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Cloud computing, an emerging computing paradigm, has been widely concerned due to its high scalability and availability. An
essential stage of cloud computing is cloud resource management. Currently, the existing research about cloud computing
technology has two prevalent disadvantages: high energy consumption and low resource utilization. Considering greedy
scheduling is an effective strategy for cloud resource management technology in cloud computing, particularly in improving
resource utilization and reducing energy consumption, we consider the heterogeneous characteristics of resources to save
energy consumption of datacenter when tasks are the fundamental element of cloud datacenter. Meanwhile, granular
computing is a complex problem-solving strategy through a granulation method. Thus, we introduce granular computing
theory into cloud task scheduling and propose a greedy scheduling strategy based on different information granules, dividing
the tasks into three types (i.e., CPU, memory, and hybrid type). Finally, we assign various scheduling strategies for cloud tasks
with different characteristics. All the numerical experiments on the CloudSim platform show that our method has significant
effects on energy consumption optimization and is a practical task scheduling algorithm.

1. Introduction

Cloud computing is an emerging distributed computing
paradigm, which can be regarded as a pool of accessible
and virtualized resources via Internet technology. This rela-
tively new computing paradigm has been widely concerned
and successfully applied in many engineering fields, such
as big data analysis, medical diagnosis, and financial transac-
tions [1]. Cloud task scheduling is an integral part of cloud
resource management, which can directly affect the overall
performance of cloud datacenter [2]. Thus, how to carry
out efficient task scheduling has attracted the attention of
many researchers. Currently, as the number of cloud com-
puting customers increases, scheduling becomes quite tricky,
requiring the use of appropriate scheduling algorithms.
Some scheduling algorithms are developed in the early
stages under the grid computing environment [3].

Recently, in cloud computing, where users may use
hundreds or thousands of virtualized resources, everyone

cannot assign every task manually. Due to commercializa-
tion and virtualization and the complexity of cloud comput-
ing in handling task scheduling at the virtual machine layer,
scheduling plays a critical role in the cloud datacenter,
requiring efficient and effective allocation of resources to
each task. Decker et al. [4] use two granular computing
methods, namely, fuzzy-set-based evolving modeling
(FBeM) and evolving granular neural network (eGNN) to
model and monitor data. A progressive granular neural
network (PGNNs) can improve the classifier performance
[5]. Shi et al. [6] propose a task duplication and insertion
algorithm based on list scheduling to dynamically schedule
tasks by predicting the completion time. An improved whale
optimization algorithm (IWC) in paper [7] can effectively
prove task scheduling efficiency.

According to the above discussion, we can see that some
exiting works only consider the task scheduling optimization
or the multitask scheduling problem, but they ignore various
types of task impacts on the scheduling. Moreover, in the
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application of actual hardware of a big scale, the slight
adjustment is likely to bring enormous impact meter
platform of the cloud for the hardware. Thus, this paper
considers the multitype task scheduling problems and
proposes a cloud energy-saving scheduling strategy. The
basic idea of our method is to divide resource requests into
CPU type, memory type, and hybrid type according to the
three-way decision theory.

Tasks have many attributes, but many types are not
suitable to cluster, and the most significant impact on sched-
uling is CPU and memory. So, we consider the three indica-
tors (i.e., CPU, memory, and hybrid type). Meanwhile,
combined with different scheduling strategies, tasks with
different characteristics are placed on more suitable comput-
ing resources to achieve the effect of energy-saving.

The remainder of this paper is organized as follows.
Section 2 reviews the basic notions of three-way decision
and the cloud task scheduling framework. Section 3 gives a
cloud task clustering method based on three-way decision
(TWD-CTC), which adopts the corresponding energy-
saving scheduling strategy. Section 4 gives the experimental
analysis results. Finally, this paper concludes with a sugges-
tion for future research in Section 5.

2. Preliminaries

2.1. Three-Way Decision in Cloud Computing. Three-way
decision is an effective data-information-knowledge-wisdom
(DIKW) processing theory proposed by Yao [8], whose
essential elements include trisecting, acting, and outcome,
i.e., TAO model. Three-way decision has been widely used
in various disciplines such as computer science, manage-
ment science, mathematical science, and decision science
[9–11]. We introduce the three-way decision into cloud task
scheduling, and it is necessary to introduce the basic notions
of three-way decision.

Definition 1 (see [12]). Let U be a finite nonempty subset
and R be an equivalence relation on U . A pair of aprðα,βÞ =
ðU , RÞ is called an approximate space of fuzzy probabilistic
rough set. For X ⊆U and 0 ≤ β < α ≤ 1, the upper and lower
approximate set can be defined as follows:

apr
α,βð Þ Xð Þ = x ∈U Prj Xj x½ �ð Þ ≥ αf g,

apr α,βð Þ Xð Þ = x ∈U Prj Xj x½ �ð Þ > βf g,
ð1Þ

where Pr ðXj½x�Þ = j½x� ∩ Xj/j½x�j denotes the conditional
probability of classification and j⋅j denotes the cardinality
of the set.

Given a pair of thresholds (a,b),U will be divided into the
positive region POSðα,βÞðXÞ, boundary region BNDðα,βÞðXÞ,
and negative region NEGðα,βÞðXÞ, and we call it trisection of
three-way decision, which is defined as follows:

POS α,βð Þ Xð Þ = x ∈U Prj X x½ �jð Þ ≥ αf g,
BND α,βð Þ Xð Þ = x ∈U βj < Pr X x½ �jð Þ < αf g,
NEG α,βð Þ Xð Þ = x ∈U Prj X x½ �jð Þ ≤ βf g:

ð2Þ

According to decision-theoretic rough set, the rule gener-
ated from POSðXÞ/POSðα,βÞðXÞ represents object x that
belongs to X; the rule generated from NEGðXÞ/NEGðα,βÞðXÞ
represents object x that does not belong to X; the rule gener-
ated from theBNDðXÞ/BNDðα,βÞðXÞ represents uncertain
object x that belongs to X.

Definition 2 (see [13]). Let U be a finite nonempty universal
set andS be a finite standard set, which divide the U into
three pairwise disjoint subsets, POS, BND, and NEG, which
are denoted as π = fPOS, BND, NEGg and the following
statement hold:

(1) Pairwise disjoint: POS ∩ BND =∅, POS ∩NEG =∅,
and BND ∩NEG =∅

(2) Covering the universal set: POS ∪ BND ∪NEG =U

For these subsets, the complement is constructed as follows:

POSC = BND ∪NEG,

BNDC = POS ∪NEG,

NEGC = POS ∪ BND:

ð3Þ

As a decision theory, the three-way decisionmodel provides
an incremental thinking method to solve complex problems. In
the first stage, the universe will be divided into the three reason-
able regions. In the second stage, the optimal strategy is formu-
lated according to the three regions, and the different strategies
will be applied in these regions [14, 15].

With the in-depth study of cloud computing, it is easy to
find that there are many phenomena about “3” in cloud
computing, which can be called the three elements of cloud
computing. For example, the task time can be represented
as three parts: the long-time, medium-time, and short-time
tasks; the virtual machine operation can be represented as
three parts: merging, migrating, and shutting; the host state
can be represented as three parts: working, sleeping, and
shutting. Note that with so many phenomena about “3,” it is
not difficult to assume there exists a granular computing
model based on a three-way decision under the cloud comput-
ing environment.We draw on the basic ideas of the three-way
decision and many theoretical achievements to study some
interesting cloud computing problems in this paper.

The main idea of three-way decision is to divide the
whole into three independent parts and apply different pro-
cessing methods to the different parts, and it also provides
an effective strategy for solving complex problems. This
paper proposes an energy-saving task scheduling model
based on three-way decision with greedy strategy. The cloud
tasks will be divided into CPU type, memory type, and
hybrid type by the characteristics of resource requests, and
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different scheduling strategies are adopted for the different
types of tasks to save energy consumption.

2.2. Cloud Task Scheduling. Task scheduling is one of the
important components of cloud computing, which allocates
tasks with appropriate computing resources for execution
reasonably. The effect of scheduling strategy directly affects
the effectiveness of the entire cloud computing system,
including but not limited to operational efficiency, stability,
flexibility, user service quality, system load balancing, and
system energy consumption. Figure 1 shows the process of
task scheduling in cloud computing.

As shown in Figure 1, the steps of task scheduling are
shown as follows: at first, users submit tasks by their resource
requirements, and tasks will be added to the task queue. The
task scheduler obtains the available resource information
mainly on virtual machines through scheduling technology;
then, tasks are reasonably allocated to appropriate virtual
machines to execute by scheduling strategy; finally, running
the tasks on the virtual machine and after the tasks are com-
pleted, it will be summarized and feedback to the users.

3. Proposed Algorithm

This section presents a greedy scheduling model with
saving energy consumption based on the characteristics
of cloud tasks.

3.1. Cloud Task Scheduling System. The architecture diagram
of the task scheduling system is shown in Figure 2, in which
VM denotes virtual machine. The structure diagram gives
the process of the cloud task scheduling system from the
perspective of three-way decision and analyzes the user
requests by historical data, including data structure, data
attributes, and amount of data. The system data preprocess-
ing module filters irrelevant attributes and normalizes valu-
able raw data. In order to achieve effective task scheduling,
the tasks will be divided into three types (CPU type, memory
type, and hybrid type) by the data characteristics and thresh-
old, and the corresponding scheduling strategies are applied
in different types. The tasks with different attributes will be
placed in the more suitable host.

Alam et al. [16] pointed out that tasks have three modes
for clustering problems about tasks. According to the resource
requests and the number of requests of users, tasks can be rep-
resented as three parts: long-time, short-time, and medium-
time tasks by clustering. Long-time tasks have more resource
requests and fewer occurrences, but they always request for
more resources. In particular, there are many requests for
CPU resources, so they are called the CPU-intensive tasks;
short-time tasks have fewer resource requests, but they have
the most frequent occurrences; medium-time tasks have the
middle number of occurrences and resource requests, and
most requests are memory resource requirements, so they
are called the memory-intensive tasks.

This paper uses a mix of multiple job types to cluster all
tasks. The task dimensions have requests for CPU resources,
memory resources, task waiting time, etc. Zhang et al. [17]
pointed out that task resource usage is a more reliable metric

than the task waiting time. So, CPU and memory resource
requests are chosen as task dimensions. On the other hand,
task type and priority are also essential considerations. How-
ever, there are nine types of tasks, and the details between
types are complicated. Da et al. [18] pointed out the comple-
tion status of the tasks: 73% of tasks can be completed
normally, 26% of tasks are terminated, less than 1% of tasks
are in other states, and almost all tasks cannot be completed
in the terminated state. Since the state of tasks is different,
some tasks cannot be paused, postponed, or stopped midway
once they are started, such as timers. There are 12 priorities,
and too many priorities are not suitable for analysis and
clustering. Finally, the basic dimensions of the task are
summarized into two: CPU resource request and memory
resource request.

3.2. The Cloud Task Clustering Based on Three-Way Decision.
In this paper, tasks will be divided into three types via three-
way decision: CPU type, memory type, and hybrid type. Given
T = ft1, t2,⋯, tng be a task set, where ti = fcpu, ramg repre-
sents the dimension of task, which includes CPU and memory
resources request. Based on the basic idea of three-way deci-
sion, the expressions for task clustering is T = POSðTÞ ∪
BNDðTÞ ∪NEGðTÞ, where POSðTÞ represents CPU type,
NEGðTÞ represents memory type, and BNDðTÞ represents
hybrid type, and they satisfy the following properties:

(1) There is no overlap between the three types of tasks:
POS ∩ BND =∅,POS ∩NEG =∅, and BND ∩NEG
=∅

(2) Three types of tasks including all tasks: POS ∪ BND
∪NEG = T

It is assumed that the selection of iterative centroid is to
find the largest value of CPU and the smallest value of the
memory in each cluster xjðj = 1, 2,⋯, kÞ, which form cluster
centroidscentroidxj = ftmax ðcpuÞ, tmin ðramÞg, ðj = 1, 2,⋯, kÞ.

Definition 3. Let tcpui be CPU of the task i ði = 1, 2,⋯, nÞ, trami
be memory of the task i ði = 1, 2,⋯, nÞ. Given dðtcpui ,
centroidcpuxj

Þ represents the distance between task i ði = 1, 2,
⋯, nÞ in cluster xj and cluster centroid of CPU attribute,
and dðtrami , centroidramxj

Þ represents the distance of memory

attribute. αj represents the average of CPU attribute and βj

represents the average of memory attribute of tasks in cluster
xj. Given the universe of discourse xjðj = 1, 2, ::, kÞ is a finite
nonempty subset and R is an indistinguishable relation on
the universe of discourse,apr = ðxj, RÞ is the approximation
space of rough set. If xj ∈ X, upper and lower approximate
set can be defined as follows:

apr Xð Þ = ∪ ti ∈ xj dk k tcpui , centroidcpux j

� ����
���
j

� �
,

apr Xð Þ = ∪ ti ∈ xj dk k tcpui , centroidcpux j

� �
<αj

�� ∧ dj trami , centroidramxj

� �
≥βj j

n o
:

ð4Þ
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All object xj ∈ X will be divided into core region POSðXÞ,
boundary region BNDðXÞ, and trivial region NEGðXÞ
based on upper and lower approximate set, which is
defined as follows:

POS Xð Þ = apr Xð Þ = ∪ ti ∈ xj dk k tcpui , centroidcpuxj

� �
<αj

�� ∧ dj
n

� trami , centroidramxj

� �
>j β j

o
,

BND Xð Þ = apr Xð Þ − apr Xð Þ
= ∪ ti ∈ xj dk k tcpui , centroidcpuxj

� ���� <αj∧
�� dj

n

� trami , centroidramxj

� �
≤βj

���
o
,

NEG Xð Þ = 1 − apr Xð Þ = ∪ ti ∈ xj dk tcpui , centroidcpuxj

� ����
��� ≥ αj

n o
:

ð5Þ
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Figure 1: General process of task scheduling in cloud environment.
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Figure 2: Cloud computing task scheduling architecture diagram.
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The clustering algorithm firstly carries out k-means on
the objects. Then, the tasks of each cluster were divided
into three parts, which are core region POSðXÞ, boundary
region BNDðXÞ, and trivial region NEGðXÞ. The algorithm
flow mainly has the following six steps:

(1) Input dataset and number of clusters k

(2) Randomly select k objects in the dataset as cluster
centers

(3) Calculate the Euclidean distance between the object
and the cluster center and assign the objects to the
smallest cluster of Euclidean distance

(4) In each cluster xjðj = 1, 2,⋯, kÞ, use the largest CPU
value and the smallest memory value as the new
cluster center, and return to step 3 until the cluster
center no longer change

(5) Calculate the threshold αj = 1/jxjj∑ti∈xj t
cpu
i and βj

= 1/jxjj∑ti∈xj t
ram
i for each cluster xjðj = 1, 2,⋯, kÞ,

and cope with each cluster xjðj = 1, 2,⋯, kÞ. Accord-
ing to the upper and lower approximate set condi-
tions of Definition 3, the objects of each cluster are
divided into POS region (CPU type), NEG region
(memory type), and BND region (hybrid type)

(6) Finally, POS region, NEG region, and BND region of
all clusters will be merged

Based on the above discussion in Subsection 3.1, we pro-
pose a cloud task clustering method based on three-way
decision (TWD-CTC) by analyzing cloud tasks. The specific
algorithm is as follows.

3.3. The Energy-Saving Task Scheduling with Greedy Strategy
Based on TWD-CTC. This subsection proposes an energy-
saving scheduling model with greedy scheduling based on
three-way decision.

3.3.1. Greedy Strategy. The greedy task scheduling with
energy-saving model is shown in Figure 3 and VM is the
virtual machine. The system structure diagram presents a
greedy scheduling model based on TWD-CTC from a
macroscopic perspective.

The process is as follows:

(1) The different types of resource requests for tasks are
divided into core tasks (CPU type), trivial tasks
(memory type), and boundary tasks (hybrid type)
by cluster

(2) The greedy strategy is used to allocate tasks, and tasks
are allocated to VM with optimal resources each time,
so as to achieve better overall allocation efficiency

3.3.2. Scheduling Algorithm. The greedy algorithm is efficient
and straightforward on finding the optimal solution to solve
some problems. The basic idea is first to find the current
local optimal solution and then gradually find the optimal

global solution to save time to find the optimal solution
and get the overall best solution.

The greedy-based task scheduling strategy firstly sorts
the tasks in descending order by length of task and sorts
VMs in ascending order according to MIPS. Then, calculate
the estimated time time½i�½j� of task ti run in VM vi, and the
estimated time will be as the greedy object to iterate for
assigning each task to VM with optimal resources. After
each allocation, the task scale will be reduced, and each
iteration will generate the most suitable resources for the
current assigning task. When the iteration is completed,
the global task allocation method will be optimal when the
iteration is completed.

Based on the above discussion in this subsection, the
specific algorithm of the TWD-CTC greedy scheduling
model is given as follows.

4. Performance Evaluation

4.1. Experiment Setup. The experiment uses the CloudSim
platform designed to help create and manage multiple, inde-
pendent, and collaborative virtualized services on datacenter
nodes and enable flexible switching between time-sharing
and space-sharing when allocating processing cores’ virtua-
lized services.

We evaluate our algorithm based on the Google traces
from [19], which is gathered from Google MapReduce
Cloud trace logs, and this version of the cloud computing
environment handles information of 25 million tasks that
span for nearly one month. Our simulations have been con-
ducted on a computer having Intel® Core™ i7-10750H CPU
2.60GHz 2.59GHz; 32GB RAM, and 64-bit Windows 10
Operating System.

The CPU/MIPS of task is [0,1], the Memory/MB of task
is [100,500], and the file size/MB of task is [400,1000]; the
VmMips of VM is [312,512,800,920,1000,1500]; the Host

Input: T = ft1, t2,⋯, tng, the number of clusters k
Output:T = fPOSðTÞ ∪NEGðTÞ ∪ BNDðTÞg
centroidxj⟵ ChooseCentroidðT , kÞ;
while centroidxj is changed do:

DivideCluterðti,centroidx j Þ;
Updateðcentroidxj Þ;

endwhile;
foreach j ∈ k do:

if ðti ∈ aprðxjÞÞ do:
POS = POS ∪ getPOSðxjÞ;

else if (ti ∈ ðaprðxjÞ − aprðxjÞÞ) do:
BND = BND ∪ getBNDðxjÞ;

else if (ti ∈ 1 − aprðxjÞ) do:
NEG =NEG ∪ getNEGðxjÞ;

endif;
endfor;
Output: T = fPOSðTÞ ∪NEGðTÞ ∪ BNDðTÞg

Algorithm 1: TWD-CTC.
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Mips of Host is 3720. The relationship between the host and
energy consumption is shown in Figure 4.

The performance of TWD-CTCG algorithm is evalu-
ated by two indicators including energy consumption
and load balancing. The comparative experiment imple-
ments min-max-min [20], min-max [21], SJF [22], and
FCFS [22] task scheduling algorithms. Our algorithm
compares them in performance by energy consumption
and load balancing.

4.2. Energy Consumption Comparison Experiment

4.2.1. Different Task Experiment Comparison

(1) Less Task Experiment Comparison. In the case of less task
experiment, there are 100, 200, 300, 400, and 500 tasks. The
compared results of experiments are shown in Table 1 and
Figure 5.

From the analysis of the experimental data in Table 1
and Figure 5, when the number of tasks is 100, the cases of
min-max and min-max-min are essentially similar and
FCFS is relatively higher, and SJF has the lowest energy
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Figure 3: Framework diagram of cloud task greedy scheduling model.

Input: Tasks of n,VMs of m
Output: Total energy consumption of cloud computing EC
SortTask(Tasks,n);
SortVM(VMs,m);
foreach i ∈ n do :

foreach j ∈m do :
time½i�½j�⟵ ComputeTimeðti, viÞ;

minTime⟵0;
foreach i ∈ n do :

foreach j ∈m do :
if (vi ⟵ suitbaleðtiÞ and

time½i�½j� <minTime) do :
MapList =MapList ∪Mapðvi, tiÞ;
minTime⟵ time½i�½j�;
endif;

endfor;
endfor;
EC⟵ SchedulVmTask ðMapListÞ;

Output:EC

Algorithm 2: TWD-CTCG.
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consumption, while TWD-CTCG performs slightly worse.
As the number of tasks increases, the energy consumption
of SJF increases dramatically, and TWD-CTCG has the low-
est energy consumption in other tasks type.

(2) More Task Experiment Comparison. In the case of
more task experiments, there are 1000, 1250, 1500, 1750,
and 2000 tasks. The compared results are shown in
Table 1 and Figure 6.

According to the analysis of the experimental data in
Table 1 and Figure 6, as the number of tasks increases, the
energy consumption generated by the min-max and min-
max-min are nearly the same, and SJF generates relatively
higher and FCFS has been growing, but the growth has not
been remarkable. The TWD-CTCG algorithm increases
relatively small in energy consumption.

By comparing the experimental results with less tasks
and more tasks, it can be seen that the TWD-CTCG is better
than the other algorithms in less task case except for task
number is 100 and TWD-CTCG is better than others in
more task case.

4.2.2. Different Host Experiment Comparison

(1) Less Host Experiment Comparison. In the case of less
host experiment, there are 10, 20, 30, 40, and 50 hosts.
The compared results of experiments are shown in
Table 2 and Figure 7.

From the analysis of the experimental data in Table 2
and Figure 7, with the number of hosts increasing, the
energy consumption generated by min-max-min and min-
max is almost the same, while the SJF algorithm is better
than FCFS, and in the case of less hosts, TWD-CTCG is bet-
ter than other algorithms.

(2) More Host Experiment Comparison. In the case of more
host experiment, there are 100, 150, 200, 250, and 300 hosts.
The compared results are shown in Table 2 and Figure 8.

According to the analysis of the experimental data in
Table 2 and Figure 8, with the continuous increase of the
number of hosts, the energy consumption generated by
min-max-min and min-max is still basically the same in the
case of more hosts, but the effect of FCFS is better than that
of SJF, indicating that the FCFS algorithm will be better in
the case of more hosts, and the effect of TWD-CTCG is best.

By comparing the experimental results with less tasks
and more tasks, it can be seen that the algorithm proposed
in this paper is better than other algorithms in terms of
energy-saving effect and works well in both cases.

4.3. Load Balancing Comparison Experiment

4.3.1. Different Task Experiment Comparison

(1) Less Task Experiment Comparison. Similar to Subsection
4.2, the experiment has 100, 200, 300, 400, and 500 tasks and
then compares the load balancing generated by the min-max
and min-max-min, SJF, and FCFS algorithms under differ-
ent numbers of tasks. The compared results are shown in
Table 3 and Figure 9.

From the experimental data analysis in Table 3 and
Figure 9, in the case of less tasks, the load balancing of the
TWD-CTCG algorithm is not well at the beginning, but as
the number of tasks increases, the load balancing gradually
improves. However, the difference between min-max and
min-max-min algorithms of load balancing is not very big
and SJF keeps growing, while FCFS grows steadily.

(2) More Task Experiment Comparison. This section is a
multitask load balancing comparison experiment, which
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Figure 4: The relationship between host and energy consumption.
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Table 1: Energy consumption of different tasks.

Algorithm
Tasks Tasks

100 200 300 400 500 1000 1250 1500 1750 2000

Min-max-min 407498 435538 461987 481285 502318 8135374 8537300 8972264 12048045 12724574

Min-max 406966 434132 459521 478851 493559 8116462 8530405 8929579 12020748 12660304

SJF 175715 466374 765637 501018 947789 3600783 8939643 8720300 12103006 14688714

FCFS 313803 331713 536364 555324 572319 6697937 7461169 7783518 11028896 11567902

TWD-CTCG 340211 162602 194826 384688 380961 2564681 3547325 4228897 5460826 6868261
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Figure 5: Energy consumption comparison of less tasks.
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Figure 6: Energy consumption comparison of more tasks.
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Table 2: Energy consumption of different hosts.

Algorithm
Hosts Hosts

10 20 30 40 50 100 150 200 250 300

Min-max-min 187243 288223 389203 490183 591163 5982662 7517162 9051662 10586162 12120662

Min-max 186500 287480 388460 489440 590420 5975722 7510222 9044722 10579222 12113722

SJF 94856 146336 197816 249296 300776 5201153 6636653 8072153 9507653 10943153

FCFS 142428 221628 300828 380028 459228 4891548 6231348 7571148 8910948 10250748

TWD-CTCG 53573 76448 100215 124853 147917 1961099 2469103 2970899 3478323 3980699
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Figure 7: Energy consumption comparison of less hosts.

10000000

12000000

14000000

8000000

6000000

4000000

2000000

0

En
er

gy
 co

m
su

m
pt

io
n 

(W
)

100 150 200 250 300

Number of host

Min-Max-Min

Min-Max

SJF

FCFS

TWD-CTCG
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has 1000, 1250, 1500, 1750, and 2000 tasks. The load balan-
cing of more tasks is shown in Table 3 and Figure 10.

According to the analysis of the experimental data in
Table 3 and Figure 10, in the case of more tasks, with the
increasing of the number of tasks, the load balancing of
SJF becomes larger and larger and exceeds FCFS. The load
balancing of min-max-min is basically the same as min-
max. The TWD-CTCG remains low in the whole process,
except that the SJF is the same as TWD-CTCG when the
number of task is 1000.

From the above experimental results comparing less
tasks and more tasks, it can be seen that the algorithm pro-
posed in this paper is better than other algorithms in terms
of load balancing.

4.3.2. Different Host Experiment Comparison

(1) Less Host Experiment Comparison. The experiment has
10, 20, 30, 40, and 50 hosts and then compares the load

balancing generated by the min-max and min-max-min,
SJF, and FCFS algorithms under different hosts. The com-
pared results are shown in Table 4 and Figure 11.

From the experimental data analysis in Table 4 and
Figure 11, in the case of less hosts, the load balancing of all
algorithms is similar at first, but as the number of hosts
increases, the load balancing of min-max-min and min-
max becomes larger and larger, and they are relatively simi-
lar. The TWD-CTCG algorithm has been kept at a low level,
and the effect of FCFS is better than that of SJF in the case of
less hosts.

(2) More Host Experiment Comparison. This is a more host
load balancing comparison experiment, which has 100,
150, 200, 250, and 300 hosts. The compared results are
shown in Table 4 and Figure 12.

According to the analysis of the experimental data in
Table 4 and Figure 12, in the case of more hosts, min-

Table 3: Load balancing of different tasks.

Algorithm
Tasks Tasks

100 200 300 400 500 1000 1250 1500 1750 2000

Min-max-min 0.8870 1.0112 1.1474 1.2725 1.4191 6.7664 7.3118 7.9606 9.7981 10.7014

Min-max 0.8825 1.0131 1.1504 1.2738 1.3978 6.7531 7.2962 7.8984 9.7751 10.6658

SJF 0.5579 0.9607 1.2821 1.1657 1.5770 4.4062 6.9543 7.1081 8.7733 10.1426

FCFS 0.82749 0.82749 1.0932 1.1884 1.2830 5.8229 6.4006 6.8467 8.4989 9.2735

TWD-CTCG 0.87934 0.65183 0.7146 0.9415 0.9281 4.3969 5.1152 5.4756 6.2591 6.8133
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Figure 9: Load balancing comparison of less tasks.
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Table 4: Load balancing of different hosts.

Algorithm
Hosts Hosts

10 20 30 40 50 100 150 200 250 300

Min-max-min 0.1765 0.6612 0.8228 0.9036 0.9521 3.4848 9.3179 12.2344 13.9844 15.1510

Min-max 0.1732 0.6566 0.8178 0.8984 0.9467 3.4799 9.3116 12.2274 13.9769 15.1433

SJF 0.1159 0.4517 0.5637 0.6197 0.6533 3.0106 8.1553 10.7277 12.2711 13.3000

FCFS 0.1401 0.5450 0.6799 0.7474 0.7879 2.9456 7.9664 10.4768 11.9830 12.9872

TWD-CTCG 0.1174 0.3844 0.4747 0.5288 0.5472 2.2380 5.4686 7.0559 8.0396 8.6618
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Figure 11: Load balancing comparison of less hosts.
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max-min is similar to min-max and SJF is similar to FCFS.
In this case, SJF is slightly better than FCFS, but TWD-
CTCG has been keep a relatively low level.

In the case of less hosts and more hosts, TWD-CTCG
maintains a good effect, indicating that TWD-CTCG has a
good effect on load balancing in various situations of hosts.

5. Conclusions

In the development process of cloud computing, energy con-
sumption optimization is still one of the important issues.
This paper proposes TWD-CTCG algorithm, which cluster
tasks by resource requests and schedule cloud tasks with
greedy strategy to achieve reasonable resource allocation.

In the future work, it is necessary to increase the dataset
and introduce big data processing methods based on the in-
depth research on Hadoop, Spark big data platform,
container cloud platform, etc. into our researches. The task
clustering density will be more refined, the threshold func-
tion will be further improved, and the dynamic threshold
will be used to further save energy consumption and
improve resource utilization.
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