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Multimedia applications are expected to widely deploy over vehicular networks. In order to meet the low-latency and high-speed
transmission requirements of multimedia applications, edge caching is introduced to reduce the network traffic and the
transmission delay. Due to the limited storage of the edge cache server, an efficient approach for the content management
plays a decisive role for the edge cache performance. This paper proposes a vehicle-to-infrastructure-based cooperative caching
mechanism for Internet of Vehicles to improve the edge cache utilization. The system model is established with the goal of
maximizing the cooperative caching hit rate. To jointly consider the collaborations between macrobase stations (MBS) and
multiple roadside units (RSU), we propose a reinforcement learning algorithm to adaptively control the cache management.
According to the content popularity and the network status, the proposed algorithm can dynamically adjust cached content
across relevant MBSs and RSUs. The simulation results show that the proposed cooperative caching mechanism significantly
improve the cache utilization and the quality of services.

1. Introduction

With the rapid development of the Internet of Vehicles (IoV)
and 5G communication technology, a large number of multi-
media applications, such as traffic video processing, in-vehicle
infotainment, and transportation environment monitoring,
are emerged to enrich the intelligent transport system [1–3].
To provide high quality of services for multimedia applica-
tions in IoV, mobile edge computing (MEC) has attracted
the attention as an emerging technology to improve system
performance, resource utilization, and reduced transmission
delay [4–6]. By introducing computation and storage capabil-
ities to network edge nodes, such as roadside units (RSU) and
base stations, the transmission pressure on the core network
can be effectively relieved, and at the same time, the content
transmission delay can be reduced [7–10]. However, the
limited cache space of edge nodes, the time-varying content
popularity, the high speed of vehicles, and the constant change

of the IoV topology are challenging for the edge cache perfor-
mance. It is necessary to design an efficient management
strategy to efficiently manage the edge cache [11–13].

Currently, there are numerous studies conducted on the
subject of edge cache management for IoV. Huang et al. [14]
proposed a cache location selection mechanism based on the
vehicle trajectory, which can effectively reduce the system
load and cache energy consumption. Shi et al. [15] proposed
a deep learning communication model based on multimodel
compression, which exploited the redundancy between deep
learning models in different scenarios to accelerate content
transmission in edge networks. In [16], a mixed integer non-
linear programming method was proposed to minimize the
cooperative delay between edge servers, and the Lyapunov
optimization method was used to optimize the delay prob-
lem. In [17], the authors comprehensively considered the
mobility of vehicles and proposed an edge caching scheme
with perceptible mobility probability. By dividing the data
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into data blocks of different sizes and buffering these data blocks
in the edge server close to the vehicle, the overhead and trans-
mission delay of backhaul traffic were reduced. Meng et al.
[18] studied the cache service strategy of offline networking in
the edge computing environment and proposed a cache storage
algorithm on node core. In [19], a new information-centric
heterogeneous network framework was designed, using a dis-
tributed algorithm with alternating-direction multipliers to
solve the problem of cache resource allocation. In order to fur-
ther reduce the transmission delay and improve the response
rate, the authors [20] proposed a cooperative cache allocation
and calculation offload scheme, and the MEC servers were
cooperated to perform calculation tasks and data caching. With
the rapid development of artificial intelligence, the deep rein-
forcement learning [21] has been widely used in edge caching
and resource allocation of vehicle networks with its unique
perception and decision-making capabilities [22, 23].

Themain contributions of this paper are as follows: to take
full advantage of edge cache resources, a hierarchical coopera-
tive architecture, including MBSs, RSUs, and vehicles, are
introduced. We establish a Markov decision model based on
the proposed architecture to describe the cooperative caching
process. We propose a reinforcement learning cache manage-
ment algorithm, which follows the Deep Deterministic Policy
Gradient (DDPG) scheme. The proposed algorithm has fast
convergence rate and can self-adapt to the complex network
environment.

The rest of this paper is organized as follows. Section 2
presents the system model for cooperative edge caching. Sec-
tion 3 discusses the proposed cooperative caching mechanism.
The experiment settings and result analysis are presented in
Section 4. Finally, in the Section 5, we discuss concluding
remarks and our future work.

2. System Model

2.1. Cooperative Edge Caching Model. In order to make full use
of the storage of MBSs, RSUs, and vehicles, we construct a
three-layer cooperative cache architecture, as shown in
Figure 1. The core layer includes MBSs and the backhaul net-
work, and the MBSs are connected to the RSUs through wired
links. For the cooperative RSU layer, it consists of RSUs distrib-
uted in different areas, and the RSUs communicate through
wireless links. The vehicle layer includes vehicles running in
different areas. MBSs, RSUs, and vehicles have storage to tem-
porarily buffer certain amount of content. Initially, the vehicle
sends a content request. If the vehicle itself has the content, it
will obtain directly from its cache. If not, it will send the request
to the local RSU. If the local RSU does not store the content, the
local RSU queries the cooperative RSUs. If neither the local
RSU nor the cooperative RSUs have the content, the request
is sent to the core layer.

MBS is responsible for collecting system status informa-
tion, controlling global resource management, and content
caching decisions. Compared with obtaining content from
a remote server, the cooperative caching model can effec-
tively reduce the transmission delay and transmission cost.
The set of RSUs can be expressed as R = f1, 2, 3,⋯, Rg.
V = fv1, v2,⋯, vNg represents the set of vehicles under

the coverage of the RSU. The RSU is responsible for
collecting relevant information of vehicles under its own
coverage area and uploading to the MBS.

2.2. Content Delivery Model. In the multilevel cooperative
edge caching model, the vehicle vi can send content requests
to the RSU or adjacent vehicles. Vehicles within the coverage
area of one RSU use the same frequency band to communi-
cate, and it is leading to interference between vehicles.
Therefore, the transmission rate from RSU r to vehicle v
can be obtained from Shannon’s formula as

Rr,v = br,vBR log 1 + prhr,v
σ2 +∑V

v ′=1,v ′≠vprhr,v ′

 !
, ð1Þ

where br,v represents the channel bandwidth allocated by the
RSU r to the vehicle v, BR represents the channel bandwidth
of the RSU r, and pr is the transmission power of the RSU r.
hr,v is the channel gain between the RSU r and the vehicle v,
and σ2 represents noise power. ∑V

v ′=1,v ′≠vprhr,v ′ is the V2I
communication downlink interference [24].

Orthogonal frequency division multiple access (OFDMA)
is used between MBSs and vehicles. Vehicles associated with
the MBS are assigned an orthogonal subcarrier, and the trans-
mission rate from the MBS to vehicle vi is

Rm,v =
Bm

W
log 1 + pmhm,v

σ2

� �
, ð2Þ

where Bm is the channel bandwidth of the vehicle, and pm
represents the transmission power of the vehicles. hm,v is the
channel gain between the vehicle v and the MBS, and σ2

represents the noise power [25].

2.3. Content Popularity Model. Assuming that there are K
content requests, then the request probability of these K con-
tents are P1, P2, P3,⋯, PK , and the probability obeys the
Zipf distribution [26]. The relationship between the content
request probability and the content popularity level can be
expressed as [27]

P sð Þ = Φ

sθ
s ∈ 1, 2, 3⋯ Kf g, ð3Þ

Φ = 〠
K

i=1

1
i−θ

−1
, ð4Þ

where s represents the content popularity level, and θ is the
Zipf impact factor, also known as the popularity slope. If θ is
getting larger, the distribution of Zipf is steeper, and the
popularity tends to be concentrated [28, 29]. The value of
the Zipf factor depends on the users’ behavior. The relation-
ship between the request probability and popularity level can
be further expressed as

P sð Þ = s−θ

∑K
i=1i

−θ
: ð5Þ
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Figure 2 shows the relationship between the popularity
level and the request probability. It can be seen that the influ-
ence of the popularity inclination on the request probability
distribution. The content with high request probability only
accounts for a small part of all content [30].

3. Cooperative Caching Mechanism

3.1. ProblemModel. The cooperative caching is able to theoret-
ically achieve a high cache hit rate than the noncooperative
caching. We use a binary variable ci,k ∈ f0, 1g, i ∈ R, k ∈ K to
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Figure 1: Cooperative edge cache model of IoV.
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Figure 2: Relationship between content popularity level and request probability.
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represent the cache state of the content k of RSUi. ci,k = 1
means that the content k is cached in the RSUi, and ci,k = 0
means that the RSUi does not cache the content k. The coop-
erative edge cache hit rate of the RSUi can be expressed as

hi = 〠
k∈K

pk ci,k + 〠
n∈R

cn,kδn,i

 !
, ð6Þ

where the binary variable δn,i ∈ f0, 1g indicates whether the
RSUn is cooperated with the RSUi. Therefore, the average
cooperative cache hit ratio of the system can be expressed as

�h = 1
R
〠
i∈R

hi =
1
R
〠
i∈R

〠
k∈K

pkhi =
1
R
〠
i∈R

〠
k∈K

pk ci,k + 〠
n∈R

cn,kδn,i

 !
:

ð7Þ

For RSUi, the size of the cache space is S
RSUi , and then the

optimization problem of maximum average cooperative cache
hit rate can be expressed as the following:

max
ci,kf g

�h

s:t ci,k ∈ 0, 1f g, i ∈ R, k ∈ K
  〠

k∈K
ci,k ≤ SRSU

i , i ∈ R:

ð8Þ

Regarding to the vehicle cache, the cache hit rate of the
vehicle j can be expressed as

hj = 〠
k∈K

pkcj,k: ð9Þ

Therefore, the average cache hit rate for all vehicles is
expressed as

�hj =
1
V
〠
j∈V

hj =
1
V
〠
j∈V

〠
k∈K

pkhj =
1
V
〠
j∈V

〠
k∈K

pkcj,k: ð10Þ

The size of the cache space of the vehicle j is Sv
j
. Under

the limitation of the cache space, the problem of the maxi-
mum average cache hit rate of vehicles can be expressed as
the following:

max
cj,kf g

�hj

s:t cj,k ∈ 0, 1f g, j ∈ V , k ∈ K
  〠

k∈K
cj,k ≤ Sv

j , j ∈ V :

ð11Þ

Maximizing the cache hit rate of the system is to maxi-
mize the average cache hit rate of the cooperative caches
and vehicles, as the following form:
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Figure 3: Schematic of the cooperative caching algorithm.
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max
ci& j,kf g

H = �h + �hj
� �

,

s:t C1 : ci,k ∈ 0, 1f g, i ∈ R, k ∈ K ,
  C2 : cj,k ∈ 0, 1f g, j ∈ V , k ∈ K ,
  C3 : 〠

k∈K
ci,k ≤ SRSU

i , i ∈ R,

  C4 : 〠
k∈K

cj,k ≤ Sv
j , j ∈ V :

ð12Þ

3.2. Cooperative Caching Algorithm Based on DDPG. To solve
the optimization problem in the previous section, it is neces-
sary to build the Markov decision process for the cooperative
edge caching scenario. The Markov decision process is a tuple
including state, action, and reward. The components are
defined as follows: the system state at each time t is defined
as st = ½SMBS, R ∗ SRSU, V ∗ Sv, qt�, that is, at time t, the cooper-
ative cache space, cache state information, vehicle cache infor-
mation, and vehicle content request. The action space at each
time t is defined as at = ½a0, a1, a2, a3�, where a0 represents the
content cached in the MBS, a1 means the content cached in
the RSU, a2 represents the content cached in the vehicle itself,
and a3 is for the content cached in the randomly.

The system joint reward function R ðtÞ is expressed as
RðtÞ = CP∑∑vð�hðtÞ + �hjðtÞÞ, where C is the characteristic

constant, and �hðtÞ + �hjðtÞ is the average cache hit rate of

the cooperative cache and the average cache hit rate of the
vehicle j at time t, respectively. P represents the penalty coef-
ficient given by the vehicle.

The system block diagram of the cooperative edge caching
algorithm is shown in Figure 3. The environment consists of an
actor network, a critical critic, and an experience replay mem-
ory. The actor and critic network are both composed of two
different deep neural networks. The online network is used

1: Initialize Actor online network parameters θQ, Critic online network parameters θμ, experience replay memory M

2: Initialize Actor target network parameters θQ′ , Critic target network parameters θμ′

3: Initialize caching state of RSUs, MBS and Vehicles, content popularity
4: for episode =1, M do
5: Environment state space initialization, initialization system cache hit rate
6: Randomly choose action N as action exploration
7: for t =1,2,3,…,T do
8: Select action at = μðst , θμÞ +Nt according to observed state st and

current strategy
9: Calculate reward RðtÞ based on current selection action at and state st ,

update state st ⟶ st+1
10: Update the reward RðtÞ = CP∑∑vð�hðtÞ + �hjðtÞÞ and store

ðst , at , RðtÞ, st+1Þ in M
11: Randomly sample N samples from the experience replay memory M,

ðsi, ai, RðtiÞ, si+1Þ
12: Evaluate yi = RðtiÞ + γQ′ðsi+1, μ′ðsi+1jθμ′ÞjθQ′Þ
13: Update Critic Network Parameters θμ by Minimizing Loss

14: LðθÞ = 1/N∑iðyi −Qðsi, aijθQÞÞ
2

15: Update Actor Network Parameters θQ via Policy Gradients
16: ∇θμ J ≈ 1/N∑i∇aQðs, ajθQÞjs=si ,a=μðsiÞ∇θμμðs, jθμÞjsi
17: Update target network parameters

18: θQ
′
⟵ τθQ + ð1 − τÞθQ′

19: θμ
′
⟵ τθμ + ð1 − τÞθμ′

20: end for
21: end for

Algorithm 1: Cooperative edge caching algorithm for Internet of Vehicles based on DDPG.

Table 1: Simulation parameters.

System parameter Value/description

RSU and MBS cache capacity 10 TB, 15 TB

Vehicle cache capacity 5 TB

RSU and MBS transmission power 35 dBm, 38 dBm

Number of contents 7000, 9000, 10000

Zipf impact factor 0.68

Noise power -95 dBm

Wireless bandwidth 10MHz

Wired bandwidth 20MHz

Number of vehicles 25, 30, 35, 40, 45

Number of neural network layers 2

Number of neurons [300, 400]

Learning rate 0.00025

Batch sampling size 64

Replay buffer size 7500
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for actions, and the target network is used for the evaluation of
actions. The agent receives the environmental state informa-
tion and executes the corresponding the action. Algorithm 1
shows the flow of the cooperative edge caching algorithm
[16]. First, it initializes the network parameters of the actor
network, the critic network, and the experience replay mem-
ory. After the parameter initialization is completed, the
agent obtains the environmental state information and
makes a decision for the content caching. The agent receives

immediate reward feedback from the system, and the system
enters the next new state. The agent store the current status
information into the experience replay memory for future
training.

4. Experiment Results and Analysis

In the simulation environment, the cache capacity of the
MBS is 15TB, and the coverage radius is 2 km. The RSU
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cache capacity is 10TB, and the coverage radius is 200m.
The range of the number of vehicles is from 25 to 45, and
the size of the vehicle cache is 5TB. The transmission power

of RSU and MBS content is 35 dBm and 38dBm, respec-
tively. The Zipf impact factor is 0.68. The neural network
parameters are set as two hidden layers, and the activation

Sy
ste

m
 av

er
ag

e c
ac

hi
ng

 h
it 

ra
te

0 100 200 300 400 500
Episodes

600 700 800 900 1000
0.0

0.2

0.4

0.6

0.8

𝜃 = 0.68
𝜃 = 0.63

𝜃 = 0.58
𝜃 = 0.53

Figure 6: Comparison of the average hit rate under different Zipf distributions.

Cooperative caching
1.0

0.8

Sy
ste

m
 ca

ch
in

g 
hi

t r
at

e
RS

U
 ca

ch
in

g 
hi

t r
at

e

Ve
hi

cle
s c

ac
hi

ng
 h

it 
ra

te
M

BS
 ca

ch
in

g 
hi

t r
at

e

0.6

0.4

0.2

0.0

0.8

0.6

0.4

0.2

0.0

0.15

0.10

0.05

0.00

1.0

0.8

0.6

0.4

0.2

0.0

0 200 400 600 800 1000
Episodes

0 200 400 600 800 1000
Episodes

0 200 400 600 800 1000
Episodes

DDPG
PG
DQN

0 200 400 600 800 1000
Episodes

Figure 7: Comparison of the cache hit ratio under the cooperative cache scheme.

7Wireless Communications and Mobile Computing



Non-cooperative caching
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function is ReLU [15]. The detailed settings of parameters
are shown in Table 1.

To verify the performance of the cooperative edge caching
strategy, we compare the cooperative caching scheme with
noncooperative caching scheme under the parameters setting
of Table 1. The learning process of cooperative and noncoop-
erative caching strategies is shown in Figure 4. The average
reward of cooperative caching rapidly increases to 170 after
50 episodes and then gradually stabilizes. For noncooperative
caching, with the increase of training episodes, the average
reward has stabilized around 100. The cooperative caching
strategy not only make the most use of the cache space but also
effectively improve the system performance. The advantage of
noncooperative caching is that it does not need to consider the
content caching status of other edge servers, and the system
complexity is low.

Figure 5 shows the comparison of the cache hit rate for
different caching strategies. With the continuous increase
of training times, the cooperative cache hit rate obtained
by the system is stable above 85%. For the noncooperative
caching, the system cache hit rate is roughly 10% lower than
the cooperative caching. When the training reaches 400
rounds, the hit rate of the noncooperative cache gradually
tends to 75%. The reason for the gap is that the noncooper-
ative caching cannot make full use of the cache space, which
causes a waste of storage and a low system caching hit rate.

The relationships of the system caching hit rate under dif-
ferent Zipf distributions is shown in Figure 6. When the Zipf
distribution parameter is large, it indicates that the vehicle
users have more requests for the content with high popularity.
Caching the high popularity content is beneficial to the
improvement of the system cache hit rate. When the content
requests increase, the noncooperative caching is difficult to
meet the vehicle requests. The proposed cooperative cache
strategy fully considers the cooperation between RSU and
MBS, and the system cache hit rate increases significantly.

Figures 7 and 8 show the comparison of the average cache
hit rate of different algorithms under the different schemes.
With the increase of training times, the average caching hit
rate of MBS gradually tends to a stable value above 80%. For
the (deep Q network) DQN algorithm, the caching hit rate
fluctuates greatly in the first 250 episodes, because DQN is
difficult to deal with the complex state information. For the
average cache hit rate of RSU, the DDPG algorithm has better
performance in the first 250 episodes. After 250 training
episodes, the effect is slightly lower than that of the (policy
gradient) PG and the DQN algorithm.

Figure 9 presents the cooperative cache performance
under the different numbers of vehicles. Compared with
PG and DQN based algorithms, the DDPG-based algorithm
can bring better benefits to the system and tend to be stable
when dealing with the complex environment. At the same
time, it also verifies that the DDPG-based algorithm has
unique advantage for improving the overall average hit rate.

5. Conclusions

This paper focus on the improving of cache performance in the
IoV environment and proposes a V2I-based cooperative cach-

ing strategy. We propose MBS-RSU-vehicle three layer archi-
tecture and model the problem as maximizing the average
cooperative cache hit rate. The objective function is solved by
using the reinforcement learning algorithm based on DDPG.
In order to verify the performance of the proposed cache strat-
egy, the effects of cooperative caching and noncooperative are
compared under different system parameters. In future work,
we will further consider the content transmission delay and
use game theory to solve the problem of resource competition
between cooperative cache servers.
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