
Research Article
An Adaptive Task Migration Scheduling Approach for Edge-Cloud
Collaborative Inference

Boyin Zhang,1 Yinggang Li,1 Shigeng Zhang ,1,2 Yue Zhang,3 and Bing Zhu1

1School of Computer Science and Engineering, Central South University, China
2State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences,
Beijing 100093, China
3Hunan Provincial Key Laboratory of Network Investigational Technology, Hunan Police Academy, China

Correspondence should be addressed to Shigeng Zhang; sgzhang@csu.edu.cn

Received 29 September 2021; Accepted 25 November 2021; Published 17 January 2022

Academic Editor: Pengfei Wang

Copyright © 2022 Boyin Zhang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Deep Neural Network (DNN) models have achieved excellent performance in many inference tasks and have been widely used in
many intelligent applications. However, DNN models often require a lot of computational resources to complete the inference
tasks, which hinders the deployment of such models to resource-constrained edge devices. In order to extend the application
scenarios of DNN models, the edge-cloud collaborative inference methods, represented by model partition, have attracted
much research attention in recent years. In scenarios that have multiple edge devices deployed, the edge-cloud collaborative
inference method requires partial migration of tasks, but traditional scheduling methods only migrate tasks at the task level. In
this paper, we propose two task scheduling methods, which can solve the problem of partial migration of tasks in multiedge
scenarios. The first scheduling method is based on the optimal cutting of a single DNN. The cutting positions of all the models
are the same, regardless of the influence of external factors. This method is suitable for chain and directed acyclic graph-
(DAG-) type DNNs. The second scheduling method takes external factors such as congestion and queuing delay at the cloud
side into consideration, which dynamically selects the cutting position of each DNN to optimize the overall delay and thus is
applicable to chain DNN models. The experimental results show that, compared with the baseline method, our proposed
scheduling method can reduce the delay by up to 6.48x.

1. Introduction

With the rapid development of Deep Neural Network
(DNN), edge intelligence has been widely applied in the
Internet of Things (IoT) scenarios in recent years [1, 2].
The growing proliferation of IoT devices with high-quality
sensors will result in massive data streaming to the edge or
the cloud. Edge devices deployed generally have some
constraints including energy and computational capacity
[3]. Thus, process data and inference only at edge ends will
cause high delays that cannot meet the requirements of most
applications. Cloud servers have high capacities of computa-
tion; however, transferring all data to the cloud will suffer
double network delay that is intolerant in bad network con-
ditions. Moreover, transferring whole data to the cloud takes
the risk of privacy leakage [4]. Edge-cloud collaborative

inference, which assigns tasks between the edge and the
cloud on the basis of constraints in applications, has become
a research focus nowadays.

In the edge computing environment, there are usually
multiple edge devices collecting data at the same time, but
the number of corresponding cloud servers is very small
[5]. If a lot of tasks are generated at the edge at the same
time, how to better schedule these tasks to reduce the overall
delay is a problem we need to study.

The edge-cloud collaborative inference can adaptively
cut the DNN according to the network bandwidth without
changing the original model parameters of the DNN [6],
so as to minimize the delay or maximize the throughput.
For the deployment of a single edge, determine the cutting
position by network bandwidth is obviously the optimal
solution. However, in the real edge environment, there are

Hindawi
Wireless Communications and Mobile Computing
Volume 2022, Article ID 8804530, 12 pages
https://doi.org/10.1155/2022/8804530

https://orcid.org/0000-0001-5351-7239
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/8804530


often multiple edge devices generating tasks. Due to a large
number of edge tasks, the tasks that the cloud can process
at the same time are limited. Therefore, how to schedule
these tasks is very important. In this paper, we design a sys-
tem that can perform task scheduling in multiple edge
scenarios.

For a single-edge system, we determine how the DNN is
cut based on the current network status and the fixed config-
uration parameters of the system (such as the execution time
of the DNN on the edge and the cloud), through the goal of
minimizing delay or maximizing throughput, find the
optimal cutting point. However, in a multiedge scenario,
the cutting point for minimizing the delay for a single task
is not necessarily optimal for the entire system. Due to the
limited processing capacity of the cloud, when the number
of tasks generated at the edge is much greater than the
processing capacity of the cloud, many tasks will face the
problem of blocking. When the edge end completes its
own inference task, it transmits the intermediate process-
ing result to the cloud, and the cloud cannot process it
in time, which causes the task to be blocked. Although
the execution time of each task at the edge is optimal,
the waiting time in the cloud increases the processing time
of the entire system.

In this scenario, minimizing the delay of each DNN may
not be the optimal solution for the entire system. If cloud
task congestion is detected, the position of the DNN is
appropriately adjusted so that the task it is waiting for is
executed at the edge. Although the delay cannot be mini-
mized for a single DNN, it will make the overall delay of
the system less. To our knowledge, most of the scheduling
schemes for the DNN model at present are scheduling the
entire DNN model. Due to the dependency and complexity
of the edge-cloud collaborative system scheduling problem,
few researches focus on its scheduling strategy. In [7], the
author studied the scheduling system in the scenario of
multiple IoT devices; it suggested that each type of IoT
device has different computing capabilities and designed an
online scheduling (Online) system. Online can decide
whether DNN is deployed locally or in the cloud, and it
can also adjust the scheduling sequence. The author com-
pares Online with first-come, first-served (FIFO) and low-
bandwidth first deployment (LBF) strategies. Compared
with the other two methods, Online can improve the overall
quality of service. In [8], the author proposed a migration
scheduling problem for DNN tasks in edge environment,
gave the formal definition and evaluation criteria of the
problem, and proposed a greedy algorithm and a genetic
algorithm for the migration. The problem-solving is approx-
imately optimal, which can effectively solve the migration
and deployment problems of DNN.

In this paper, we designed two task scheduling strategies
for edge-cloud collaborative inference. The first strategy
finds the optimal cutting position of DNN models for every
single task which is capable for DNN models with DAG and
chain topologies. The second strategy decides cutting posi-
tion on the basis of network condition to reach global
optimal for all tasks, which is capable for DNN models with
chain topology.

The remainder of this paper is organized as follows. In
Section 2, we conduct a brief literature review of related
studies. In Section 3, we define the problem to be
addressed. In Section 4, we introduce our approach in
detail. Section 5 shows the results of the experiments.
We conclude in Section 6.

2. Related Work

Much work has been done to accelerate the inference of DNN
models in IoT scenarios. In order to reduce the delay of infer-
ence at edge devices, the main research interests are divided
into three aspects: model compression [9], distributed model
deployment [10], and computation offloading [11].

Compression of DNN models uses technics such as
prune [12], quantization [13], and knowledge distillation
[14] to reduce the computation operations in model infer-
ence without significant accuracy reduction [15]. Although
model compression speed up the inference on edge devices
significantly, the compression itself needs lots of computa-
tion to complete and the inference of a compressed model
may need specific hardware to complete. For the application
environments that contain heterogeneous architecture edge
devices, this method is not competent. There are multiple
studies about process DNN models on resource-constrained
devices effectively [16, 17]. To inference DNN models effec-
tively on resource-constrained devices, researchers design
the hardware architecture deliberately [18] and hardware-
accelerating methods usually combined with model com-
pression methods which can improve the efficiency of
specific model inference significantly [19]. However, these
methods are not universal to various applications compared
to other methods. Edge devices in real application scenarios
are generally heterogeneous in architectures; hardware accel-
erating requires specific computation units or ICs to execute
the model effectively. Distributed deployment of DNN
models can make full use of the computing resources of
devices [10] and is capable for large-scale applications. How-
ever, for edge intelligence environments, the number of
devices may vary dynamically; distributed deployment can-
not handle this well. Moreover, distributed deployment on
multiple edge devices may cause network congestion, espe-
cially under bad network conditions.

Edge-cloud collaborative inference has unique advan-
tages over the first two technologies; it does not change the
original model compared with lightweight model and distrib-
uted network deployment. Edge-cloud collaborative infer-
ence has high scalability and can be combined with the
other two technologies. For edge-cloud collaborative infer-
ence, a lot of previous work has been done to achieve the
purpose of reducing overall inference delay [8, 20–23] or to
satisfy resource constraints [24–27] (bandwidth, power
consumption, etc.) or to protect privacy [28]. Applying tradi-
tional artificial intelligence technology to edge computing,
which is usually resource-constrained, researchers’ ideas are
mainly divided into the following three kinds: DNN model
selection depending on sample [29], design lightweight
DNN architectures [30] or DNN model compression [15],

2 Wireless Communications and Mobile Computing



and edge-cloud collaborative inference by cutting DNN
models and scheduling tasks between edge and cloud [25].

In [29], the authors apply an autoencoder to compress
the data transmitted to cloud platforms. Kang et al. [6] first
proposed Neurosurgeon, a method that partitions the DNN
model to execute on end devices and cloud platforms simul-
taneously to improve the efficiency of the model inference. It
cuts a DNN into two parts and executes on a mobile device
and the cloud platform, respectively, to accelerate the
inference of the model. However, Neurosurgeon can only
partition chain-like DNNs; it cannot handle DAG structure
DNNs, which limits its application. What is more, Neuro-
surgeon does not have enough accuracy on execution time
prediction because of the linear regression method it used.
This leads to a nonoptimal partition of the model. Teerapit-
tayanon et al. proposed DDNN [31] to speed up the latency
of inference of a DNN model over distributed computing
hierarchies, consisting of the cloud, the edge (fog), and end
devices. However, DDNN is designed for BranchyNet [32]
and is hard to be extended to other types of DNN models.
In [33], the authors presented a DNN as an encoding pipe-
line that encodes the feature space and transmits it to the
clouds. It improves the energy efficiency and throughput of
the model inference. Edgent [21] exploits two knobs: DNN
partitioning and DNN right-sizing to find the optimal cut-
ting point in a dynamic network environment. Hu et al.
[22] proposed DADS, a partition scheme that optimally cut
the DNN with DAG topology under different network con-
ditions. However, it fails to reduce the overall delay because
of the high time complexity of the algorithm. This method
cannot guarantee real-time application. In reference [34],
the authors studied the mobile Web AR scenario for edge-
cloud collaboration and proposed a fine-grained adaptive
DNN partition mechanism. In [35], the authors studied the
edge-cloud inference of RNN models. It can decide whether
to offload to clouds depending on network condition and
input size. Wang et al. [36] proposed a task scheduling algo-
rithm for tasks that need to be transferred to the cloud based
on the catastrophic genetic algorithm (CGA) to satisfy the
latency constraint. In [37], a novel DNN architecture was
design for edge-cloud collaborative inference. However,
this method is difficult to apply to currently running IoT
applications. In [38], Auto-Split was proposed as an indus-
try solution of DNN splitting for edge-cloud collaborative
inference.

3. Problem Definition

First, we consider the chain topology DNN. For a given
chain DNN model, we construct it as a chain L = <V , E > .
Each vertex vi ∈ V corresponds to one layer in the model,
and <vi−1, vi > ∈E corresponds to the two layers of model
M with data transmission. Teðj, iÞ and Tcðj, iÞ represent
the delays from the j-th layer to the i-th layer at the edge
and the cloud, respectively. For a single DNN, after using
the edge-cloud collaborative inference strategy, if the cutting
is performed on the i-th layer of the DNN, the first to i-th
layers will be deployed on the edge, and the i + 1th~Nth
layer will be deployed in the cloud. The output di of ver-

tex vi will be transmitted to the cloud through the net-
work. When the bandwidth is B, the total inference delay is
Teð1, iÞ + di/B + Tcði + 1,NÞ. The best cutting layer of a
single DNN is the point where the total inference delay is
minimized. The optimization objective of a single DNN is

Tmin = argmin Te 1, ið Þ + di
B

+ Tc i + 1,Nð Þ
� �

i = 0, 2,⋯,Nð Þ:

ð1Þ

For chain DNN, we apply an iterative algorithm to enu-
merate the inference delay required by the DNN segmented
in each layer and take the minimum value. In the above equa-
tion, i = 0means that the entire DNN is deployed at the edge,
and i =N represents that the entire DNN is deployed in the
cloud. When multiple edge devices generate tasks at the same
time, at this time, each DNN has inference delay Te, trans-
mission delay Tt , and cloud inference delay Tc at the edge.
Since the cloud is not always able to process the tasks sent
from the edge in time, the waiting delay Tw of each task needs
to be considered. At this time, the goal of optimization has
changed from minimizing the delay of a single DNN to
minimizing the overall delay of the system.

As shown in Figure 1, there are E edge servers and one
cloud server in the multiedge scenario. Assume that E edge
servers have a total of M DNN inference tasks, and all tasks
use the same type of DNN for inference.

4. Method Design

In this section, we designed two scheduling strategies to
solve the problem of partial migration of tasks in multiedge
scenarios. The first strategy named Single Cutting treats each
DNN as the same; this strategy is based on finding the opti-
mal cutting position of a single DNN. The second strategy
named Scheduling with Queuing takes other external factors
into account; it adjusts the cutting position dynamic accord-
ing to the network condition.

4.1. Single Cutting. For the scheduling strategy for each
DNN inference task, we use the strategy that minimizes
the delay of a single DNN for scheduling. Since we are using
the same type of DNN, for each task, when the bandwidth is
constant at B, Tfming is the same. We use an iterative algo-
rithm to find the edge processing time te and data transmis-
sion time at this time tt , cloud processing time tc, and
optimal cutting point vbest.

We use FIFO to schedule all tasks. When there are tasks
in task set S, the scheduler will not terminate. Each edge end
e maintains a variable, which represents the earliest time at
which the edge end can process the next task edgetimee. In
each poll, if there is still a task that has not been processed
on the edge end e, we will update the current edgetimee to
the maximum value between the arrival time of the current
task and edgetimee, and finally, add the current task process-
ing time te.

After updating the time at which all edges can process
the next task, we select the edge that can be processed

3Wireless Communications and Mobile Computing



earliest among them. Next, we check whether the task queue
C in the cloud is full. If the task queue is not full, we transfer
the intermediate variables of the current task to the cloud
task queue. Otherwise, the current task will enter a blocking
state, that is, after waiting for the cloud to process the first
task of the team, we will transfer the current task to the
cloud for processing. After the cloud finishes processing a
task, it updates the processing time of the cloud and wakes
up the blocked task to start the next poll. The whole process
is shown in Algorithm 1.

4.2. Scheduling with Queuing. Scheduling strategy 1 uses the
optimal division of a single DNN for each task, but it is not
necessarily the optimal solution globally, because no matter
whether the cloud is currently congested or not, each DNN
will choose the optimal cutting point under noncongested
conditions for segmentation. It may leave the edge end in
an idle state, and the cloud has been waiting for tasks, which
will cause the overall time to become longer.

Suppose the current DNN inference task to be processed
is task, and the start time at which the edge end can process
it is tstart. The task is divided according to the optimal
division of a single DNN, the time to reach the cloud is
tstart + te + tt , and the time when the previous task pretask
is executed is tend. If tstart + te + tt ≥ tend, then there will be
no waiting time for the DNN to reach the cloud. At this
time, vbest is cut into the optimal solution of the task. If
tstart + te + tt < tend, after the task arrives in the cloud, the
waiting time is twait = tend − tstart − te − tt . At this time, a
new cutting point can be selected after vbest to divide the task.
In this case, you can select a new cutting point after vbest to
divide the task. At the new cutting point, the edge end
processing time is te′, the data transmission time is tt′, the
cloud processing time is tc′, and the waiting time twait′ =
tend − tstart − te′− tt′. If twait′ < twait, then for the task, the
new cutting point is better than vbest, the waiting time will

be less, and because the new cutting point is after the optimal
cutting point, there will be fewer layers executed in the cloud.

However, when selecting a new cutting point, the execu-
tion time of the edge is te′> te, which causes the waiting time
of the next DNN task to be processed too long. This may
not be conducive to the overall delay reduction; we need
to take into account the waiting delay of the next task in
the edge device. Assume that the next task that needs to
be inferred at the current edge is nexttask. At the original
cutting point, we can get that the waiting time for nexttask
is tstart + te − arrivetimenexttask , then the overall waiting time
of the system is

twait + tstart + te − arrivetimenexttask: ð2Þ

arrivetimenexttask represents the arrival time of the next
task. Similarly, the overall waiting delay of the system at
the new cutting point is

twait′ + tstart + te′− arrivetimenexttask: ð3Þ

It is necessary to ensure that the overall delay of Equation
(3) is less than Equation (2), that is, twait − twait′ > te′− te. Based
on the above analysis, we design scheduling strategy 2, and
Algorithm 2 describes the process of scheduling strategy 2.

4.3. DAG-Type DNN Scheduling Method. In the above sec-
tions, we took the chain DNN as an example and proposed
two scheduling algorithms. The first method is that for each
DNN, we cut at the optimal cutting point of a single DNN
and then schedule. The second method is to consider the
waiting delay of the DNN in the cloud and find the cutting
point that can make the overall delay smaller on the basis
of the optimal cutting point of a single DNN to cut and then
perform scheduling.

The cutting point of each DNN of Single Cutting is
determined, so for DAG-type DNNs, we can modify the

Cloud
server

DNN model

Edge server 1

Edge Server 2 Edge server 3

Edge server n

DNN
model

DNN
model DNN

model

DNN
model

Figure 1: Model architecture in multiedge scenarios.

4 Wireless Communications and Mobile Computing



BestPartitionðL,N , BÞ function in Single Cutting to QDMP
algorithm. The Scheduling with Queuing method needs to
find the point that can make the waiting delay smaller by
enumerating the cutting points to shorten the overall delay
of the system. For the chain model, we can find the optimal
cutting point by enumerating the cutting points sequentially.
But for the DAG model, the optimal edge cut set often cor-
responds to a set of vertices and edges, and enumerating all
points and edges is an NP-hard problem. We cannot find a
better set of cut edges by enumerating vertices sequentially.
Therefore, in this article, we only discuss Single Cutting on
DAG-type DNNs.

5. Experimental Evaluation

5.1. Experimental Environment Settings. We use multiple
edge devices and a single cloud for scheduling simulation.
For the edge, we use 5 Raspberry Pi 3B platforms, which
are equipped with a 4-core ARM Cortex-A53@1.2GHz
processor and 1G RAM. For the cloud, we used a labo-
ratory server equipped with an 8-core Intel core i7-
9700 k@3.60GHz processor and a NVIDIA RTX 2080Ti
GPU. For the dataset, we use the self-acquired video dataset
to evaluate our proposed scheduling algorithms. Each edge

will sample the video frame, extract 5~15 frames of pictures
from the video every second, and use the DNN model for
inference. In the experiment, we considered six different
DNN models, including three chain DNN models and three
DAG-type DNN models. The three chain models are Alex-
Net, Tiny-YOLO, and DarkNet19, respectively. The three
DAG models are AlexNet-Parallel, ResNet-18, and GoogLe-
Net. We evaluated the edge-only method, the cloud-only
method, Single Cutting method, and Scheduling with
Queuing method.

5.2. Inference Delay under 3G and 4G Networks. We first
compare the inference delays of different methods in
different network states. We use 3G and 4G as the default
transmission technology, and the theoretical maximum
uplink bandwidth is 1.1Mbps and 5.85Mbps, respectively.
We use 5 Raspberry Pi 3B, each Raspberry Pi 3B will
input a video stream, each edge end samples 30 frames
of pictures in the video, and the cloud cache queue size
is 20. In Table 1, we list the total inference delay of the
system under different scheduling methods using different
DNNs. For chain DNN, we use both two scheduling
methods for scheduling. For DAG-type DNN, we use
Single Cutting for scheduling.

Input: DNN topology L, layer N ; bandwidth B; edge number E; task set S; task queue capacity C
Output: total time to execute all tasks cloudtime
1: te, tt , tc, vbest ⟵ BestPartitionðL,N , BÞ
2: for e = 1, 2,⋯, E do
3. edgetime½e�⟵ 0
4: end for
5: cloudtime⟵ 0
6: cloudqueue ⟵ fg
7: needupdate⟵ true
8: while S! =∅then
9: minedgetime⟵ +∞
10: nowtask⟵∅
11: for e⟵ 1, 2,⋯, E do
12: task⟵ getLastArriveTaskðS, eÞ
13: if task! =∅and needupdate then
14: edgetime½e�⟵max ðedgetime½e�, task:arrivetimeÞ + te
15: end if
16: if minedgetime > edgetime½e� then
17: edgetime½e�⟵minedgetime
18: nowtask⟵ task
19: end if
20: if lengthðcloudqueueÞ < C then
21: add fnowtask, tt , tcg to cloudqueue
22: delete nowtask from S
23: needupdate⟵ true
24: else then
25: needupdate⟵ false
26: end if
27: process updateðcloudqueue:front, cloudtimeÞ
28: end for
29: endwhile
30: return cloudtime

Algorithm 1: Single Cutting.

5Wireless Communications and Mobile Computing



We further evaluated the speedup of different scheduling
methods with the “edge-only” delay as a baseline. S-C and S-
Q represent the inference delay of Single Cutting strategy
and Scheduling with Queuing, respectively, and the speedup
is defined as

κ =
LEdgeOnly
LALGO

, ð4Þ

where LEdgeOnly represents the inference delay of only the
edge and LALGO represents the inference delay of all compar-
ison methods. “Edge-only” is used as the baseline, and its
speedup ratio is 1. The edge-only method executes the whole
task on edge devices while the cloud-only method executes
the whole task on the cloud server.

Figure 2 compares the chain DNN. Figure 2(a) shows
the latency acceleration ratios of the four methods in the
case of 3G. Both Single Cutting and Scheduling with

Input: DNN topology L, layer N ; bandwidth B; edge number E; task set S; task queue capacity C
Output: total time to execute all tasks cloudtime

1: te, tt , tc, vbest ⟵ BestPartitionðL,N , BÞ
2: for e = 1, 2,⋯, E do
3. edgetime½e�⟵ 0
4: end for
5: cloudtime⟵ 0
6: cloudqueue ⟵ fg
7: needupdate⟵ true
8: while S! =∅then
9: minedgetime⟵ +∞
10: nowtask⟵∅
11: for e⟵ 1, 2,⋯, E do
12: task⟵ getLastArriveTaskðS, eÞ
13: next task⟵ getSecondLastArriveTaskðS, eÞ
14: if task! =∅then
15: edgetime½e�⟵max ðedgetime½e�, task:arrivetimeÞ
16: end if
17: twait ⟵ cloudtime − edgetime½e� − te − tc
18: if twait ≤ 0 then
19: tt′⟵ tt , te′⟵ te, tc′⟵ tc
20: else then
21: for i⟵ vbest + 1,⋯,N do
22: twait′ ⟵ cloudtime − edgetime½e� − Teð1, iÞ − di/B
23: if twait′ ≥ 0 and twait′ < twait and twait − twait′ > te′− te then
24: twait ⟵ twait′ , te′⟵ Teð1, iÞ, tt′⟵ di/B, tc′⟵ Tcði + 1,NÞ
25: end if
26: end for
27: end if
28: if needupdate then
29: edgetime½e�⟵ edgetime½e� + te′
30: end if
31: if minedgetime > edgetime½e� then
32: edgetime½e�⟵minedgetime
33: nowtask⟵ task
34: end if
35: if lengthðcloudqueueÞ < C then
36: add fnowtask, tt , tcg to cloudqueue
37: delete nowtask from S
38: needupdate⟵ true
39: else then
40: needupdate⟵ false
41: end if
42: process updateðcloudqueue:frontðÞ, cloudtimeÞ
43: end for
44: endwhile
45: return cloudtime

Algorithm 2: Scheduling with Queuing.

6 Wireless Communications and Mobile Computing



Queuing methods surpass the edge-only and cloud-only
methods. In the case of 3G, the efficiency of Single Cutting
and Scheduling with Queuing is the same. Compared with
the edge-only and cloud-only methods, they achieve a
delay acceleration of 2.03 to 3.30 times and 2.22 to 6.48
times, respectively. Figure 2(b) shows the delay accelera-
tion ratios of the four methods in the case of 4G. Com-
pared with only the edge end and only the cloud, the
Single Cutting and the Scheduling with Queuing achieve
1.9~5.48 and 1.05~1.57 times acceleration, respectively. In
both AlexNet and DarkNet19 models, Scheduling with
Queuing achieves the optimal delay speedup ratio. On
Tiny-YOLO, Single Cutting and Scheduling with Queuing
have the same efficiency.

Figure 3 compares the DAG-type DNN. Figure 3(a)
shows the latency acceleration ratios of the three methods
in the case of 3G. The cloud-only method performs the
worst due to network bandwidth limitations. Compared
with the edge-only and cloud-only methods, the Single Cut-
ting achieves 1.11~2.72 times and 2.07~4.12 times delay
acceleration, respectively. Figure 3(b) shows the latency
acceleration ratios of the three methods in the case of 4G.
The cloud-only method surpasses the edge-only method on
the three models. On AlexNet-Parallel and GoogLeNet, the
efficiency of Single Cutting is the same as that of the cloud.
On ResNet18, the efficiency of Single Cutting is 1.34 times
higher than that of the cloud alone. Compared with the

edge-only method, the Single Cutting achieves a speedup
of 1.11~2.72 times.

5.3. The Influence of the Number of Edge Devices on the
Inference Delay. In this section, we compare the perfor-
mance of different methods with different numbers of edge
ends. In the same way, we use “edge-only” as the baseline
to evaluate the speedup ratio (k) of different methods. We
use AlexNet and ResNet18 to verify the effectiveness of our
scheduling algorithm under different edge numbers.

As shown in Figure 4, we deployed AlexNet on the edge
and compared the speedup ratios of the four algorithms on
the chain DNN in the case of 1 to 5 edge ends. Single Cutting
and Scheduling with Queuing are better than the edge-only
and cloud-only methods under different numbers of edge
terminals. Compared with the edge-only method, the Single
Cutting can achieve a delay acceleration of 2.88 to 3.27
times, and the Scheduling with Queuing can achieve a delay
acceleration of 3.12 to 3.75 times.

As shown in Figure 5, we deploy ResNet18 on the
edge and compare the speedup ratios of the three algo-
rithms on DAG-type DNNs in the case of 1 to 5 edge
ends. Compared with the edge-only method, scheduling
Algorithm 1 can achieve a delay acceleration of 2.94 to
3.20 times. Compared with the edge-only method, sched-
uling Algorithm 1 can achieve a delay acceleration of
2.94~3.20 times. Compared with the cloud-only method,

AlexNet-Parallel ResNet18 GoogLeNet
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

D
el

ay
 sp

ee
d 

up
 ra

tio
 (k

)

EdgeOnly
CloudOnly

Single cutting
Scheduling with queuing

(a) 3G Network

AlexNet-Parallel ResNet18 GoogLeNet
0

1

2

3

4

5

6

D
el

ay
 sp

ee
d 

up
 ra

tio
 (k

)

EdgeOnly
CloudOnly

Single cutting
Scheduling with queuing

(b) 4G Network

Figure 2: Inference delay acceleration ratio of 4 methods: Single Cutting, Scheduling with Queuing, cloud-only, and edge-only.

Table 1: The total inference delay of several typical DNN models under different scheduling methods (seconds).

DNN
3G 4G

C-O1 E-O2 S-C3 S-Q4 C-O1 E-O2 S-C3 S-Q4

AlexNet 78.3 88.9 43.7 43.7 28.6 88.9 27.1 24.7

Tiny-YOLO 200.8 159.7 59.9 59.9 84.2 159.7 58.6 58.6

DarkNet19 77.8 180.4 54.6 54.6 34.9 180.4 34.9 32.6

AlexNet-Parallel 70.2 44.9 40.6 — 27.9 44.9 27.9 —

ResNet18 84.3 81.7 32.0 — 34.4 81.7 25.5 —

GoogLeNet 91.2 121.1 63.3 — 43.2 121.1 43.2 —
1Cloud-only, 2edge-only, 3Single Cutting, and 4Scheduling with Queuing.

7Wireless Communications and Mobile Computing



scheduling Algorithm 1 can achieve a delay acceleration of
1.25~1.43 times.

5.4. The Influence of Network Bandwidth on Inference Delay.
We compared the impact of network bandwidth on the per-
formance of different methods. We use “edge-only” as the
baseline to evaluate the speedup (k) of different methods.
During the experiment, we accelerated the network band-
width from 0Mbps to 12Mbps. Similarly, we used AlexNet
and ResNet18 to verify the influence of network bandwidth
on our scheduling algorithm.

As shown in Figure 6, we deployed AlexNet at the edge
and experimented with different methods on the impact of
AlexNet’s inference delay under different network condi-

tions. When the network condition is 0Mbps, the cloud-
only method performs the worst, and the efficiency of the
two scheduling algorithms and the edge-only method is the
same. When the network condition is 1Mbps, Single Cutting
and Scheduling with Queuing have the same efficiency,
which is better than the two baseline methods. When the
network condition is between 2Mbps and 7Mbps, the
efficiency of Scheduling with Queuing is higher than that of
Single Cutting and the edge-only method. When the network
condition is greater than 7Mbps, Single Cutting, Scheduling
with Queuing, and the edge-only method have the same
efficiency.

As shown in Figure 7, we deployed ResNet18 at the edge
and experimented with different methods on the inference

1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

D
el

ay
 sp

ee
d 

up
 ra

tio
 (k

)

Number of edge devices

EdgeOnly
CloudOnly

Single cutting
Scheduling with queuing

Figure 4: The delay acceleration ratio of AlexNet under different methods under different number of edge devices.

AlexNet-Parallel ResNet18 GoogLeNet

D
el

ay
 sp

ee
d 

up
 ra

tio
 (k

)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

EdgeOnly
CloudOnly

Single cutting
Scheduling with queuing

(a) 3G network

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

AlexNet-Parallel ResNet18 GoogLeNet

D
el

ay
 sp

ee
d 

up
 ra

tio
 (k

)

EdgeOnly
CloudOnly
Single cutting

(b) 4G network

Figure 3: Inference delay acceleration ratio of 3 methods: Single Cutting, cloud-only, and edge-only.

8 Wireless Communications and Mobile Computing



delay of ResNet18 under different network conditions.
When the network condition is 0Mbps, the cloud-only
method performs the worst, and the scheduling algorithm
is the same as the edge-only method. When the network
conditions are between 1Mbps and 8Mbps, scheduling
Algorithm 1 performs optimally, at most 2.85 times faster
than the edge-only method and at most 1.93 times faster
than the cloud-only method. When the network speed is
greater than 8Mbps, scheduling Algorithm 1 has the same
efficiency as the edge-only method.

6. Discussion

In Section 5, we implement the experiments using five Rasp-
berry Pi platforms to mimic edge devices. According to the
experimental results, the proposed scheduling algorithm
can handle the circumstances that have more than 5 edge
devices. With the increase of the number of edge devices,
the number of tasks will be enormous, and the network
resources are constrained; the first scheduling algorithm,
i.e., Single Cutting, may not be able to find the optimal

0 1 2 3 4 5 6 7 8 9 10 11 12
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

D
el

ay
 sp

ee
d 

up
 ra

tio
 (k

)

Bandwidth (Mbps)

EdgeOnly
CloudOnly

Single cutting
Scheduling with queuing

Figure 6: The impact of different methods of bandwidth changes on AlexNet inference delay.

1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

D
el

ay
 sp

ee
d 

up
 ra

tio
 (k

)

Number of edge devices

EdgeOnly
CloudOnly
Single cutting

Figure 5: Delay acceleration ratio of ResNet under different methods under different numbers of edge ends.

9Wireless Communications and Mobile Computing



cutting point and fail to accelerate the inference, while the
second scheduling algorithm, considering the network delay
and queuing delay, can still find good cutting point to reduce
the overall delay. The impact of cloud server is reflected in
the queuing delay in the second scheduling algorithm; the
larger the capacity of the cloud server, the less the queuing
delay when scheduling. Moreover, different capacity of edge
devices and cloud servers will cause different DNN model
partitioning in proposed algorithms while the overall delay
keeps low.

7. Conclusion

In this paper, we propose two DNN scheduling algorithms
for edge-cloud collaborative inference systems. The differ-
ence from previous work is that, in the case of multiple
edges, we considered partial migration of tasks instead of
whole migration. The first scheduling algorithm performs
scheduling based on the optimal decision of a single DNN,
and each task performs task migration at the same split
point. The algorithm combined with the QDMP algorithm
can be applied to the scheduling of chain DNN and DAG-
type DNN and has a wide range of applicability. The second
scheduling algorithm can search for a partition point that
can make the overall delay smaller for scheduling based on
factors such as the waiting time for tasks in the cloud and
the execution interval between tasks. This scheduling algo-
rithm can be used for chain DNN scheduling.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

Shigeng Zhang and Yue Zhang are the corresponding
authors of this paper.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China under Grant 61772559, 61901529,
61902434 and the Natural Science Foundation of Hunan
under Grant 2020JJ5776 and 2019JJ50826.

References

[1] K. Zhang, Y. Zhu, S. Maharjan, and Y. Zhang, “Edge intelli-
gence and blockchain empowered 5g beyond for the industrial
internet of things,” IEEE Network, vol. 33, no. 5, pp. 12–19,
2019.

[2] S. Zhang, X. Liu, Y. Liu, B. Ding, S. Guo, and J. Wang,
“Accurate respiration monitoring for mobile users with
commercial rfid devices,” IEEE Journal on Selected Areas in
Communications, vol. 39, no. 2, pp. 513–525, 2020.

[3] Z. Zhou, E. L. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge
intelligence: paving the last mile of artificial intelligence with
edge computing,” Proceedings of the IEEE, vol. 107, no. 8,
pp. 1738–1762, 2019.

[4] S. Pearson, “Privacy, security and trust in cloud computing,” in
Privacy and Security for Cloud Computing, pp. 3–42, Springer,
2013.

[5] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing:
vision and challenges,” IEEE Internet of Things Journal,
vol. 3, no. 5, pp. 637–646, 2016.

EdgeOnly
CloudOnly
Single cutting

0 1 2 3 4 5 6 7 8 9 10 11 12
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

D
el

ay
 sp

ee
d 

up
 ra

tio
 (k

)

Bandwidth (Mbps)

Figure 7: The impact of different methods of bandwidth changes on ResNet inference delay.

10 Wireless Communications and Mobile Computing



[6] Y. Kang, J. Hauswald, C. Gao et al., “Neurosurgeon,” ACM
SIGARCH Computer Architecture News, vol. 45, no. 1,
pp. 615–629, 2017.

[7] H. Li, K. Ota, and M. Dong, “Learning iot in edge: deep learn-
ing for the internet of things with edge computing,” IEEE Net-
work, vol. 32, no. 1, pp. 96–101, 2018.

[8] Z. Chen, J. Hu, X. Chen, J. Hu, X. Zheng, and G. Min,
“Computation offloading and task scheduling for dnn-based
applications in cloud-edge computing,” IEEE Access, vol. 8,
pp. 115537–115547, 2020.

[9] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han, “Amc:
automl for model compression and acceleration on mobile
devices,” in Proceedings of the European conference on com-
puter vision (ECCV), pp. 784–800, Munich, Germany, 2018.

[10] J. Dean, G. S. Corrado, R. Monga et al., “Large scale distributed
deep networks,” in Advances in Neural Information Processing
Systems 25: 26th Annual Conference on Neural Information
Processing Systems, pp. 1232–1240, Lake Tahoe, NV, USA,
December 2012.

[11] P. Mach and Z. Becvar, “Mobile edge computing: a survey on
architecture and computation offloading,” IEEE Communica-
tions Surveys & Tutorials, vol. 19, no. 3, pp. 1628–1656, 2017.

[12] M. Zhu and S. Gupta, “To prune, or not to prune: Exploring
the efficacy of pruning for model compression,” in 6th Interna-
tional Conference on Learning Representations, ICLR, Vancou-
ver, BC, Canada, April 2018.

[13] Y. Xu, Y. Wang, A. Zhou, W. Lin, and H. Xiong, “Deep neural
network compression with single and multiple level quantiza-
tion,” Proceedings of the AAAI Conference on Artificial Intelli-
gence, vol. 32, 2018.

[14] W. Park, D. Kim, L. Yan, and M. Cho, “Relational knowledge
distillation,” in 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 3967–3976, Long
Beach, CA, USA, June 2019.

[15] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, “A survey of
model compression and acceleration for deep neural net-
works,” 2017, http://arxiv.org/abs/1710.09282.

[16] S. Han, X. Liu, H. Mao et al., “EIE: efficient inference engine on
compressed deep neural network,” ACM SIGARCH Computer
Architecture News, vol. 44, no. 3, pp. 243–254, 2016.

[17] W. Jiang, Z. He, S. Zhang et al., “Microrec: accelerating deep
recommendation systems to microseconds by hardware and
data structure solutions,” 2020, http://arxiv.org/abs/
2010.05894.

[18] D. Moolchandani, A. Kumar, and S. R. Sarangi, “Accelerating
cnn inference on asics: a survey,” Journal of Systems Architec-
ture, vol. 113, article 101887, 2021.

[19] K. Guo, L. Sui, J. Qiu et al., “From model to fpga: software-
hardware co-design for efficient neural network acceleration,”
in 2016 IEEE Hot Chips 28 Symposium (HCS), pp. 1–27,
Cupertino, CA, USA, August 2016.

[20] S. Zhang, Y. Li, X. Liu et al., “Towards real-time cooperative
deep inference over the cloud and edge end devices,” Proceed-
ings of the ACM on Interactive, Mobile, Wearable and Ubiqui-
tous Technologies, vol. 4, no. 2, pp. 1–24, 2020.

[21] E. Li, L. Zeng, Z. Zhou, and X. Chen, “Edge ai: on-demand
accelerating deep neural network inference via edge comput-
ing,” IEEE Transactions on Wireless Communications,
vol. 19, no. 1, pp. 447–457, 2019.

[22] H. Chuang, W. Bao, D. Wang, and F. Liu, “Dynamic adaptive
dnn surgery for inference acceleration on the edge,” in IEEE

INFOCOM 2019 - IEEE Conference on Computer Communica-
tions, pp. 1423–1431, Paris, France, April 2019.

[23] L. Hu, G. Sun, and Y. Ren, “Coedge: exploiting the edge-cloud
collaboration for faster deep learning,” IEEE Access, vol. 8,
pp. 100533–100541, 2020.

[24] X. Liu, J. Yin, S. Zhang, B. Xiao, and B. Ou, “Time-efficient
target tags information collection in large-scale RFID sys-
tems,” IEEE Transactions on Mobile Computing, vol. 20,
no. 9, pp. 2891–2905, 2021.

[25] W. He, S. Guo, S. Guo, X. Qiu, and F. Qi, “Joint dnn partition
deployment and resource allocation for delay-sensitive deep
learning inference in iot,” IEEE Internet of Things Journal,
vol. 7, no. 10, pp. 9241–9254, 2020.

[26] X. Liu, J. Yin, J. Liu, S. Zhang, and B. Xiao, “Time efficient tag
searching in large-scale RFID systems: a compact exclusive
validation method,” IEEE Transactions on Mobile Computing,
vol. 1, p. 1, 2020.

[27] X. Liu, Q. Yang, J. Luo, B. Ding, and S. Zhang, “An energy-
aware offloading framework for edge-augmented mobile rfid
systems,” IEEE Internet of Things Journal, vol. 6, no. 3,
pp. 3994–4004, 2018.

[28] R. Gao, H. Yang, S. Huang et al., “Pripro: towards effective
privacy protection on edge-cloud system running dnn infer-
ence,” in 2021 IEEE/ACM 21st International Symposium on
Cluster, Cloud and Internet Computing (CCGrid), pp. 334–
343, Melbourne, Australia, May 2021.

[29] Y. Dong, P. Zhao, H. Yu, C. Zhao, and S. Yang, “CDC:
classification driven compression for bandwidth efficient
edge-cloud collaborative deep learning,” in Proceedings of the
Twenty-Ninth International Joint Conference on Artificial
Intelligence, IJCAI, pp. 3378–3384, 2020.

[30] A. G. Howard, M. Zhu, B. Chen et al., Mobilenets: Efficient
Convolutional Neural Networks for Mobile Vision Applica-
tions, 2017, http://arxiv.org/abs/1704.04861.

[31] S. Teerapittayanon, B. McDanel, and H.-T. Kung, “Distributed
deep neural networks over the cloud, the edge and end
devices,” in 2017 IEEE 37th International Conference on Dis-
tributed Computing Systems (ICDCS), pp. 328–339, Atlanta,
GA, USA, June 2017.

[32] S. Teerapittayanon, B. McDanel, and H.-T. Kung, “Bran-
chynet: fast inference via early exiting from deep neural
networks,” in 2016 23rd International Conference on Pat-
tern Recognition (ICPR), pp. 2464–2469, Cancun, Mexico,
December 2016.

[33] J. H. Ko, T. Na, M. F. Amir, and S. Mukhopadhyay, “Edge-host
partitioning of deep neural networks with feature space encod-
ing for resource-constrained internet-of-things platforms,” in
2018 15th IEEE International Conference on Advanced Video
and Signal Based Surveillance (AVSS), pp. 1–6, Auckland,
New Zealand, November 2018.

[34] P. Ren, X. Qiao, Y. Huang, L. Liu, S. Dustdar, and J. Chen, “Edge-
assisted distributed dnn collaborative computing approach for
mobile web augmented reality in 5g networks,” IEEE Network,
vol. 34, no. 2, pp. 254–261, 2020.

[35] D. J. Pagliari, R. Chiaro, Y. Chen, E. Macii, and M. Poncino,
“Optimal input-dependent edge-cloud partitioning for rnn
inference,” in 2019 26th IEEE International Conference on
Electronics, Circuits and Systems (ICECS), pp. 442–445, Genoa,
Italy, November 2019.

[36] S. Wang, Y. Li, S. Pang, Q. Lu, S. Wang, and J. Zhao, “A task
scheduling strategy in edge-cloud collaborative scenario based

11Wireless Communications and Mobile Computing

http://arxiv.org/abs/1704.04861


on deadline,” Scientific Programming, vol. 2020, Article ID
3967847, 9 pages, 2020.

[37] H. Zhou, W. Zhang, C. Wang, X. Ma, and H. Yu, “Bbnet: a
novel convolutional neural network structure in edge-cloud
collaborative inference,” Sensors, vol. 21, no. 13, p. 4494, 2021.

[38] A. Banitalebi-Dehkordi, N. Vedula, J. Pei, F. Xia, L. Wang, and
Y. Zhang, “Auto-split: a general framework of collaborative
edge-cloud ai,” in Proceedings of the 27th ACM SIGKDD Con-
ference on Knowledge Discovery & Data Mining, pp. 2543–
2553, Singapore, August 2021.

12 Wireless Communications and Mobile Computing


	An Adaptive Task Migration Scheduling Approach for Edge-Cloud Collaborative Inference
	1. Introduction
	2. Related Work
	3. Problem Definition
	4. Method Design
	4.1. Single Cutting
	4.2. Scheduling with Queuing
	4.3. DAG-Type DNN Scheduling Method

	5. Experimental Evaluation
	5.1. Experimental Environment Settings
	5.2. Inference Delay under 3G and 4G Networks
	5.3. The Influence of the Number of Edge Devices on the Inference Delay
	5.4. The Influence of Network Bandwidth on Inference Delay

	6. Discussion
	7. Conclusion
	Data Availability
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments

