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The Internet of Things has a wide range of applications in the medical field. Due to the heterogeneity of medical data generated by
different hospitals, it is very important to analyze and integrate data from different institutions. Functional magnetic resonance
imaging (fMRI) is widely used in clinical medicine and cognitive neuroscience, while resting-state fMRI (rs-fMRI) can help
reveal functional biomarkers of neurological disorders for computer-assisted clinical diagnosis and prognosis. Recently, how to
retrieve similar images or case histories from large-scale medical image repositories acquired from multiple sites has attracted
widespread attention in the field of intelligent diagnosis of diseases. Although using multisite data effectively helps increase the
sample size, it also inevitably introduces the problem of data heterogeneity across sites. To address this problem, we propose a
multisite fMRI retrieval (MSFR) method that uses a deep hashing approach and an optimal transport-based domain adaptation
strategy to mitigate multisite data heterogeneity for accurate fMRI search. Specifically, for a given target domain site and
multiple source domain sites, our approach uses a deep neural network to map the source and target domain data into the
latent feature space and minimize their Wasserstein distance to reduce their distribution differences. We then use the source
domain data to learn high-quality hash code through a global similarity metric, thereby improving the performance of cross-
site fMRI retrieval. We evaluated our method on the publicly available Autism Brain Imaging Data Exchange (ABIDE) dataset.
Experimental results show the effectiveness of our method in resting-state fMRI retrieval.

1. Introduction

With the rapid construction of digital hospitals, a large
number of medical images are generated every day in hos-
pitals. Fusion medical images from different hospitals and
establishing an effective medical image retrieval system
can reduce the workload of doctors to a certain extent,
assist doctors in diagnosis, and strengthen cooperation
and exchanges between different hospitals. Autism spec-
trum disorder (ASD) is a common neurodevelopmental
disorder that usually occurs in early childhood. The main
symptoms of this disease are social and verbal communica-
tion difficulties, narrow interests, stereotyped behavior, and
impaired self-care ability [1]. According to the Centers for
Disease Control and Prevention (CDC), one in every 59

American children was diagnosed with ASD in 2018, with
the prevalence continuing to rise (https://www.cdc.gov/
ncbddd/autism/data). The American Autism Association
estimates that the lifetime treatment costs of ASD range
from 3:5 to 5 million, bringing a heavy burden on patients
and their families [2]. According to the World Health
Organization, ASD has become one of the major diseases
that seriously affect the quality of life and physical health.
In order to auxiliary clinical diagnosis, it is important to
develop an effective medical image retrieval system accord-
ing to previous cases or medical images for better diagnosis
and treatment of ASD. Several studies have already shown
that neuroimaging can help find the imaging biomarkers
and pathological changes in the brain, thus having great
prospect in the diagnosis of ASD.

Hindawi
Wireless Communications and Mobile Computing
Volume 2022, Article ID 8797604, 14 pages
https://doi.org/10.1155/2022/8797604

https://orcid.org/0000-0002-1401-9859
https://orcid.org/0000-0002-0598-5692
https://www.cdc.gov/ncbddd/autism/data
https://www.cdc.gov/ncbddd/autism/data
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/8797604


Magnetic resonance imaging (MRI) techniques have
been widely used in the analysis of brain diseases such as
ASD [3, 4], Alzheimer’s disease [5–7], Parkinson’s disease,
and others [8–11]. Previous studies have revealed that
behavioral and cognitive deficits in people with ASD are
closely related to abnormal connectivity in brain networks,
which include hyperconnectivity and underconnectivity
[12–14]. Currently, the rs-fMRI technique is the best nonin-
vasive tool to observe the changes of neural activities in
brain networks. The most widely used method of rs-fMRI
technology is the blood oxygen level-dependent (BOLD)
method, which measures brain neural activities by detecting
changes in blood flow of subjects without performing any
specific task. Supervised learning usually has a strong
assumption—independent and identically distributed, i.e.,
all training and test data are sampled independently from
the same unknown data distribution. However, this is difficult
to meet in most production practices. For multisite studies,
there are differences in the distribution of data across these
research institutions due to differences in the equipment used,
parameters set, and demographic characteristics of the data
collected by these institutions. Although many studies have
demonstrated the effectiveness of rs-fMRI-based machine
learning methods for automated diagnosis of ASD [15], most
of them ignore the problem of fMRI heterogeneity across dif-
ferent imaging sites, which will significantly degrade generali-
zation ability of models.

Conventional approaches using multisite data usually
train data from each site separately and test them at different
sites [16] or mix data from all sites [17]. These approaches
clearly ignore the heterogeneity of data across sites and lead
to poor model generalization. Other approaches of using
multisite data take into account the data heterogeneity
across different imaging sites and alleviate this problem by
appropriate methods of domain adaptation [18, 19]. Typi-
cally, these approaches train the model on the source
domain, perform domain adaptation on both source and tar-
get domain data, and finally test model using the target
domain data. As shown in Figure 1, the model trained from
source domain data may perform poorly in the target domain
when the distribution difference between the source and tar-
get domain is significant. Thus, it is helpful to improve the
model generalization by bringing the source and target
domain distributions closer together through appropriate
domain adaptation methods. Furthermore, these methods
can be divided into semisupervised domain adaptation and
unsupervised domain adaptation, which depends on whether
the labels of the target domain can be used. Specifically, semi-
supervised domain adaptation approaches require labeling
information of partial the target domain data besides the nec-
essary labels of source domain data. However, labeled data is
often labor-intensive, costly, and time-consuming. There-
fore, unsupervised domain adaptation approaches are more
widely used.

Existing studies on unsupervised domain adaptation
methods can be broadly divided into two categories. Many
approaches tend to use some predefined distribution diver-
gence [20], such as maximum mean discrepancy (MMD)
[21, 22], cosine similarity, Kullback–Leibler divergence,

mutual information, and higher-order moments. Many
approaches are based on generative adversarial network
(GAN), which learns domain-invariant features to confuse
feature extractors and discriminators [23, 24]. Optimal
transport (OT) is another popular approach [25, 26] that
seeks a probabilistic coupling γ by minimizing the distribu-
tion between the source and target domains. The coupling
γ is used to transform the source data through an estimated
mapping (called barycentric mapping), which ultimately
brings the source and target domain distributions closer
together.

Most current retrieval works based on medical images
such as MRI and CT data rely on natural image retrieval
techniques. Due to the powerful nonlinear representational
capabilities of deep learning and the advantages of hash
codes in data storage and fast searching, deep hash learning
for image retrieval has achieved promising performance in
terms of retrieval accuracy and speed. Deep hashing
methods can generally be classified into (1) unsupervised
hashing [27] and (2) supervised hashing [28, 29] according
to whether supervised information is used. Unsupervised
hashing usually uses topological information and data distri-
bution to learn hash functions but often requires longer hash
code to obtain better retrieval accuracy. Supervised hashing
can learn higher-quality hash functions through supervised
information, so it is better than unsupervised hashing
methods. Existing supervised hashing methods typically
learn hashing functions from pairwise or triplet relations,
which only captures data similarity locally. A recent paper
proposed a global similarity metric method to compute a
central similarity metric by introducing the concept of hash
center, which encourages hash codes of similar sample pairs
to approach the same hash center and those of dissimilar
sample pairs to converge to different hash centers, thus
improving hash learning efficiency and retrieval accuracy
[28]. However, achieving true end-to-end deep hash training
remains a difficult task since the use of sign function usually
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Figure 1: Motivation for performing domain adaptation. Blue
indicates the source domain data distribution, orange indicates
the target domain data distribution, and triangles and circles
indicate samples from two categories. The left panel shows the
large difference between the source and target domain
distributions before domain adaptation, which can lead to poor
model generalization performance. The right figure shows that
after domain adaptation, the source and target domain
distributions are significantly smaller than before, which is more
conducive to obtaining a more generalized model.
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lead to gradient vanishing problems. Thus, most approaches
employ a relaxation scheme in place of strict discrete con-
straints [28–30], but these relaxation strategies usually lead
to suboptimal hash codes due to quantization errors. Su
et al. [31] designed a hash coding layer to learn hash codes
directly, which uses a strictly sign function in forward propa-
gation to maintain discrete constraints and intactly transmits
the gradients to the front layer in backward propagation to
avoid gradient vanishing.

In this article, we propose a multisite fMRI retrieval
(MSFR) method for multisite fMRI retrieval. To achieve bet-
ter retrieval results, the MSFR will firstly reduce the hetero-
geneity of rs-fMRI between different sites and then employ a
deep hashing method for fMRI retrieval where a novel hash
coding layer is introduced to use classification loss to assist
in better hash code learning. As shown in Figure 2(b), we

design a multiway parallel framework for domain adaptation
retrieval. Specifically, we design a structurally identical deep
neural network to each source domain. On this basis, the
optimal transfer module is used to reduce the discrepancy
between each source and target domain, while hash function
learning is performed. Experimental results on rs-fMRI
scans from the publicly Autism Brain Imaging Data
Exchange (ABIDE) dataset demonstrate the effectiveness of
the proposed method. To our knowledge, this is among the
first studies to apply domain adaptation methods to multi-
site functional MRI retrieval.

Major contributions of this work can be summarized as
follows: (1) We propose to reduce the marginal distribution
between source domain sites and target domain sites
through optimal transport theory to alleviate the problem
of data heterogeneity between different sites. (2) We develop
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Figure 2: Illustration of the proposed multisite fMRI retrieval (MSFR) method for resting-state functional MRI (rs-fMRI) retrieval. It
includes two major components: (a) generating functional connectivity features and (b) retrieval model learning. The raw rs-fMRI was
first preprocessed using C-PAC, then the brain was divided into 116 brain regions using the AAL brain template, then the mean time
series of each brain region were extracted, the Pearson correlation coefficient between the time series of pairwise brain regions was
calculated to obtain the functional connectivity matrix, and finally, the upper triangular elements were retained to obtain the functional
connectivity features. The proposed retrieval framework consists of submodels corresponding to the source domains, each of which
includes domain adaptation based on optimal transport and hash learning based on a central similarity metric. Blue indicates the first
source domain, yellow indicates the N-th source domain, and orange indicates the target domain. The inputs to each submodel are
source and target domain data, where the neural network g assigned to each source domain is represented twice as a way of
distinguishing between the source and target domain inputs. The labeled source domain data is used to learn the hash function, and the
unlabeled target domain data is used only in the domain adaptation phase. The dotted line in the figure indicates that the target domain
data only uses the hash coding layer hl in the testing stage. The retrieval database consists of a hash code obtained from the hash
representation of the source domain in its corresponding hash coding layer, followed by the sign function. The query samples are
obtained from the hash representation of the target domain data in each submodel and then processed by the aggregate module before
being obtained by the sign function. The aggregate block is responsible for summing up the hash representations generated by each
target domain sample in each hash coding layer to obtain the final hash representation of the sample.
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a method to learn high-quality hash functions using a hash-
ing method with a global similarity metric combined with a
classification loss introduced by a novel hash coding layer.
(3) We introduce a parallel framework using an inconsis-
tency model to further improve multisite fMRI retrieval.

The rest of this paper is organized as follows. In Section
2, we review the relevant studies. In Section 3, we introduce
the materials and present our proposed method. In Section
4, we present the experimental settings and experimental
results. In Section 5, we perform ablation study, analyze
the influence of two hyperparameters, and discuss the limi-
tations of the current work. This paper is finally concluded
in Section 6.

2. Related Works

Unlike the general natural image dataset, medical images are
more difficult to collect due to their privacy and the high
level of expertise required to support the various annota-
tions. Data from multiple institutions are typically pooled
together to form larger data sets and to facilitate research.
However, multisite data introduces the problem of data het-
erogeneity, so domain adaptation has attracted extensive
research in recent years in the diagnosis and analysis of dis-
ease in order to reduce data heterogeneity and improve
model performance. For example, Wang et al. [32] proposed
a multisite ASD detection algorithm. To eliminate intersite
data heterogeneity, they first divided the multisite training
data into two groups according to whether the sample was
ASD or healthy control (HC). Then to learn the latent repre-
sentations and cluster them within each group, similarity-
based multiview linear reconstruction model was used. A
nested singular value decomposition (SVD) method was
designed to mitigate the heterogeneity of the data across
sites. Zhang et al. [33] aligned feature and label distributions
based on optimal transmission theory to reduce multisite
heterogeneity in ASD diagnosis and achieve better classifica-
tion performance. Many studies have demonstrated that
domain adaptation can promote the efficiency of medical
image analysis, so it is natural that for multisite learning
tasks, domain adaptation becomes an essential component.

Medical image retrieval can help medical practitioners to
quickly and accurately retrieve relevant data from the vast
amount of medical images and to detect abnormalities in
brain information in a timely manner, enabling automatic
prediction and diagnosis of brain diseases in order to make
effective preventive measures. There has been a lot of work
done using medical images for retrieval. For example, Peng
et al. [34] designed a retrieval model that combines triple
loss with existing deep Cauchy hashing methods to acceler-
ate nearest neighbor search in Hamming space and tested
it on colorectal cancer (CRC) histology dataset.

3. Materials and Method

3.1. Materials and Image Preprocessing. In this work, we
used rs-fMRI data from the International Autism Brain
Imaging Data Exchange (ABIDE) repository (http://
preprocessed-connectomes-project.org/abide/). It consists

of 17 international sites containing 1112 subjects, including
539 subjects with ASD and 573 healthy controls (HCs). The
dataset is a publicly available online project that provides
imaging data from ASD and healthy control participants and
information on their phenotypes [35]. Considering the limited
amount of data at some sites, we selected 4 sites with a sample
size of more than 50 among the 17 sites for the experiment,
namely Leuven, NYU, UCLA, and UM. So we use the 4 imag-
ing sites with 408 subjects, including 228 ASD patients and
180 HCs. Table 1 shows the demographic information and
imaging parameters used in the four sites.

To improve the signal-noise ratio of rs-fMRI and to bet-
ter extract blood oxygen level-dependent (BOLD) time
series, in this work, we used rs-fMRI provided by the Prepro-
cessing Connectome Project Program (http://preprocessed-
connectomes-project.org/abide/) and preprocessed it using
the Configurable Pipeline for the Analysis of Connectomes
(C-PAC) [36]. The specific processes of this preprocessing
pipeline include slice-timing, motion correction, nuisance sig-
nal regression, temporal filtering, and spatial normalization of
Montreal Neurological Institute (MNI) templates. The brain
was then divided into 116 regions of interest (ROIs) using ana-
tomical automatic labeling (AAL) atlas [37]. Subsequently, for
each sample, the mean BOLD time series of a set of brain
regions were extracted, and the Pearson correlation coeffi-
cients between the individual ROIs were calculated, resulting
in a symmetric 116 × 116 matrix, which is the resting-state
functional connectivity matrix. To facilitate the use of this data
as input to the model, we obtained the functional connectivity
features by retaining only the elements on the upper triangle of
the functional connectivity matrix and converting the retained
triangles into a 6,670-dimensional feature vector for represent-
ing each subject. The construction process of the functional
connectivity features is shown in Figure 2(a).

3.2. Proposed Method. The overall framework of our pro-
posed MSFR is illustrated in Figure 2. It consists of two
major parts: (a) constructing the functional connectivity
matrix and extracting functional connectivity features for
each subject and (b) learning the entire hash retrieval model
and acquiring the retrieval database and query sample hash
codes. The training of the hash retrieval model consists of
two important processes: (1) reducing the marginal distribu-
tion discrepancy between source and target domain based on
optimal transport theory to alleviate the problem of data het-
erogeneity between different sites and (2) learning high-
quality hash functions using a hashing method with a global
similarity metric combined with a classification loss intro-
duced by a novel hash coding layer. More detailed descrip-
tions are given below.

3.2.1. Optimal Transport-Based Multisite fMRI Adaptation.

Given a dataset of N-labeled source domains ðXk
s , Yk

s Þ
N
k=1,

where Xk
s = fxski g

nsk
i=1 denotes the functional connectivity fea-

tures of all subjects and Yk
s = fyski g

nsk
i=1 is the category label

associated with the k-th source domain data, the unlabeled
target domain is represented as Xt = fXt

jgntj=1, where nt is

the number of target subjects. In this work, we use a
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traditional assumption in unsupervised multisource domain
adaptation, namely that the conditional probability distribu-
tion QsðYk

s jXk
s Þ =QtðYtjXtÞ, but the marginal probability

distribution PsðXk
s Þ ≠ PtðXtÞ [38].

Recently, Damodaran et al. [39] combined deep learning
with optimal transform- (OT-) based domain adaptation for
a classification task, by learning a new representation for the
source and target domains in the same distribution and pre-
serve the discriminative ability of the classifier. DeepJDOT
uses a deep convolutional neural network g to map the input
to a latent feature space and then uses a classifier f to map
the data in that space to a label space over the target domain.
By jointly optimizing the feature space and label space to
solve the coupling γ and the model g, f , DeepJDOT can
achieve good performance on the target domain.

Inspired by this, our work draws on DeepJDOT’s
approach but differs in that we consider only the marginal
distribution. This is because getting a robust hash function
is more important in our retrieval task than getting a robust
classification model. However, the alignment conditional
distribution in DeepJDOT supposes that the target domain
samples are predicted accurately enough, which requires a
more robust classifier, which is different from our task. So
on this basis, in each submodel, we embed the feature extrac-
tor gk into the optimization of the optimal transport cou-
pling γk between the marginal distributions pks and pt by
aligning the marginal distributions.

So the loss function for our domain adaptation compo-
nent between source domain k and target domain is defined
as follows:

Ldot = 〠
nsk

i=1
〠
nt

j=1
γkij gk xski

� �
− gk xtj

� ����
���
2
: ð1Þ

3.2.2. Central Similarity Metric-Based Hashing Learning.
While existing supervised hashing methods typically capture
data similarity only locally, we build on the central similarity
metric proposed by Yuan et al. [28] to capture global simi-
larity between data while using a novel hash coding layer
to introduce classification loss to accelerate the convergence
of the retrieval model.

Specifically, we define the hash centers as a set of points
C = fc1,⋯,cmg in the L-dimensional Hamming space, where

ci ∈ f0, 1gL. Note that the hash centers have sufficient dis-
tance in Hamming space. Similar samples should be clus-
tered into the same center, and different samples should be
clustered into different centers so that we can aggregate sim-
ilar samples together and separate dissimilar samples better.
In the L-dimensional Hamming space, the average pairwise
distance between hash centers satisfies:

1
T
〠
m

i≠j
DH ci, cj

� �
≥

l
2 , ð2Þ

where T denotes the number of different combinations of hash
centers ci and cj, m is the number of hash centers, and DH is
the Hamming distance. For single-label data, a corresponding
number of hash centers fc1,⋯,cqg are generated based on the
number of categories q. Specifically, each bit of the hash center
ci is sampled from the Bernoulli distribution Bern (0.5). After
that, each sample is assigned a hash center corresponding to its
category to obtain the semantic hash center C′ = fc1′ ,⋯, cN′ g,
where ci′ is the hash center of sample xi.

Maximizing the logarithm posterior of the hash codes,
the hashing learning objective can be obtained. Specifically,
given the semantic hash center C′, the logarithm maximum
a posteriori probability estimation of the hash code H = f
h1,⋯,hNg for training data can be obtained by maximizing
log PðC′jHÞPðHÞ.

where hi ∈ f0, 1gL, obtained by a hash function mapping
the data from the input space to the L-dimensional Ham-
ming space; PðHÞ is the a priori distribution of hash codes;
and PðC′jHÞ is the likelihood function modelled as the
Gibbs distribution. Then we obtain the central similarity loss
LCS for source domain k:

LCS =
1
L
〠
nsk

i

〠
l∈L

cki,l′ log hki,l + 1 − cki,l′
� �

log 1 − hki,lð Þ
� �

,

ð3Þ

where cki,l′ is the l-th bit of the hash center of the i-th sample
in the k-th source domain. It is worth noting that hki in the
training phase is not really a binary code. This is because the
binary hash code is implemented with a sign function
appended after the hash encoding layer, but since the use

Table 1: Demographic information and scanning parameters of four image sites in the ABIDE database. Ages are reported in terms of
mean ± standard deviation; M/F: male/female; TR: time of repetition; TE: echo time.

Site
Healthy controls

Autism Spectrum
disorder Scanner Voxel size (mm)

Flip angle
(deg)

TR
(ms)

TE
(ms)

Bandwidth
(HZ/Px)

M/F Age M/F Age

Leuven 24/8 18:80 ± 9:00 21/4 13:10 ± 4:79 Philips (Intera) 3:59 × 3:59 × 4 90 — 33 —

NYU 79/14 16:49 ± 7:68 66/5 17:59 ± 7:84 Siemens Magnetom
(Allegra)

3 × 3 × 4 90 2000 15 3906

UCLA 31/7 14:65 ± 4:97 28/8 16:27 ± 6:48 Siemens Magnetom
(Trio Trim)

3 × 3 × 4 90 3000 28 2442

UM 56/9 17:35 ± 7:12 43/5 17:05 ± 8:36 GE (Signa) 3:438 × 3:438 × 3 90 2000 30 —
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of the sign function causes the gradient to vanish, this can
make the optimization NP-hard. A common practice is to
use the tanh function instead of the discrete constraint of
the sign function. However, the use of a relaxation scheme
generates quantization errors, so the bimodal Laplace prior
proposed in deep hashing network for efficient similarity
retrieval (DHN) [40] is introduced here for quantization,
and since LQ is a nonsmooth function and it is difficult to
calculate the derivative, we use the smooth function cosh
to replace it. The quantization loss LQ is defined as

LQ = 〠
nsk

i

〠
L

l=1
logcosh 2hki,l − 1

�� �� − 1
� �

: ð4Þ

The hashing method based on the central similarity met-
ric will lead to quantization error, so we introduce a novel
hash coding layer in Greedy Hash [31] and utilize the classi-
fication loss to assist in learning a better hash code. Specifi-
cally, the sign function (i.e., bki = sign ðhkiÞ) is used strictly
for the output of the hash coding layer in forward propagation,
while the gradient is transmitted directly to the previous layer
during backward propagation, effectively preventing the
gradient from vanishing. Thus, the classification loss using
cross-entropy in source domain k can be defined as

LCLS = 〠
nsk

i=1
LCE yski , f k bkið Þ

� �
, ð5Þ

where LCE is the cross-entropy and f k is the classifier. We
define the overall loss function as

L total = αLdot +LCS +LQ + βLCLS: ð6Þ

α and β are parameters that control the contribution of
OT domain adaptation loss and classification loss,
respectively.

3.2.3. Alternating Optimization Algorithm. In the training
phase, we randomly sample a batch nb of samples in the tar-
get domain and one of the N source domains and assign a
submodel to that source domain. Here, each submodel con-
sists of a feature extractor gk, a hash coding layer hlk, and a
classification layer f k. The following optimization is then
performed:

Step A: by fixing the parameters of gk in the submodel,
this domain adaptation part becomes a standard OT prob-
lem, and the coupling γk can be obtained by optimizing
Equation (7) with the network simplex flow algorithm:

min
γk∈

Q
ps,ptð Þ

〠
nb

i,j=1
γkij gk xski

� �
− gk xtj

� ����
���
2

ð7Þ

Step B: we set θ to denote all parameters of model to be
optimized. With a fixed γk obtained in the previous step, the
submodel ðgk, hlk, f kÞ can be updated using stochastic gradi-
ent descent (SGD) by objective function:

min
θ

α 〠
nb

i,j=1
γkij gk xski

� �
− gk xtj

� ����
���
2

+ 1
L
〠
nb

i=1
cki,l′ log hki,l + 1 − cki,l′

� �
log 1 − hki,lð Þ

� �

+ 〠
nb

i=1
logcosh 2hki,l − 1

�� �� − 1
� �

+ β〠
nb

i=1
LCE yski , f k bkið Þ

� �

ð8Þ

3.2.4. Implementation. Our proposed MSFR model is imple-
mented using the Python based on PyTorch. A correspond-
ing number of submodules are assigned according to the
number of source domains. Each submodel has exactly the
same structure, including a feature extractor gk, a hash cod-
ing layer hlk, and a classification layer f k. Here, gk consists of
two fully connected layers containing 1,024 and 128 neu-
rons, respectively, each followed by a ReLU activation func-
tion. hlk consists of a fully connected layer, and the number
of neurons is determined by the length of the hash code (we
set four sets of hash code lengths of 24 bits, 32 bits, 48 bits,
and 64 bits), followed by a tanh function or a sign function
according to the needs of the task. Specifically, the hash cod-
ing layer hlk is followed by the tanh activation function when
learning the global similarity of samples using the central
similarity metric, and the hash coding layer hlk is followed
by the sign function when training the classifier directly
using binary hash codes. Note that the sign function is only
used in forward propagation, and the gradient is transmitted
directly to the previous layer during backward propagation
to prevent the gradient from vanishing. f k consists of a fully
connected layer of two neurons and a softmax layer. We set
the batch size to 30, used the SGD optimizer and set the
learning rate to 0:002, and fixed the hyperparameters α to
0:001 and β to 4.

4. Experiments

4.1. Experimental Setup. We used data from four sites in the
ABIDE database, Leuven, NYU, UCLA, and UM, to evaluate
the effectiveness of our method. In the training stage, we
take turns selecting one site as the target domain, and the
remaining three sites are used as the source domain. The test
stage retrieval database consists of hash codes of all source
domain data, and the query samples consist of hash codes
of target domain data.

Following previous work [30, 41, 42], we use the preci-
sion recall curve (PR curve), precision curves with respect
to different numbers of top returned samples, and mean
average precision (mAP) as evaluation metrics to measure
the retrieval effectiveness. The mAP is the widely used met-
ric to measure the accuracy of the Hamming ranking proto-
col. The mAP is computed as the mean value of the average
precision (AP) for all queries, and AP is computed as
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AP = ∑T
t=1P tð Þδ tð Þ
∑T

t=1δ tð Þ
, ð9Þ

where T is the top-T search results returned and PðtÞ
denotes the precision of the t-th result returned. δðtÞ = 1
means that the t-th result queried is correct, and vice versa
δðtÞ = 0. Here, the mAP value is calculated based on the first
half returned neighbors for source domain sites. Namely,
assuming that the number of samples in the database is N ,
then top − T =N/2.

4.2. Competing Methods. In our experiments, we compare
our MSFR with the following 12 methods, including six deep
hash methods and four traditional hash methods, as well as
deep and traditional domain adaptation hash methods. The
following is a brief description of each comparison method.

(1) DHN [40] used pairwise cross-entropy losses to
ensure similarity learning between samples and
quantization losses to control the quality of hash
learning. To eliminate errors due to inner product
instead of the Hamming distance, the authors used
bimodal Laplacian prior. With the value f−1, 1g,
the prior probability density is the largest, which
means the hash function can learn the hash code
of f−1, 1g with maximum probability. ε is a diver-
sity parameter of the bimodal Laplacian prior, and
we use the default value of 10 for ε

(2) HashNet [43] improved on DHN in two main
ways, firstly by balancing positive and negative
sample pairs and secondly by using different β in
the relaxation quantization phase so that the output
keeps approaching 1, i.e., limβ⟶∞ tanh ðβxÞ

(3) LCDSH [44] pointed out that directly reducing the
quantization error would change the feature distri-
bution of the neural network which in turn changes
the similarity between the query and retrieved
images, so the authors proposed a locally con-
strained deep supervised hashing algorithm to solve
this problem. Since λ is a trade-off parameter that
balances the discriminability and the locality con-
strain, we use the default value of 3 for λ

(4) DCH [30] also used loss of control similarity and
loss of control quantization error, differing by pro-
posing the use of a sharply varying Cauchy distri-
bution to convert distance into similarity, thus
making the learned hash codes more discrimina-
tive. γ is an important Cauchy distribution scale
parameter, used to control the balance between pre-
cision and recall, and we use the default value of 20
for γ

(5) QSMIH [45] uses the quadratic mutual information
(QMI) in information-theoretic measures to learn
hash codes. In order to meet the large-scale hash
retrieval and further improve the retrieval accuracy,
quadratic spherical mutual information (QSMI) is

proposed on this basis. Since α is a parameter to
force the learned hash code to be close to 1 or -1,
we use the default value of 0.01 for α

(6) DTSH [46] used a triple-label likelihood function to
learn hash codes, and maximizing the triple-label
likelihood can make the query samples more simi-
lar to the positive samples and more distinguishable
from the negative samples. Here, λ is a hyperpara-
meter to balance the negative log triplet likelihood
and the quantization error. And we use the default
value of 1 for λ

(7) TAH [42] is a deep domain adaptation hashing
algorithm that combines pairwise t-distribution
cross-entropy loss to learn concentrated hash code
and an adversarial network to align the data distri-
bution between the source and target domains.
Here, μ is the trade-off parameter between maxi-
mum A posterior loss and adversarial learning loss.
The penalty of adversarial networks μ is increased
from 0 to 1 gradually

(8) SH [47]. In this method, the process of encoding
image feature vectors by SH can be viewed as a
graph segmentation problem, where a relaxation
solution to the graph segmentation problem can
be provided with the help of the analysis of the
eigenvalues and feature vectors of the Laplacian
matrix of similar graphs

(9) ITQ [41]. In this method, the data in the original
space is first downscaled using PCA, and then the
data points in this dataset are mapped onto the ver-
tices of a binary hypercube such that the corre-
sponding quantization error is minimized,
resulting in an excellent binary encoding for this
dataset

(10) LFH [48] proposed a latent factor-based model that
uses the Hamming distance to model the similarity
between pairs of samples. To solve the time-
consuming problem of finding hyperparameters in
different datasets, specialized hyperparameters are
automatically assigned based on the number of
samples in the dataset and the number of similarity
labels

(11) SDH [49] proposed a method to directly learn
binary hash codes without relaxation, and the
learning objective is to generate the best hash code
for linear classification. Specifically, the training
data is first mapped into the Hamming space, and
then the transformed data is classified in this space.
One of the key steps of the algorithm is to utilize
discrete cyclic coordinate descent (DCC) to gener-
ate the hash code bit by bit, which solves the NP-
hard binary optimization problem. Here, λ is the
regularization parameter, and we use the default
value of 1 for λ
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(12) GTH [50] is a traditional unsupervised domain
adaptation hashing algorithm, which starts from
the perspective of the hash projection errors in the
source and target domains and seeks the maximum
likelihood estimate of the errors to reduce the
domain discrepancy. At the same time, the hash
projections of the source and target domains are
optimized iteratively, with the two influencing each
other to facilitate the final optimal state

The first seven competing methods (DHN, HashNet,
LCDSH, DCH, QSMIH, DTSH, and TAH) are deep hashing
approaches, and three methods (SH, ITQ, and GTH) are
unsupervised traditional hashing methods, while two
methods (LFH, and SDH) are supervised traditional hashing
methods. In all deep hashing methods, to match the input to
our data and to ensure fairness, we replace the convolutional
neural network with one that is consistent with the structure
of gk, and the hash encoding layer is consistent with the set-
ting of hlk. All deep hash retrieval methods are supervised
learning with labels, and the models all consist of two parts:
the image feature extraction part and the hash coding layer
that generates the hash codes.

The use of data (including preprocessing and functional
connectivity feature extraction) in all comparison methods is
consistent with our MSFR. In the training phase, we treat
one site as the test set, and the remaining three sites are com-
bined to be used as the training set. In the test phase, the
retrieval database consists of hash codes of all source domain
data, and the query samples consist of hash codes of the tar-
get domain data. We use the default values of hyperpara-
meters in their corresponding articles for all comparison
methods.

4.3. Results on ABIDE with Multisite rs-fMRI Data. We eval-
uate our MSFR method using data from four real sites in the
ABIDE database, Leuven, NYU, UCLA, and UM, and com-
pare it with other state-of-the-art hash retrieval methods. In
all experiments, data from each site is used as target domain
(test set) in turn, and data from the remaining sites are used
as source domains (training set). The hash codes of the tar-
get domain data are used as the query set, and the hash
codes of all source domain data are used as the retrieval
database for test, with the aim of retrieving samples similar
to the query samples in the database. The comparison
methods include seven deep hashing algorithms (DHN,
HashNet, LCDSH, DCH, QSMIH, DTSH, and TAH) and
five traditional hashing algorithms (SH, ITQ, LFH, SDH,
and GTH). The experimental results are shown in Table 2
and Figure 3.

As shown in Table 2, our method has the best mAP
values for different bits on almost all target domain sites.
Taking the hash code length of 48 bits as an example, when
Leuven is used as the target domain, our MSFR (74.56%) is
7.78% higher than the best performance achieved by QSMIH
(66.78%). When NYU is used as the target domain, our
MSFR (69.25%) is 3.85% higher than the best performance
of DCH (65.40%). Our MSFR (75.42%) outperforms the best
comparison method (i.e., DCH with an mAP of 74.23%) by

1.19% when UCLA is used as the target domain, and our
MSFR (75.45%) is 6.84% higher than the best performance
yielded by TAH (68.61%) when UM is used as the target
domain. This shows that our MSFR can be effective for
cross-site retrieval. Furthermore, we can see that TAH has
an advantage over other deep comparison methods on
almost all target domain sites, especially when the target
domain site is UM. This suggests that a proper domain
adaptation method can be helpful for multisite fMRI
retrieval.

Figure 3 shows that our method achieves the best aver-
age results with different hash code lengths when each of
the four sites is used as a target domain for retrieval of other
source domains. Specifically, compared to the deep hashing
methods, our MSFR has a higher average mAP for different
hash code lengths when retrieved as a query set against the
source domain database at each of the four sites. Compared
to the traditional hash retrieval methods, the average mAP
of our MSFR is higher for different hash code lengths for
each of the four sites as query sets retrieved from the source
domain database. In addition, we can notice that the tradi-
tional hashing methods are generally less effective than deep
hashing methods. The possible reason is that shallow hashing
models may be not able to learn discriminative features and
compact hash codes, while deep hashing methods can learn
fMRI features and hash codes in an end-to-end manner.

In Figures 4 and 5, we further show the PR curves, recall
curves, and precision curves (from left to right) with a hash
code length of 48 bits with NYU and UM as the target
domain, respectively, for retrieving the source domain sam-
ples and returning top n samples based on the Hamming
distance ranking. Figures 4 and 5 show that our MSFR
achieves almost best results in terms of PR curve (a), recall
curve (b), and precision curve (c) compared to all other
comparative methods. Specifically, from the PR curves in
Figures 4(a) and 5(a), we can observe that MSFR basically
achieves the highest precision at all recall levels. Besides,
MSFR achieves higher precision at lower recall than other
methods, which is important for accuracy-oriented medical
image retrieval systems. Precision curves with respect to dif-
ferent numbers of top returned samples are shown in
Figures 4(c) and 5(c). As can be seen, our MSFR achieves
almost the best precision, especially when the number of
samples retrieved is within 100. This indicates that our
MSFR achieves more precise retrieval. And in medical image
retrieval tasks, users tend to pay more attention to the top
ranked samples retrieved, and MSFR has significantly better
accuracy than other methods when the number of samples
returned is small.

5. Discussion

5.1. Ablation Study. We introduced three variants (denoted
as MSFR-1, MSFR-2, and MSFR-3) of MSFR for ablation
experiments. Specifically, MSFR-1 denotes a hash approach
that retains only the central similarity metric, MSFR-2
denotes a hash approach that retains only the central simi-
larity metric and classification loss, and MSFR-3 denotes a
hash approach that retains only the central similarity metric
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and OT domain adaptation approach. In Table 3, we report
the mAP results achieved by the MSFR and its three variants
with different hash code lengths when the data from the four
sites of the ABIDE database were retrieved. As shown in
Table 3, we can observe that MSFR generally outperformed
the other three variants, which also implies that our optimal
transport domain adaptation loss and classification loss both
contribute to the model performance. Specifically, the per-
formance of MSFR-2 is generally higher than MSFR-1 when
the target domain is Leuven, NYU, and UCLA, and there is a
sharp drop in performance only when UM is the target
domain and the hash code length is 48 bits and 64 bits.
And the results of MSFR-1 are 2.23%, 10.42%, and 6.75%
lower than MSFR-2 at 24 bits, 48 bits, and 64 bits, respec-
tively, probably due to the large data heterogeneity. When
we deal with the data heterogeneity problem for MSFR-1
and MSFR-2, that is, MSFR-3 and MSFR, we find that the

results for MSFR-1 and MSFR-2 are significantly improved
in all target domains. Besides, we can observe that MSFR-3
and MSFR usually outperformMSFR-1 and MSFR-2 in most
cases, implying that OT-based domain adaptation helps
improve the retrieval performance. With UM as the target
domain, the MSFR result is 5.18% higher than MSFR-3 for
a hash code length of 48 bits, and the gap between MSFR
and MSFR-3 is reduced to 1.56% and 4.78% for hash code
lengths of 24 bits and 64 bits, respectively.

We also conducted experiments on single-source
domain, with the UM site as the target domain and the hash
code length set to 48 bits. The experimental results are
shown in Figure 6, from which we can observe that our
approach achieves the best overall results. By comparing
MSFR-2 and MSFR, it can be observed that domain adapta-
tion for both source and target domains can significantly
improve the retrieval results, which further illustrates the
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Figure 3: Average mAP results of different methods with different hash code lengths, where each of the four sites, Leuven, NYU, UCLA, and
UM, is used as a query set for retrieval from the source domain data.
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Figure 4: PR curves, recall curves, and precision curves (from left to right) for different methods that retrieve the source domain samples
and return top n samples based on Hamming distance ranking when the target domain is NYU and the hash code length is 48 bits.
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effectiveness of our domain adaptation method in alleviating
the data heterogeneity between different sites. Thus, the pro-
posed fMRI retrieval framework is expected to be applied to
multisource domains to reduce data heterogeneity across
sites and improve retrieval performance.

5.2. Parameter Analysis. We further analyzed the influence
of two hyperparameters in the proposed method. Figure 7
reports the mAP results of our method using different values
of the hyperparameter α (for the domain adaptation compo-
nent) and the hyperparameter β (for the classification loss).

Table 3: The mAP results of three variants of MSFR with different hash code lengths when each of the four sites of the ABIDE database is
treated as target domain (test and query data) for retrieval.

2∗method Leuven (target domain) NYU (target domain) UCLA (target domain) UM (target domain)
24 bits 32 bits 48 bits 64 bits 24 bits 32 bits 48 bits 64 bits 24 bits 32 bits 48 bits 64 bits 24 bits 32 bits 48 bits 64 bits

MSFR-1 0.6644 0.6422 0.6338 0.6678 0.6156 0.6356 0.6144 0.6282 0.6898 0.6588 0.7035 0.6802 0.6191 0.5915 0.6639 0.6231

MSFR-2 0.6524 0.6850 0.6807 0.6678 0.6448 0.6372 0.6318 0.6180 0.7139 0.6990 0.6879 0.6598 0.5968 0.5940 0.5597 0.5556

MSFR-3 0.7323 0.6746 0.7011 0.6395 0.6793 0.6974 0.7042 0.6505 0.7028 0.6868 0.7385 0.7524 0.7080 0.7544 0.7027 0.7687

MSFR (ours) 0.7027 0.7188 0.7456 0.7054 0.6930 0.6837 0.6925 0.6880 0.7684 0.7269 0.7542 0.7236 0.6924 0.7220 0.7545 0.7209
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Figure 5: PR curves, recall curves, and precision curves (from left to right) for different methods that retrieve the source domain samples
and return top n samples based on Hamming distance ranking when the target domain is UM and the hash code length is 48 bits.
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Figure 6: Single-source domain retrieval mAP for different methods with hash code length of 48, with UM as the target domain (query set)
and Leuven, NYU, and UCLA as the source domains (retrieval database), respectively. Experimental results for MSFR and MSFR-2 are
obtained from the submodels corresponding to the source domains.
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Figure 7(a) shows that our MSFR can yield stable results
when α ∈ ½10−4, 10−1� but cannot generate good results when
α > 1. It can be seen from Figure 7(b) that the results of
MSFR fluctuate within a small range of ½0:70,0:75� with dif-
ferent values of β, suggesting that our method is not very
sensitive to the hyperparameter β.

5.3. Limitations and Future Work. This work still has some
limitations to be addressed in the future. First, to address
the data heterogeneity of multiple source and target
domains, we designed a multiway parallel framework based
on the number of source domains. This means that the
larger the number of source domains, the larger the number
of submodels, which may ultimately lead to higher overall
complexity and training costs. Therefore, a unified model
needs to be investigated in the future to solve the problem
of high computational cost under a large number of source
domains. Second, our model only considers data heteroge-
neity in the source and target domains, ignoring the fact that
there is also data heterogeneity between different source
domains. It is interesting to employ multisource domain
adaptation strategies to further promote the performance
of our method. Third, there is insufficient exploitation of
the constructed brain functional connectivity data. In gen-
eral, each brain network contains not only node features
but also topological information between different nodes,
and the high-level topological information of brain networks
cannot be captured using traditional neural networks alone.
As graph convolutional networks (GCN) can automatically
learn node features and topological information between
nodes, we will design GCN-based models to fully exploit
the information in fMRI data, which will also be our future
work.

6. Conclusion

In this paper, we proposed a multisite fMRI retrieval
(MSFR) method that uses a deep hashing approach and a
domain adaptation strategy to mitigate multisite data het-
erogeneity for accurate fMRI search. For a given target
domain site and multiple source domain sites, our MSFR
used a deep neural network to map the source and target
domain data into the latent feature space and minimize their
Wasserstein distance to reduce their distribution differences.

We then used the source domain data to learn high-quality
hash code through a global similarity metric, thereby
improving the performance of cross-site fMRI retrieval.
We validated the MSFR method on a real ASD multisite
dataset, with results demonstrating its effectiveness in rs-
fMRI retrieval.

Data Availability

The dataset used in this work can be found on the public
Autism Brain Imaging Data Exchange (ABIDE) website
(http://preprocessed-connectomes-project.org/abide/). The
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