO-
SVR model, and the EEMD-CV-MPSO-SVR model, the
DM value and p value of EEMD-CC&CV-MPSO-SVR
model are less than -4.2111 and almost zero, respectively.
This shows that the EEMD-CC&CV-MPSO-SVR model is
obviously superior to the above models at almost 100% con-
fidence level. In addition, its prediction accuracy is obviously
better than the EMD-CC&CV-MPSO-SVR model, the
EEMD-CC&CV-PSO-SVR model, the EEMD-CC&CV-

MPSO-ANN model, and the EEMD-CC&CV-MPSO-LSTM
model.

4.4.4. Robustness Analysis. In order to evaluate the robust-
ness of 14 prediction models, we calculate the standard devi-
ation of prediction performance evaluation results of each
model running 20 times. The results are shown in Table 9.

The experimental results in Table 9 show that the
EEMD-CC&CV-MPSO-SVR model is the most robust of
all prediction models, because the standard deviation of
MSE on the training set and MAPE, RMSE, SDAPE, Dstat
on the testing set is much smaller than that of other models.
The ARIMA model is the least robust of all prediction
models.

4.4.5. Proof of Logarithmic Function Conversion. In the
above comparison experiments, we compare with trans-
formed logarithms. In order to prove the credibility of the
comparison results and the effectiveness of the model, we
compare the real value with the denormalized predicted
value of all models. The EEMD-CC&CV-MPSO-LSTM
model and the EEMD-CC&CV-MPSO-SVR model are
taken as examples to illustrate. The results are shown in
Table 10.

The results in Table 10 show that the EEMD-CC&CV-
MPSO-SVR model has less error between the denormalized
predicted value and the true value and is significantly better
than the EEMD-CC&CV-MPSO-LSTM model. Compared
with Table 7, although the logarithmic function conversion
method reduces the error to a certain extent, it can predict
the future development trend and reflect the relative error
between models. Other models have reached the same con-
clusion. This proves that the logarithmic function conver-
sion method is a data engineering with credible conclusion.

4.4.6. Proof of Modified Particle Swarm Optimization
Algorithm. To evaluate the performance of different algo-
rithms, MAPE and calculation time are selected as evalua-
tion indexes to analyze the performance of MPSO

Table 8: DM test results of the proposed model and the
comparison models.

Model DM value p value

ARIMA -6.1326 0.0000

GM(1,1) -5.6672 0.0000

ANN -5.5952 0.0000

MPSO-SVR -1.8871 0.1322

EMD-CC&CV-MPSO-SVR -3.3868 0.0014

EEMD-MPSO-SVR -0.5905 0.5866

EEMD-CC-MPSO-SVR -4.2111 0.0000

EEMD-CV-MPSO-SVR -4.3491 0.0000

EEMD-GS-SVR -0.8616 0.4375

EEMD-CC&CV-GA-SVR -0.6849 0.5310

EEMD-CC&CV-PSO-SVR -2.6382 0.0110

EEMD-CC&CV-MPSO-ANN -3.8137 0.0004

EEMD-CC&CV-MPSO-LSTM -2.5072 0.0152
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algorithm in prediction accuracy and convergence speed. The
test results of different algorithms are shown in Table 11.

Experimental results show that the (1) MPSO algorithm
can obtain better prediction accuracy than GA and PSO
algorithm. The convergence speed is slightly poor, but the
difference is not big, which is within the acceptable range.
(2) GA is better than PSO in prediction accuracy and con-
vergence speed.

In order to further verify the above conclusions, a set of
real data of equipment spare parts demand are used for fore-
casting. The raw data is shown in Table 12. The test results
of different algorithms are shown in Table 13.

The experimental results in Table 13 are consistent with
the above conclusions. The MPSO algorithm significantly
improves the prediction accuracy with seldom loss of calcu-
lation time.

5. Discussion

Experimental results show that, compared with other
models, the EEMD-CC&CV-MPSO-SVR model proposed
in this paper has good prediction ability and robustness for
time series with unsteady, nonlinear, and small sample char-
acteristics. The EEMD-CC&CV-MPSO-SVR model is char-
acterized by high prediction accuracy, good stability, strong
ability of relieving overfitting, and good at capturing com-
plex time series features. The model takes “decomposition
first and then ensemble” as the guiding ideology, following
the “time series decomposition-decomposition sequence
analysis-decomposition sequence prediction-prediction
result ensemble-prediction effect evaluation.” Modeling idea
can grasp the intertwined operating rules of complex sys-
tems at multiple different scales, which is reducing the diffi-
culty of modeling complex systems. It also improves the
analysis and prediction performance of the model effectively.

Table 9: Robustness analysis.

Model
Standard deviation

Training set Testing set
MSE MAPE RMSE SDAPE Dstat

ARIMA 0.0452 0.0206 0.1294 0.4197 0.1373

GM(1,1) 0.0440 0.0173 0.0975 0.3278 0.1174

ANN 0.0353 0.0109 0.1082 0.5034 0.1281

MPSO-SVR 0.0236 0.0084 0.0755 0.1425 0.0821

EMD-CC&CV-MPSO-SVR 0.0059 0.0068 0.0643 0.2968 0.0733

EEMD-MPSO-SVR 0.0126 0.0072 0.0858 0.1476 0.1142

EEMD-CC-MPSO-SVR 0.0121 0.0043 0.0430 0.1322 0.0616

EEMD-CV-MPSO-SVR 0.0046 0.0038 0.0324 0.1237 0.1105

EEMD-GS-SVR 0.0123 0.0031 0.0327 0.1020 0.1100

EEMD-CC&CV-GA-SVR 0.0037 0.0017 0.0115 0.0914 0.1046

EEMD-CC&CV-PSO-SVR 0.0034 0.0026 0.0217 0.1132 0.0894

EEMD-CC&CV-MPSO-ANN 0.0116 0.0034 0.0329 0.1181 0.0616

EEMD-CC&CV-MPSO-LSTM 0.0128 0.0165 0.0532 0.2657 0.0979

EEMD-CC&CV-MPSO-SVR 0.0025 0.0014 0.0106 0.0812 0.0447

Table 10: Comparison results of the real value and the denormalized predicted value.

Performance evaluation
Model

EEMD-CC&CV-
MPSO-LSTM

EEMD-CC&CV-
MPSO-SVR

Training set MSE 3:3496 × 104 3:1535 × 104

Testing set

MAPE 14.738% 8.7305%

RMSE 5.0881 3.6545

SDAPE 14.2926 8.4938

Dstat 40% 100%

Table 11: Algorithm test results of demand data for space science
payload components.

Algorithm
Evaluation index

MAPE
Computing
time (s)

Genetic algorithm 3.4233% 43.72

Particle swarm optimization 4.7800% 52.64

Modified particle swarm
optimization

2.5215% 69.15
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After a large number of experiments, we found that the
time series with violent fluctuations and mutations are usu-
ally unpredictable. Our research shows that it is an effective
data engineering to normalize the data with logarithmic
function conversion method for time series which is always
positive, fluctuates violently, and has abrupt changes.

In the process of model training, we found that the phase
space reconstruction method can mine more complex time
series information and effectively predict high complexity
time series data. Nevertheless, overfitting is prone to occur
and the prediction effect is not good for low-complexity time
series data. The cross-validation process can alleviate the
overfitting problem effectively. It can predict time series data
with low complexity and obvious regularity. However, when
encountering time series data with high complexity, the pre-
diction effect is poor and the learning ability of sample fea-
tures is insufficient. The reason for this result is that the
phase space reconstruction method is based on rolling time
window prediction, which can capture the characteristics
of high-complexity sequences. While the cross-validation
process verifies with each other after dividing the training
set into blocks, the model parameters are determined by
comprehensive trade-off, so as to avoid overfitting of low-
complexity sequences.

The modified particle swarm optimization algorithm
proposed in this paper improves the search quality of model
parameters. The main reasons are reflected in three aspects.
First, the use of chaotic strategies helps to improve the initial
population diversity of the PSO algorithm and optimize the

quality of the initial parameters. Second, the crossover and
mutation operations are used to enhance the population
diversity of the PSO algorithm, which is beneficial to allevi-
ate premature convergence. Third, the adaptive control pro-
cess is introduced to dynamically adjust the inertia factor, so
that the PSO algorithm achieves a balance between the
global and local search capabilities and avoids falling into
the local optimum.

6. Conclusion

The unsteady, nonlinear, and small sample characteristics of
the China’s space science payload component demand data
make it difficult for the existing prediction methods to be
applied directly. This paper proposes the EEMD-CC&CV-
MPSO-SVR model, which can accurately predict the future
demand of space science payload components. The main
conclusions of this paper are summarized as follows:

(1) The EEMD-CC&CV-MPSO-SVR model has unique
advantages in solving the time series data prediction
problems with strong volatility and mutation,
collinearity and heteroscedasticity, multimodal and
multiscale, high complexity and dimension, and
multipeak of parameter optimal solution

(2) Based on the comparison results of prediction per-
formance evaluation criteria, the EEMD-CC&CV-
MPSO-SVR model has better fitting and prediction
effects than single benchmark models and other
hybrid models. The results of robustness analysis
show that the EEMD-CC&CV-MPSO-SVR model
is the best and the ARIMA model is the worst

Thus, the method proposed in this paper can be
extended to other time series forecasting problems of the
national major special task supply chain that also have the
unsteady, nonlinear, and small sample characteristics. How-
ever, this article only considers the single-point forecast of
the demand for space science payload components. In the
future, a variety of influencing factors can be incorporated

Table 12: Raw data of equipment spare parts demand data.

Num. Demand Num. Demand Num. Demand Num. Demand

1 5 13 79 25 6 37 24

2 20 14 13 26 19 38 38

3 18 15 6 27 56 39 8

4 9 16 28 28 7 40 67

5 30 17 90 29 32 41 16

6 68 18 68 30 78 42 56

7 90 19 17 31 8 43 21

8 41 20 12 32 39 44 10

9 17 21 31 33 23 45 83

10 4 22 9 34 47 46 27

11 66 23 96 35 14 47 36

12 26 24 33 36 89 48 14

Table 13: Algorithm test results of equipment spare parts demand
data.

Algorithm
Estimating index

MAPE
Computing
time (s)

Genetic algorithm 6.9620% 27.59

Particle swarm optimization 8.4233% 42.31

Modified particle swarm
optimization

5.0963% 51.97
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to predict the demand range and probability of space science
payload components from an interval perspective. In this
way, more reliable prediction results can be obtained.
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