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The rapid growth of maritime wireless communication demand and the complex offshore wireless communication environment
have brought challenges to ensure the real-time and reliability of data transmission in the marine Internet of Things (MIoT).
Unmanned aerial vehicles (UAVs) have great advantages in enhancing coverage and channel quality. Hence, we investigate a
UAV-assisted data collection and data offloading system based on nonorthogonal multiple access (NOMA) technology in this
paper. We jointly optimize the buoy-UAV association relationship, transmit powers, and the UAV trajectory to minimize the
total mission completion time while ensuring data transmission requirements. We first propose a UAV trajectory optimization
algorithm based on deep reinforcement learning (DRL). Then, we design a heuristic algorithm to effectively solve the
subproblem of power control and the association relationship. Finally, we propose a joint optimization scheme to solve the
minimization problem. Simulation results show the effectiveness of the proposed scheme.

1. Introduction

Marine environmental monitoring is indispensable with the
continuous increase of human marine activities. A large
amount of meteorological and hydrological data leads to
an increase in the demand for maritime wireless communi-
cation [1, 2]. Buoys are widely deployed in the ocean due
to their low cost and flexible deployment. With the develop-
ment of technology, buoys can be used for marine environ-
ment monitoring with a variety of sensors and
communication equipment and can also be powered by
power supply methods such as lithium-ion batteries and
solar energy [3, 4]. However, the transmit power of the buoy
is limited. Traditional maritime wireless communication
methods, such as land base stations and satellites, have dis-
advantages such as limited coverage and long transmission
distance, which seriously affect the real-time and reliability
of information transmission [5]. For the current five-
generation (5G) and the upcoming six-generation (6G) era,
it is of great significance to build an efficient and dynamic
maritime communication network [6]. Therefore, the

UAV-assisted wireless communication system (UWCS) has
received widespread attention.

Unmanned aerial vehicles (UAVs) have the advantages
of maneuverability and easy manipulation, which can be
deployed on demand and enlarge coverage [7]. It is easier
to establish a line-of-sight (LoS) channel and a stronger
communication link with the target device, which can better
deal with the variable ocean environment [8, 9]. In the
marine Internet of Things (MIoT), aiming at the problem
of the large number and wide distribution of buoys, UAV
can act as a mobile base station, collecting data collected
by buoys from the target area and offloading the data to
the OBS [10, 11]. Furthermore, the limited spectrum
resources of MIoT also pose a challenge to the reliability
and efficiency of data transmission. Nonorthogonal multiple
access (NOMA) technology is considered a promising tech-
nology in the 5G era [12]. Compared with orthogonal mul-
tiple access (OMA) technology, NOMA greatly improves
the spectrum efficiency in the presence of limited spectrum
resources by allowing multiple users to access simulta-
neously in the same channel and relying on power domain
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multiplexing and successive interference cancellation (SIC)
decoding technology [13–15].

Recently, much research has applied NOMA technology
to UAV-assisted wireless communication system. Zhao et al.
in [13] investigated a NOMA-assisted UAV large-scale IoT
data collection system and proposed a data collection opti-
mization algorithm. The results show that, compared with
the traditional UWCS, the NOMA-based UWCS has better
performance in data collection. W. Chen et al. in [16] max-
imized the sum rate of the UAV-assisted uplink NOMA sys-
tem by jointly optimizing the UAV location, buoy sensor
grouping, and power control. The simulation results show
the performance gain of NOMA in the sum rate of the sys-
tem. Tang et al. in [17] investigated the scenario of a
UAV-assisted marine wireless communication downlink in
which the UAV hovers continuously to provide services to
multiple groups of ships. Obviously, the NOMA-based
UWCS has great advantages in enhancing coverage and
strengthening communication links.

In the above work, the optimization problem is usually
formulated as a mixed-integer nonconvex problem. They
can usually be divided into several subproblems, which can
be solved by traditional optimization techniques and itera-
tive algorithms [18]. However, the above solutions may have
high computational complexity. Furthermore, the buoys
associated with the UAV and NOMA cochannel interference
vary with UAV position. The complex dynamic changes
bring great challenges to the traditional convex optimization
technology as well. With the development of machine learn-
ing technology, reinforcement learning (RL) is considered to
be an effective solution to the high-dynamic environment
[19–21]. Deep reinforcement learning (DRL) solves the con-
tinuous state space problem that RL cannot solve by intro-
ducing deep neural network (DNN), such as deep Q
-learning (DQN) and deep deterministic policy gradient
(DDPG) [22]. At present, a lot of work has focused on the
research of UWCS based on DRL. L. Wang et al. in [23]
minimized the energy consumption of all user equipment
by jointly optimizing UAV trajectories, user associations,
and resource allocation. Two algorithms are proposed to
effectively solve the minimization problem based on convex
optimization and DRL technology, respectively. The results
show that the DRL-based method is better than the convex
optimization method. Zhang et al. in [24] studied the UAV
lineup and user distribution change scenarios and developed
a DDPG-based proactive self-regulation method for UAV
networks, which is based on the proposed asynchronous
parallel computing architecture. Wang et al. in [25] studied
a UAV-assisted mobile edge computing system. They mini-
mized the maximum processing delay and proposed a
DDPG-based algorithm to solve the high-dimensional state
space and continuous action space. However, the flight
action space of actual UAV is continuous and high dimen-
sional, which may bring dimensional disaster to traditional
reinforcement learning methods (such as DQN) [23, 26].
DDPG exists the problem of overestimation. To solve the
above problems, Fujimoto et al. in [27] proposed the twin-
delayed deep deterministic (TD3) algorithm based on
DDPG. In [28], Sun et al. considered the age of information

(AoI) and energy consumption and proposed an AoI-
energy-aware UAV trajectory optimization algorithm based
on TD3.

In this paper, we investigate a UAV-assisted data collec-
tion and data offloading system in MIoT. Specifically, buoys
are used to collect marine environment information in the
sensing layer. The UAV collects the sensing information
from buoys based on NOMA technology and offloads the
collected data to the OBS. Our goal is to minimize the total
mission completion time of the UAV by jointly optimizing
the UAV trajectory, the buoy-UAV association relationship,
the UAV transmit power, and the buoys transmit power.
The main contributions of our paper are listed as follows.

(i) We jointly consider the UAV trajectory, buoy-UAV
association relationship, and transmit powers to
investigate the UAV’s total mission completion time
minimization problem. The above minimization
problem is a mixed-integer nonconvex problem.
Accordingly, we divide the total mission process of
UAV into data collection stage and data offloading
stage for analysis

(ii) We propose a UAV trajectory optimization algo-
rithm based on TD3 to solve the UAV trajectory
coupling of data collection and data offloading since
the minimization problem is a mixed-integer non-
convex problem. Furthermore, we design a heuristic
algorithm to effectively solve the above problem due
to the coupling between the buoy-UAV association
relationship and the buoys transmit power

(iii) We propose a joint TD3-based trajectory optimiza-
tion, power control, and buoy-UAV association
relationship scheme that effectively solves the
mixed-integer nonconvex problem. The simulation
results show that the proposed scheme can effec-
tively shorten the UAV’s total mission completion
time while ensuring that the data transmission
requirements are met

The remainder of this paper is organized as follows. Sec-
tion 2 presents the system model and the problem formula-
tion. Section 3 briefly introduces the TD3 algorithm and
proposes the TD3-based UAV trajectory optimization algo-
rithm. Then, we design a heuristic algorithm to solve the
subproblem of power control and buoy-UAV association
relationship. Finally, we propose a joint optimization
scheme for the minimization problem. Simulation results
and conclusion are given in Sections 4 and 5.

2. System Model and Problem Formulation

2.1. Network Model. We consider a UAV-assisted MIoT sys-
tem as shown in Figure 1, which includes a UAV base sta-
tion, M buoys, and an OBS. Each buoy senses and stores
hydrometeorological data and is powered by a lithium-ion
battery to ensure that it has sufficient energy to transmit
data. The total mission time of the UAV is denoted as
T total and divided into K time slots. The time slot length is
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δ. The total mission process of UAV consists of two stages.
The first stage is that the UAV utilizes NOMA to collect data
from M buoys, and the number of time slots of this stage is
Kco. The UAV is allowed to collect data from at most U
buoys in each time slot where U ≤M. The second stage is
that the UAV offloads all the collected data to the OBS after
completing the first stage, and the number of time slots of
this stage is Kof . Therefore, T total can be expressed as

T total = Kδ = Kco + Kofð Þδ: ð1Þ

Let M = f1, 2,⋯,Mg denote the set of all buoys. We
denote that the horizontal coordinate of the UAV in the k
-th time slot is qk = ðxk, ykÞ, where k ∈K = f1,⋯, Kco, Kco
+ 1,⋯, Kg. Let Kco = f1, 2,⋯, Kcog denote the set of the
data collection time, and Kof = fKco + 1,⋯, Kg denote the
set of the data offloading time.

The fixed flight height of UAV is H, and the flight veloc-
ity of UAV in the k-th time slot is Vk. Then, the UAV should
follow the maximum flight velocity constraints, which are
expressed as

Vk+1 = Vk + Δkδ,∀k ∈K ,
Vmin ≤ Vkk k ≤Vmax,∀k ∈K ,

Δkk k ≤ Δmax,∀k ∈K ,

qk+1 = qk +Vkδ +
1
2Δkδ

2,∀k ∈K ,

ð2Þ

where Vmax and Δmax are the maximum flight velocity
and acceleration, respectively, and Vmin is the minimum
flight velocity.

The horizontal coordinate of the m-th buoy is Dm = ðxm,
ymÞ. The horizontal coordinate of OBS is D0 = ðx0, y0Þ. If the

time slot δ is small enough, the motion of the UAV in each
time slot can be regarded as static approximately. Hence, the
distance between UAV and them-th buoy at the k-th time slot

is dm,k =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kqk −Dmk2 + ðH −HmÞ2

q
, ∀k ∈Kco, ∀m ∈M. In

the stage of data offloading, the distance between UAV and

OBS at the k-th time slot is d0,k =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∥qk −D0∥2 + ðH −H0Þ2

q
,

∀k ∈Kof . Hm and H0 denote the antenna heights of the m
-th buoy and OBS, respectively.

2.2. Transmission Model

2.2.1. Channel Model. We adopt the model of the air-to-
ground channel and the two-ray path loss model [29] and
give the LoS and NLoS path loss models of the buoy-UAV
and UAV-OBS links, respectively.

Specifically, the channel gain of buoy-UAV and UAV-
OBS links is expressed as hi,k = 1/Li,k, ∀k ∈K ,∀i ∈ f0, 1,⋯,
Mg, where Li,k denotes the average path loss in the k-th time
slot, expressed as

Li,k = PLoS
i,k LLoSi,k + 1 − PLoS

i,k
� �

LNLoSi,k ,

LLoSi,k = 4πdi,k
λ

� �2
μi,kξLoS,

LNLoSi,k = 4πdi,k
λ

� �2
μi,kξNLoS,

ð3Þ

where LLoSi,k and LNLoSi,k are the average path loss for LoS
and NLoS, μi,k = 1. ξLoS and ξNLoS are the excessive path loss
for LoS and NLoS paths, respectively, λ is the wavelength,
and PLoS

i,k denotes the probability of LoS link which is
expressed as

OBS

Buoy

Data
off loading Sensor Submarine

SensorSensor

UAV

Target area

Data off loading Data collection

Figure 1: UAV-assisted marine IoT system.
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PLoS
i,k = 1

1 + a exp −b ψi,k − a
� �� � , ð4Þ

where a and b are two constant values depending on the
environment and ψi,k denotes the elevation angle between
the m-th buoy (or OBS) and UAV, which is given by

ψi,k = ð180∘/πÞ × arcsin ðH −Hi/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kqk −Di,kk2

q
Þ.

2.2.2. UAV Data Collection from Buoys. In this stage that ∀
k ∈Kco, let αm,k denote the association indicator between
m-th buoy and UAV. αm,k = 1 means that the m-th buoy is
associated with the UAV in the k-th time slot. Otherwise,
αm,k = 0.

In uplink NOMA system, the UAV is regarded as a
receiver to receive signals from multiple buoys at the same
time and allows multiple buoys to share the same channel.
The SIC decoding technique is used to demodulate the
received signals with different received power levels. The
successfully demodulated signal is deleted from all received
signals, and the later decoded signal receives less cochannel
interference. Therefore, the buoy with high channel gain is
usually demodulated first, and its interference comes from
the buoys with worse channel gain [30, 31]. The cochannel
interference of uplink transmission between the m-th buoy
and UAV in the k-th time slot can be given by

Im,k = 〠
i∈Mk

αi,kPi,khi,k,∀k ∈Kco, ð5Þ

whereMk = fiji ∈M, hm,k > hi,kg is the set of the buoy whose
channel gain is worse than the m-th buoy in the k-th time
slot.

Hence, the signal-to-interference-noise-ratio (SINR)
between the m-th buoy and UAV at the k-th time slot is
expressed as

gm,k =
Pm,khm,k
σ2 + Im,k

,∀m ∈M,∀k ∈Kco, ð6Þ

where Pm,k is the transmit power of the m-th buoy in the k
-th time slot and σ2 is the noise power.

The transmission rate of m-th buoy in the k-th time slot
is expressed as

Rm,k = αm,kB log2 1 + gm,k
� �

,∀m ∈M,∀k ∈Kco, ð7Þ

where B is the spectrum. In order for the received signal to
be demodulated successfully, the SIC demodulation condi-
tion that SINR needs to meet is as [32]

αm,kPm,khm,k
∑i∈Mk

αi,kPi,khi,k + σ2 ≥ ηSIC,∀m ∈M, ð8Þ

where ηSIC denotes the SIC threshold.

2.2.3. UAV Data Offloading to OBS. In this stage that ∀k ∈
Kof , let βk denote the association indicator between UAV

and OBS. βk = 1 means that the UAV can offload the data
to the OBS at the k-th time slot. Otherwise, βk = 0.

The signal-to-noise-ratio (SNR) between theUAV andOBS
at the k-th time slot needs to satisfy the following condition:

g0,k =
Pkh0,k
σ2

≥ �g0,∀k ∈Kof , ð9Þ

where Pk is the transmit power of the UAV and �g0 is the SNR
threshold.

The transmission rate between the UAV and OBS at the
k-th time slot is given by

R0,k = βkB log2 1 + g0,k
� �

,∀k ∈Kof : ð10Þ

2.3. Problem Formulation. Our goal is to minimize the
UAV’s total mission completion time by jointing optimiza-
tion of the buoy-UAV association relationship, UAV trans-
mit power, buoys transmit power, and UAV trajectory. Let
Am = fαm,k,∀m ∈M,∀k ∈Kcog denote the buoy-UAV-
associated variables, P = fPk,∀k ∈Kofg denote the UAV
transmit power during data offloading, Pm = fPm,k,∀m ∈M,
∀k ∈Kcog denote the buoys transmit power, and Q = fqk,∀
k ∈Kg denote the UAV trajectory. The total mission com-
pletion time minimization problem can be formulated as

P1ð Þ: min
Am ,P,Pm ,Q

T total,

s:t:C1 : 0 ≤ Pm,k ≤ Pmmax
,

C2 : 0 ≤ Pk ≤ Pmax,
C3 : αm,k ∈ 0, 1f g,∀m ∈M,∀k ∈Kco,

C4 : βk ∈ 0, 1f g,∀k ∈Kof ,

C5 : 〠
M

m=1
αm,k ≤U ,∀k ∈Kco,

C6 : 〠
K

k=Kco+1
R0,kδ ≥ 〠

M

m=1
Cm,

C7 : 〠
Kco

k=1
Rm,kδ ≥ Cm,∀m ∈M,

C8 − C11 : 3ð Þ, 4ð Þ, 13ð Þ, 14ð Þ

ð11Þ

In problem P1, C1, and C2 restrict the maximum trans-
mit power of UAV and buoy, respectively. C5 limits the
maximum number of buoys that can be associated with the
UAV in each time slot. Let Cm denote the data size that
needs to be collected in m-th buoy. C6 ensures that all data
collected by the UAV is offloaded to OBS. C7 ensures that
the data collection requirements of each buoy are met. C8
and C9 are the UAV maximum velocity and maximum
acceleration constraints, respectively. C10 is the SIC demod-
ulation constraint that SINR needs to meet in the data col-
lection stage. C11 is the SNR constraint in the data
offloading. Problem P1 is a mixed-integer nonconvex
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problem since it contains binary relational variables, which
makes it difficult to be solved effectively.

3. Proposed Scheme

In order to solve problem P1, we first propose a TD3-based
UAV trajectory optimization algorithm (TTO). Then, we
design a heuristic algorithm to solve the power control prob-
lem while determining the buoy-UAV association relation-
ship (PCAR). Finally, the above two algorithms are
combined to effectively solve the problem P1.

3.1. TD3-Based UAV Trajectory Optimization. In our sys-
tem, the start position of data offloading stage is similar to
the end position of data collection, which is named as the
transition position (TP) between two stages. Therefore, the
UAV trajectories of these two stages are coupled, and the
TP cannot be determined in advance. Furthermore, the
UAV trajectory changes dynamically according to the
requirements of data collection and data offloading. The tra-
ditional deterministic optimization method is difficult to
solve the above problems [19]. Therefore, in this paper, we
use an advanced DRL method, TD3, to solve the UAV tra-
jectory optimization subproblem with the given transmit
powers and association relationships. In the following, we
first give the definitions of state, action, and reward and then
briefly introduce the TD3.

3.1.1. State Definition. In the data collection stage, the UAV’s
action is closely related to the remaining data size of buoys
and the buoy-UAV association relationship. Similarly, in
the data offloading stage, the UAV’s action is related to the
remaining data size of UAV and the UAV-OBS association
relationship. Furthermore, the UAV only collects data from
buoys in the target area. Hence, we define the state space as

Sk = αk, ck, xk, yk, βk, ckuav, ρkf g, ð12Þ

where the variables contained in the above expression are
defined as

(i) αk = fα1,k, α2,k,⋯, αM,kg denotes the set of the buoy-
UAV association relationship in the k-th time slot

(ii) ck = fc1,k, c2,k,⋯, cM,kg denotes the remaining data
size of each buoy in the k-th time slot

cm,k = Cm − 〠
k−1

j=1
Rm,jδ ð13Þ

(iii) cuavk denotes the remaining data size of UAV

cuavk = 〠
Kco

k=1
〠
M

m=1
Rm,kδ − 〠

k−1

j=Kco+1
R0,jδ ð14Þ

(iv) ρk denotes the boundary penalty information of the
UAV to judge whether the UAV position exceeds
the target area in the k-th time slot

3.1.2. Action Definition. Based on the above state and envi-
ronment information, the UAV’s action is defined as

Ak = φk, Vkf g, ð15Þ

where φk ∈ ð0, 2π� denotes the flight angle of UAV in the k
-th time slot and Vk ∈ ½0, Vmax�.
3.1.3. Reward Definition. Let Kmax denote the number of max-
imum total mission completion time slots. K∗ = Kmax − K if
the UAV completes the mission in K time slots. Then, we
design the reward function as

rk =
Rkδ + ρk + K∗, if C6 andC7 are satisfied,
Ck orRkδð Þ + ρk, otherwise:

 

ð16Þ

It can be seen from (16) that the shorter the time it takes
for the UAV to complete the mission, the greater the reward
it will eventually obtain.

Note that for better performance, we reduce the order of
magnitude of B and Cm by n1 orders of magnitude to be less
than or equal to the order of magnitude of Kmax when calcu-
lating the state and reward.

3.1.4. TD3. The TD3 has the following advantages [27]:

(i) Clipped double Q-learning for actor-critic: TD3 con-
tains two critic networks. For the two target Q-values
generated by the two critic target networks, the min-
imum of them is selected to suppress the overestima-
tion problem caused by high variance, expressed as

y = rk + γ min
i=1,2

Qθi′
S′, ~A
� �

ð17Þ

where y is the target value which is used to update the two
critic networks, r is reward, γ is the reward discount factor,
~A is the target policy, θi′ is the target network parameter,
and S′ is the next state

(ii) Target networks and delayed policy updates: the
TD3 algorithm updates the actor and its target net-
work after a fixed number of updates to the critic
network, expressed as
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θi′ ⟵ τθi + 1 − τð Þθi′, i = 1, 2 ð18Þ

where τ is the update parameter

(iii) Target policy smoothing regularization: TD3
smoothes the estimate and reduces the error by add-
ing a small amount of random noise to the target
actor network and averaging over minibatch,
expressed as

~A⟵ πϕ′ Skð Þ + ε, ε ~ clip N 0, ~ωð Þ,−c, cð Þ ð19Þ

It can be seen from (12) that most of the state dimen-
sions are related to buoys. Only two dimensions are related
to the UAV’s position, two dimensions are related to OBS,
and one dimension is related to UAV boundary penalty
information. Therefore, there is a problem of dimension
imbalance. Dimension spread technology can effectively
solve this problem. We spread the above state dimensions.
For example, we connect the position state dimension of
UAV to a spread network composed of M neurons and
spread its dimension to M [33, 34]. Furthermore, we set a
termination flag l to indicate whether UAV has completed
its mission. l is applied to the target value function. Hence,
the Q-value of the target value function is 0 after the UAV
completes the mission, so as to make the critic learning per-
formance more stable [34].

In summary, our proposed algorithm TTO is shown in
Algorithm 1. The update process of TD3 is shown in
Figure 2. In lines 1-3, we first initialize the network parame-
ters and the experience replay bufferB. In lines 5-17, we ini-
tialize the environment, obtain the initial state information,
and set a time variable k to represent the time spent by
UAV to perform the mission. Moreover, a termination mark
l is set. l = 0 indicates that UAV has not completed the mis-
sion. Then, UAV makes an action selection according to the
observed state and environmental information. Specifically,
UAV constantly interacts with the environment and updates
the actor and critic networks. The actor network outputs the
action Ak to be executed by the UAV according to the state
information Sk. Then, the transition information ðSk, Ak, rk
, S′, lÞ is stored inB. If the UAV flies beyond the target area,
the action will be canceled and the boundary penalty infor-
mation will be given. In the data collection stage, we remain
βk = 0. The data offloading stage begins when UAV com-
pletes the data collection mission. Then, we remain αk = 0.
l = 1 if the UAV completes the data offloading mission.
The episode is terminated when l = 1 or k = Kmax.

In lines 18-28, N transition information is randomly
selected from B to form a minibatch, which is input into the
actor and critic network. The actor network calculates the cor-
responding ~A according to S′. After selecting the target Q
-value and smoothing the target policy according to S′ and ~A,
the critic network minimizes the loss function and updates
the critical network by the following way:

θi ⟵ arg min
θi

N−1〠 y −Qθi
Sk, Akð Þ� �2

: ð20Þ

Then, the actor network is updated in the way of delayed
update by the deterministic policy gradient, expressed as

∇ϕ J ϕð Þ =N−1〠∇Ak
Qθ1

Sk, Akð Þ Ak=πϕ Skð Þ
			 ∇ϕπϕ Skð Þ: ð21Þ

Finally, the optimal trajectory of UAV is obtained by cyclic
iteration until the maximum number of episodes Emax.

3.2. Power Control and Buoy-UAV Association Relationship.
Given the UAV trajectory, the problem P1 can be written as

P2ð Þ: min
Am ,P,Pm ,Q

 T total,

s:t: C1 − C7, C10, C11
ð22Þ

Obviously, the problem P2 is still a mixed-integer non-
convex problem. Given the mission completion time and
the association relationships of buoy-UAV and UAV-OBS,
P2 can be transformed into a problem of maximizing the
total transmission data size in the k-th time slot, which can
be divided into two parts.

First, in the data collection stage, it can be seen from
problem P2 that the SINR between UAV and buoys is
related not only to the transmit power of buoys but also to
the buoy-UAV association relationship. Therefore, in order
to determine the buoy-UAV association relationship, we
first introduce Lemmas 1 and 2.

Lemma 1. The UAV must be associated with the first U∗

ðU∗ ≤UÞ buoys with the larger channel gain in the k-th time
slot.

Proof. As can be seen from P2a, the total transmission data
size Ck depends on the summation term ∑U

m=1 Pmhm. There-
fore, we might as well assume that the transmit power of all
buoys is the maximum transmission power Pmmax

. The chan-
nel gain between M buoys and UAV is expressed in
descending order as fh1 ⟶ h2⟶⋯⟶hMg. Obviously,
selecting the first U∗ buoys with the largest channel gain
can maximize the total transmission data size.

Lemma 2. The transmit power of the buoy with the largest
channel gain among the buoys associated with the UAV in
the k-th time slot must be Pmmax

.

Proof. Except for the buoys transmit power, other assump-
tions are the same as Proof. If the UAV is associated with
U buoys, for the buoy with the largest channel gain, the
SINR between it and the UAV is expressed as

g1 =
P1h1

∑U
i=2 Pihi + σ2

: ð23Þ

In order to meet the constraints C10 and C12 and max-
imize the total transmission data size, the value of
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1. Initialize critic networks Qθ1
, Qθ2

, and actor network πϕ with random parameters θ1, θ2, and ϕ.

2. Initialize target networks θ1 ′ ⟵ θ1, θ2 ′ ⟵ θ2, and ϕ′ ⟵ ϕ.
3. Initialize experience replay buffer B.
4. for episode =0 to Emax do
5. Initialize the environment and state S0, and the terminated flag l = 0.
6. for epoch k = 1 to Kmax do
7. Select action Ak = πϕðSkÞ + ε, ε ~N ð0, ωÞ, and observe reward rk and next state S′.
8. if the UAV flies beyond the target area then
9. ρk = 1. Then cancel the UAV’s action and update

rk, S′ based on the current state.
10. end if

11. if ∑Kco
k=1 Rm,kδ ≥ Cm, ∀m ∈M then

12. let αk = 0, and start the data offloading.
13. else
14. Let βk = 0, and continue the data collection.
15. end if
16. if ∑K

k=k∗ Rkδ ≥∑M
m=1 Cm then

17. rk = Rkδ + ρk + K∗, and let l = 1.
18. end if
19. Store transition tuple ðSk, Ak, rk, S′, lÞ in B.
20. if B > 2,000 then
21. Sample mini-batch of N transitions ðSk, Ak, rk, S′, lÞ from B.
22. ~A⟵ πϕ′ðS′Þ + ε, ε ~ clipðN ð0, ~ωÞ,−c, cÞ.
23. y⟵ rk + ð1 − lÞ · γ mini=1,2Qθi

′ðS′, ~AÞ.
24. Update critics:
25. θi ⟵ arg minθiN

−1∑ ðy −Qθi
ðSk, AkÞÞ2.

26. Update the actor policy ϕ by the deterministic policy gradient:
27. ∇ϕ JðϕÞ =N−1∑∇Ak

Qθ1
ðSk, AkÞj Ak=πϕðSkÞ∇ϕπϕðSkÞ.

28. Update target networks:
29. θi ′ ⟵ τθi + ð1 − τÞθi ′.
30. ϕ′ ⟵ τϕ + ð1 − τÞϕ′.
31. end if
32. end for
33. end for
34. return The UAV trajectory Q

Algorithm 1: TD3-based trajectory optimization algorithm (TTO).

Agent

Environment

Policy
gradient Delay Updata critic

Actor Critic 1 Critic 2

Actor network 𝜋𝜙

Target network 𝜋𝜙'

Experience replay buffer
Mini-batch

Critic network Q𝜃1

Clip the target
value y

Critic network Q𝜃2

Delayed
update

Delayed
update

Delayed
update

Ak

(Sk, Ak, rk, S' , l)

(Sk, rk, S')

(rk, l)

Target network Q𝜃1' Target network Q𝜃2
'

Figure 2: TD3-based UAV trajectory optimization.
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1. Input the UAV’s current position qk, ηSIC and U .
2. Input current channel gain gm,k, and sort it in descending order to obtain g′m,k.
3. According to U , get initial NOMA group and the number of initial associated buoys U∗ =U .
4. repeat
5. Solve P2a to obtain the optimal solution Pm

∗ and the optimal value Ck.
6. if the solution state is not optimal then
7. Remove the one with the worst channel gain in the currently associated buoy.
8. U∗ ⟵U∗ − 1.
9. end if
10. until U∗ = 1:
11. return Pm

∗ and Am;

Algorithm 2: Power control and buoy-UAV association relationship algorithm (PCAR).

UAV-buoy association,
UAV-OBS association,

power control
UAV trajectory

optimization

TD3-based UAV trajectory
optimization algorithmHeuristic algorithm

P2

P1

Association relationship

Transmit power

UAV location information

P2a P2b

Figure 3: Joint TD3-based trajectory optimization, power control, and buoy-UAV association relationship scheme.

Input: The UAV’s initial position q1, the buoys’ position Dm, the OBS’s position D0;
Output: Am, P, Pm, Q;
1. for episode =0 to Emax do
2. for epoch k = 1 to Kmax do
3. /∗ Lines 11-15 of Algorithm 1 ∗/
4. if ∑Kco

k=1 Rm,kδ ≥ Cm, ∀m ∈M then
5. Let αk = 0, and obtain current channel gain g0,k.
6. Set P = Pmax.
7. if g0,k ≥ �g0 then
8. Let UAV-OBS association relationship βk = 1.
9. end if
10. else
11. Let βk = 0, and obtain current channel gain gm,k.
12. Update Pm,k, ∀m ∈M and αk with given qk by performing Algorithm 2.
13. /∗ Lines 7-10 of Algorithm 1 ∗/
14. Update qk with given tranmist power and association relationship.
15. end if
16. end for
17. end for

Algorithm 3: Joint TD3-based trajectory optimization, power control, and buoy-UAV association relationship scheme (TTO-PCAR).
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denominator term P1h1 should be as large as possible, so as
to maximize the value of molecular term and make more
buoys connected to UAV. Therefore, P1 should be Pmmax

.
The total transmission data size of U∗ buoys in the k-th

time slot is expressed as

Ck = 〠
U∗

m=1
B log2 1 + Pm,khm,k

∑i∈Mk
Pi,khi,k + σ2

 !
δ: ð24Þ

Therefore, problem P2 can be transformed into

P2að Þ: max
Pm

Ck,

s:t: C1 : 0 ≤ Pm ≤ Pmmax
,

 C10 :
Pm,khm,k

∑i∈Mk
Pi,khi,k + σ2

≥ ηSIC

ð25Þ

Due to the existence of cochannel interference between
buoys, P2a is still nonconvex. Therefore, we convert Ck into
the following form:

Ck = Bδ log2 1 + ∑U∗

m=1 Pm,khm,k
σ2

 !
: ð26Þ

Therefore, P2a is a convex problem that can be solved by
a standard convex optimization solver (such as cvxpy).

The algorithm PCAR is shown in Algorithm 2. In Algo-
rithm 2, the channel gains are first sorted in descending
order. It is stipulated that the UAV is associated with U
buoys at most, and the first U buoys with the largest channel
gain are selected to form the initial NOMA group. Then, we
solve P2a. If P2a has an optimal solution, the optimal solu-
tion Pm and the optimal value Ck are obtained. If P2a has no
optimal solution, the buoy with the worst channel gain is
removed from the current NOMA group to form a new
NOMA group. The above process is repeated until P2a has
an optimal solution. Note that the UAV is associated with
at least one buoy in each time slot.

Second, in the data offloading stage, the total transmis-
sion data size of UAV in the k-th time slot is expressed as

Ck
uav = Bδ log2 1 + Pkh0,k

σ2

� �
: ð27Þ

Then, P2 can be transformed into the following form:

P2bð Þ: max
P

Ck
uav,

s:t:C2 : 0 ≤ Pk ≤ Pmax,

C11 :
Pkh0,k
σ2 ≥ �g0

ð28Þ

Problem P2b is a standard convex problem, the optimal
solution of which is Pmax.

In summary, we propose a joint TTO and PCAR scheme
(TTO-PCAR) to solve the problem P1. The TD3 agent is
deployed in the OBS, and OBS maintains the communica-
tion with the UAV. During training, UAV collects data from
buoys through traffic channel. Meanwhile, the UAV receives
the states information of buoys through the control channel
and feeds back the states information of itself and buoys to
OBS. The OBS operates the proposed scheme with the above
states information and sends the operation results to UAV
in each time slot. Then, the UAV forwards relevant signal-
ling (such as transmit power of buoys and buoy-UAV asso-
ciation relationship) to the buoy through the control
channel. The specific process is shown in Figure 3 and Algo-
rithm 3. Specifically, the UAV initial position is first given.
In lines 3-12, P and Am are obtained by Algorithm 2 accord-
ing to the UAV current position qk in the data collection
stage. βk is obtained according to qk and �g0 in the data off-
loading stage. Then, the UAV next position information is
updated by lines 7-10 of Algorithm 1. Finally, the above pro-
cess is repeated until Emax.

Table 1: Simulation parameters.

Parameter Value

Maximum acceleration, Δmax 25 m/s2

Environment parameter, a, b 9.61, 0.16

Excessive path loss, ξLoS, ξNLoS 1, 20

Channel parameter, μm,k 1

The antenna heights of buoys and OBS, Hm, H0 0m, 0m

Wavelength, λ 0.15m

Noise power, σ2 -94 dBm

SINR and SNR threshold, �gco, �gof 10 dB, 3 dB

SIC threshold, ηSIC 10 dB

Order of magnitude parameter, n 6
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Figure 4: Accumulative reward.
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3.3. Complexity Analysis. TD3 contains two actor networks
and four critic networks. Hence, the computational com-
plexity of Algorithm 1 is Oð2∑Ea

e=1 n
a
en

a
e−1 + 4∑Ec

e=1 n
c
en

c
e−1Þ

. Ea is the number of the fully connected layers of actor net-
work. Ec is the number of the fully connected layers of critic
network. na and nc are the unit numbers in the e-th layer of
the actor network and the critic network, respectively. Since
the UAV is associated with at most U buoys in each time
slot, the computational complexity of Algorithm 2 is OðUÞ.
Hence, the computational complexity of Algorithm 3 is
OðEmaxKmaxð∑Ea

e=1 n
a
en

a
e−1 +∑Ec

e=1 n
c
en

c
e−1 +UÞÞ.

4. Simulation Results

In simulation, the considered target area is 1000m × 1000m
where M = 10 buoys are randomly distributed. A UAV is
used to collect data with a fixed height H = 100m from the
target area. The flight velocity of UAV is Vmax = 50m/s
and Vmin = 0m/s. The maximum transmit power of UAV
and buoys is Pmax = 0:1W and Pmmax

= 24dBm, respectively.
The position of OBS is D0 = ð0, 0Þm. The UAV is allowed to
associate up to 3 buoys in each time slot, i.e., U = 3. The time
slot length is δ = 1 s. The data size range of each buoy is
Cm ∈ ½10, 20�Mbits. The spectrum is B = 1MHz. Further-
more, our proposed algorithm TTO is based on Pytorch.
For actor and critic networks, we use a fully connected
DNN with two hidden layers of 400 neurons. The learning
rate is 0.0001. The experience memory buffer size is
100000. The minibatch size N is 256. The discount factor γ
is 0.99. ~ω = 0:36. τ = 0:005. Kmax = 300. Other simulation
parameters are shown in Table 1.

In order to compare performance, we use the following
scheme as the comparison algorithm.

(i) UAV trajectory based on Fermat point (FTP) [35]:
this scheme first regards each user as the vertex of
a triangle to form multiple triangles. Then, the Fer-
mat points of each triangle are taken as the hovering
points of the UAV. The UAV hovers at the points in
turn to collect data

(ii) UAV trajectory based on circle scheme (CTS): this
scheme first finds the geometric center of all users
as the center of the circle and then averages the dis-
tance from all users to the center of the circle to
determine the radius of the UAV trajectory

(iii) UAV data collection based on OMA (TTO-OMA):
this scheme refers to the UAV using OMA technol-
ogy for data collection. The proposed TTO algo-
rithm is still used to determine the UAV trajectory

(iv) DRL scheme based on DQN (DTO-PCAR): this
scheme uses DQN instead of TD3 in our proposed
algorithm

Figure 4 shows the comparison of accumulative reward
for different schemes. For the convenience of observation,
we smoothed the curves. It can be seen that the proposed
TTO-PCAR scheme could be convergent after 1000 epi-
sodes, while the compared TTO-OMA scheme needs 3000
episodes to be convergent. Moreover, the compared DTO-
PCAR scheme cannot be convergent after 6000 episodes.
Therefore, the performance of our proposed scheme is sig-
nificantly better than the other two schemes. Figure 5 shows
the UAV trajectory comparison with TTO-PCAR scheme
under different SIC thresholds. The SIC thresholds are
10 dB, 12 dB, and 15 dB, respectively. We find that the aver-
age total mission completion time of UAV is basically the
same, which is 33 s, 36 s, and 37 s, respectively. However,
the UAV trajectory is closer to the farther buoy with the
increase of SIC threshold. This is because when the UAV
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Figure 5: UAV trajectory with different SIC thresholds.
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uses NOMA technology for data collection, the channel gain
of the farther buoy is poor. Therefore, in order to meet the
SIC constraint, the UAV will gradually fly to the farther
buoys whose data has not yet been collected.

Figure 6 shows the comparison of the total mission com-
pletion time of under different spectrums. Figure 7 shows
the UAV trajectory obtained by our proposed scheme with
M = 10 buoys and compares it with the other three schemes.
It can be seen that the total mission completion time of

TTO-PCAR is significantly lower than that of other
schemes. In particular, the data collection time of our pro-
posed scheme is 20 s with B = 1MHz and that of TTO-
OMA is 33 s; thus, NOMA is more efficient in data collection
than OMA. This is because the designed reward (shown in
Equation (16)) is related to the total transmission rate in
each time slot. Second, the trajectory of UAV data collection
process is fixed with the FTP and CTS scheme, resulting in
the UAV trajectory of data offloading process longer.
TTO-PCAR scheme takes the coupling of two stages into
the consideration of UAV trajectory optimization; thus, the
time of data offloading process is less. The total flight dis-
tance based on TTO-PCAR is also significantly lower than
that of the other two schemes.

Figure 8 shows the UAV trajectory based on TTO-PCAR
with different spectrums. It can be seen from Figure 8 that
the flight distance of UAV decreases with the increase of
spectrum. This is because the transmission rate of buoys is
reduced with the reduction of spectrum. If the data of the
buoy far from the OBS has not been collected, the agent
chooses to make the UAV closer to the buoy in order to
increase the transmission rate and obtain greater reward
according to (16).

Figure 9 shows the total mission completion time of differ-
ent schemes with different buoy numbers. FTP scheme is to
find the hover points to collect data and classify the problem
as a travelling salesman problem, so as to traverse the hover
points. Hence, FTP takes a lot of time on UAV flight.
Although CTS scheme can collect data in each time slot, it
does not consider the data collection requirements of different
buoys, because the UAV just flies based on circle. The pro-
posed scheme TTO-PCAR dynamically adjusts the UAV tra-
jectory according to the data collection requirements of
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Figure 7: UAV trajectory of different schemes.
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different buoys. Therefore, the total mission completion time
of TTO-PCAR is significantly lower than that of FTP and
CTS.

5. Conclusion

This paper has investigated the joint optimization problem
of the buoy-UAV association relationship, transmit powers,
and the UAV trajectory for NOMA-enabled UAV data col-
lection and offloading in MIoT. First, we propose a TD3-
based UAV trajectory optimization algorithm to solve the
UAV trajectory subproblem. Second, we design a heuristic
algorithm to solve the subproblem of power control and
buoy-UAV association relationship. Finally, we propose a
joint TD3-based trajectory optimization, power control,
and buoy-UAV association relationship scheme. The pro-
posed scheme can effectively solve the mixed-integer non-
convex problem. Simulation results show that the proposed
scheme significantly shortens the total mission completion
time of UAV. In future work, we will investigate the problem
of UAV trajectory optimization based on NOMA to shorten
the time for UAV to perform mission in the MIoT.
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