
Research Article
A Framework for Identification and Classification of IoT
Devices for Security Analysis in Heterogeneous Network

Hafiz Muhammad Zahid,1 Yasir Saleem,1 Faisal Hayat,1 Farrukh Zeeshan Khan ,2

Roobaea Alroobaea ,3 Fahad Almansour,4 Muneer Ahmad ,5 and Ihsan Ali 6

1Department of Computer Science & Engineering, University of Engineering and Technology, Lahore, Pakistan
2Department of Computer Science, University of Engineering and Technology, Taxila, Pakistan
3Department of Computer Science, College of Computers and Information Technology, Taif University, P. O. Box 11099,
Taif 21944, Saudi Arabia
4Department of Computer Science, College of Sciences and Arts in Rass, Qassim University, Buraydah 51452, Saudi Arabia
5School of Electrical Engineering and Computer Science (SEECS), National University of Sciences and Technology (NUST), Sector H-
12, 44000 Islamabad, Pakistan
6Department of Computer System and Technology, Faculty of Computer Science and Information Technology, Universiti Malaya,
50603 Kuala Lumpur, Malaysia

Correspondence should be addressed to Ihsan Ali; ihsanalichd@siswa.um.edu.my

Received 12 June 2021; Revised 22 December 2021; Accepted 19 March 2022; Published 26 April 2022

Academic Editor: Antonio Guerrieri

Copyright © 2022 Hafiz Muhammad Zahid et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work
is properly cited.

Internet of Things (IoT) is a promising technology enabling physical devices like cameras, home appliances, and other devices to
communicate and interoperate with each other. The next wave transforms our homes, society, enterprises, and cities with the
massive presence of IoT devices. The devices in the Internet of Things (IoT) may exchange sensitive data, and an important
issue for any organization is to get the data secured and protected. The preliminary requirement for this is a mechanism
detecting and reporting anomalies automatically to some central controller. Therefore, this mechanism should be able to
classify legit IoT devices from unauthorized ones. Malicious IoT devices, non-IoT devices, and other types of man-in-the-
middle traffic sources must be quarantined for noncompliance. This helps formulate administrative policies and regulate/police
traffic in the network for better QoS management. This work proposed a framework-based hierarchical deep neural network
(HDNNs) to distinguish IoT devices from non-IoT devices using a feature set of IoT-specific traffic. A system has been
designed based on HDNN that classifies IoT devices to their specific categories and identifies new entrants with reasonable
accuracy. The results show that HDNN can distinguish IoT and non-IoT devices with higher accuracy and as well as classify
IoT devices into the respective classes with the required accuracy.

1. Introduction

In the modern age, billions of devices such as home appli-
ances, traffic lights, and lampposts are connected to the
Internet, also known as the Internet of Things (IoT) [1].
These devices, called IoT devices, have several sensors that
generate valuable data. Communication among them is done
under different protocols such as Wi-Fi, Bluetooth, ZigBee,
and Ethernet, which helps IoT devices increase their func-
tionality using actuators [2, 3] sometimes.

IoT devices are usually part of a heterogeneous network
providing valuable services to society. The communication
between these devices also facilitates aggregating and processing
data and reacting to the environment’s changes automatically.
These devices are sometimes involved in sharing enormous
data, forming a network that shares data at extremely high rates
throughout and in a continuous fashion [4].

According to the reports of the International Data Cor-
poration (IDC), the number of IoT devices will reach 41 bil-
lion by 2020, according to the report of the International

Hindawi
Wireless Communications and Mobile Computing
Volume 2022, Article ID 8806184, 16 pages
https://doi.org/10.1155/2022/8806184

https://orcid.org/0000-0002-4463-0683
https://orcid.org/0000-0003-1585-2962
https://orcid.org/0000-0001-5047-1108
https://orcid.org/0000-0002-9549-2540
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/8806184


Data Corporation (IDC). The proliferation of IoT devices in
IoT networks produces an operative challenge for adminis-
trators. The heterogeneous nature of IoT networks in big cit-
ies poses an additional asset management challenge as, in
this case, the nature of IoT devices is diverse, and various
departments install them. For instance, in such a heteroge-
neous network, light sensors can be fixed by the local council
as shown in Figure 1. The local police division can install
cameras, and different garbage and sewage sensors can be
installed by the sanitation department. It is very difficult to
identify the malfunctioning devices and their network loca-
tion due to their invisibility [5].

The absence of direct human involvement differentiates
the Internet of Things (IoT) from the traditional Internet.
An IoT device can generate information using changes in
the environment around, analyze it, and act upon it autono-
mously, however, with a price considering the data privacy,
security, and protection [6]. Researchers have warned of
the prospective risk of large numbers of unprotected devices
communicating on the Internet. Therefore, developers and
manufacturers have been struggling to develop a robust
security system for IoT networks. In 2013, a researcher at
the dev environment in organizational security service dis-
covered the first IoT malware. According to the above anal-
ysis, more than 25% of the malware consisted of devices
except for computers, such as smart cameras, smart TVs,
smartwatches, and other home appliances [7].

Another problem is that the manufacturers of IoT
devices do not provide regular updates for their devices
unless users initiate firmware updates, owing to constrained
resources [8]. These devices cannot run full-fledged security
mechanisms. Therefore, IoT devices are prone to attacks (e.
g., their default login passwords and unpatched bugs) for
more extended periods [9].

IoT devices work mainly in an unattended environment,
so there is a fair chance that an intruder may intentionally
gain physical access to them. Resultantly, intruders may gain
important information through a communication channel
by secretly listening to the conversation because most IoT

devices use wireless links. These devices do not incorporate
robust security features because computation and power
resources are limited [10]. Implementation of solid security
mechanisms is not possible due to the limited resources
available and untrustful interaction with the environment.
Considering the possibility of vulnerable IoT devices in an
IoT network, there must be a robust security solution based
on patching the vulnerabilities from time to time [11].

Nowadays, different organizations also facilitate IoT
device connectivity, which might obtrude security threats
to their networks. Organizations must be capable of deter-
mining the devices connected to their networks. They should
provide a mechanism for identifying whether the connected
devices in their networks are legit and do not pose a risk or
threat [12].

Analysis of real-time network traffic has been used in
several proposals for the identification of devices in general
and for the classification of legit devices from nonlegit ones
[13]. We can state that network traffic traces have been
proven to differentiate IoT devices from non-IoT devices
as there is a substantial difference in the data flow pattern
of non-IoT devices compared to IoT devices. An IoT device
may work when some trigger occurs. For example, object-
detecting sensors work only when someone is passing in
front of the sensor. However, considering IoT device classi-
fication alone, it is mostly very difficult to classify the net-
work traffic of a device into a fixed pattern and to create
an invariant profile even for the same types of IoT devices
such as Drop Camera and Withings Smart Baby Monitor
that are both cameras from different vendors or manufactur-
ers. However, the traffic generated by these two cameras is
another pattern, as shown in Figure 2.

In another scenario, as shown in Figure 2, the traffic gen-
erated from a Netatmo Weather Station is similar to the traf-
fic generated by the baby monitor. Therefore, for a better
classification of devices communicating in the heteroge-
neous network, it is important to identify a pattern that
may help to place the devices in their respective category
even if the devices generate the same kind of data.

Internet Origination Points Internet Network Devices IoT Devices

Wirless
Router

3G/4G/LTE

Wifi

Gateway
Internet
Modem

Hardware

Hardware

Telco
Wireless
Network

Mesh
Network

W
ifiEt

he
rn

et

Figure 1: A heterogeneous network.

2 Wireless Communications and Mobile Computing



IDE identification and classification of IoT devices in a
heterogeneous network have been proposed based on port
information, protocol, and MAC address [14]. By using
the prefix (organization unique identifier (OUI)) of a
MAC address, it is easy to identify the manufacturer of
the device, but this information is not enough to guess
the device functionality as many manufacturers produce
diverse nature of devices. Additionally, manufacturers of
different IoT devices may buy NICs from a third party,
and it is impossible to know about IoT devices just by
using the prefix (OUI) of the MAC address. Another
aspect is this: The MAC address of IoT devices may even
be spoofed [15].

In the recent past, multiple researchers have put for-
ward many methods for automatic identification and clas-
sification of IoT devices with some constraints or rules
[16]. These proposals mainly focused on the identification
and classification of those IoT devices which have already
been identified as part of the network under study. How-
ever, there is no proposal to identify and classify new
devices entering the network. For example, when an
unknown IP-based camera enters the network, it can be
not easy to identify and classify it based on the previous
IP base camera records.

Based on the discussion above, there is a need to build
a holistic security solution for IoT networks. The prelimi-
nary requirement for this is the identification and classifi-
cation of connected and incoming devices. In this paper,
the challenge of identification and classification of IoT
devices in the heterogeneous network has been taken up.
We have used real-time network traffic and developed a
method to differentiate IoT devices from non-IoT devices
as well as classify IoT devices into their respective catego-
ries. IP addresses have not been used as a parameter. The
reason is this: IP addresses can be spoofed very easily. We
have used network traffic statistics and necessary metadata
instead of relying on the deep packet inspection and pro-
posed a hierarchical deep neural network (HDNN) frame-
work that can discriminate between IoT devices from non-
IoT devices and also identify the type of IoT devices with
reasonable accuracy.

2. Literature Review

IoT is a network in which physical devices with sensors, soft-
ware, and some other technologies act as tiny computers.
These devices can collect data from the environment and pro-
cess the data and then send this data to other devices with the
help of internet connectivity. The exponential growth of IoT
devices like smartwatches, smart cameras, lights, sensors,
energy management devices, and other different types of
devices in the intelligent environment has gained a ballistic
interest of researchers to develop improved frameworks using
ML and DL approaches to provide better services to human-
kind in their lives. Researchers from different fields such as
computer science, electrical, and other disciplines have paid
great efforts to deal with this exponential growth. They are
concerned about finding automated approaches for the secu-
rity of IoT systems. In this section, we have covered closely
related work done by different researchers on IoT for different
categories, including IoT device identification, time-series data
classification, and network traffic analysis using the manual as
well as ML and DL approaches.

A lot of work has been done by researchers for character-
izing internet traffic from 2005 to 2012. This work is primar-
ily focused on web application detection such as Skype, mail,
web browsing, and peer-to-peer applications but character-
ized IoT device traffic commonly known as mobile to mobile
communication (M2M).

2.1. Machine Learning Approaches for Traffic Analyses.
Much work has been done over the last few years using dif-
ferent types of machine learning and deep learning algo-
rithms to classify traffic applications for specific computers
and identify malware and botnets in the networks.

Lopez-Martin et al. [17] proposed a framework for a net-
work traffic classifier (NTC) using a combination of DL
models, CNN, and RNN. This framework was used to clas-
sify traffic flows like HTTP, SMTP, Telnet, YouTube, QUIC,
and Office365 with six different features of traffic such as
source port number, port number of destination, payload
volume, transport control protocol (TCP) window size,
interarrival time, and direction of traffic, and these features

3:00 6:00 9:00 12:00 15:00 18:00 24:0021:00
Time

140000

120000

100000

80000

60000

40000

20000

By
te

s
Drop_Camera

3:00 6:00 9:00 12:00 15:00 18:00 24:0021:00
Time

By
te

s

9000

8000

7000

6000

5000

4000

3000

2000

Baby_Monitor

3:00 6:00 9:00 12:00 15:00 18:00 24:0021:00
Time

By
te

s

10000

6000

4000

2000

0

8000

Netamo_Weather

Figure 2: Daily traffic volume from three IoT devices [13].

3Wireless Communications and Mobile Computing



were derived from first twenty packets of traffic flows. It was
shown that the proposed framework with the combination
of both CNN and RNN was better in the perspective of
detection than other alternative algorithms without the need
for any feature extraction or selection, which is mostly
required when using different machine learning models.

In [18, 19], the authors used a combination of flow level
features with different types of packet-level aspects such as
packet size, byte payload distribution, packet interarrival
times, and TLS handshake metadata (cipher suite code) to
expand their work on the detection of malicious or illegal
behavior on the network. Extraction of feature tools from
the network was developed by researchers and was launched
as an open-source tool for feature extraction.

2.2. Machine Learning Approaches for IoT Identification and
Classification. Falk and Fries [18] proposed different types of
authentication methods as a source of device identification
and whitelisting (list of authorized devices). These methods
were implemented for whitelisting in industrial automation
control systems (IACS). Researchers found that in the IACS
environment, the devices used in this domain were engaged
in a communication relation that is already known. There-
fore, the whole complexity of the system can be fixed.
Authors noticed that large-scale enterprise environments
are dynamic where new types of devices were frequently
introduced. Thus, in this case, these methods can be failed.

Meidan et al. [19] applied the random forest (a machine
learning approach) to extract features from network traffic
data using feature extraction techniques as explained in [25]
to identify an unauthorized device from many devices based
on a single TCP flow in intelligent environments. Researchers
collected data from 27 different IoT devices of nine different
types and manually labelled the traffic data to train and evalu-
ate a multiclass classifier for every device type. It was shown
that it correctly discovered the unauthorized ninth device type
and identified the remaining eight types of devices as a partic-
ular type on the list of authorized (white list) device types. This
multiclass classifier used approximately 300 features (packet
level and flow level). Among them, the essential attributes are
lifetime minimum (TTL), median and average packets, the
ratio of total bytes transferred and received, the total number
of packets with reloading tag settings (RST), and Alexa server
rank. This experiment’s limitations were that researchers clas-
sified devices with specific device types, but there were many
device types with a single device in its category. In this way,
it cannot be generalized. The second drawback of this experi-
ment was that the devices were identified with each other,
but it was not for complex mixed real-time traffic.

Sivanathan et al. [5] proposed an approach for the clas-
sification of IoT and non-IoT devices using network traffic
data collected over 3 weeks. The authors applied a random
forest multiclass classifier to 12 attributes extracted from
network traffic such as protocols, packet length, and port
number and obtained a good accuracy for classification. This
method has the drawback that it must be trained for each
device using network traces, and this is not a practical
approach for a large number of IoT devices in the commer-
cial market.

Pêgo and Nunes [20] developed an application to dis-
cover the properties of a new device that can be used to
decide the class of a device. This application automatically
creates an interface and the required integration drivers for
the new device. This paper’s key concern was to identify
the devices interacting within a network using the data
exchanged by IoT devices. Researchers found the accuracy
of different ML techniques for device discovery in the IoT
smart environment. This forwarded a step towards automa-
tion of IoT devices in the IoT environment and reduced tra-
ditional device integration problems for platforms that
bundle possible different IoT devices in an intelligent envi-
ronment. The authors collected communication data by lis-
tening to smart environment traffic. This communication
data (communication files with XML format) was converted
to a database with information about each device in a smart
environment using an application developed in the iPhone
operating system (iOS) which applied different machine
learning algorithms like the Levenshtein distance algorithm,
TF-IDF tables, synonyms match, and finally and multi-
property matching to discover the device that communi-
cated in the IoT network correctly.

Ferrando and Stacey [21] described the issues and chal-
lenges to secure IoT devices. The authors proposed an
approach for security detection applied to data streams and
classified threats in the early stages. This approach is a step
towards the novelty of securing IoT devices because this
technique can classify the traffic generated by sensors and
determine the diverse set of network anomalies. Researchers
evaluated the method as anomaly detection based on data
generated from a network device because most of the anom-
alies in network traffic data share-related attributes. The
hypothesis was that noticing the distribution of features in
network traffic was acceptable as examining the distributions
of diagnostic power in the form of detection and classifica-
tion of large categories of anomalies.

Shen et al. [22] explained how different supervised
machine learning techniques could be applied to analyze
data collected by listening to intelligent environment traffic
and correctly identifying unauthorized IoT devices to pro-
tect the private information of an organization.
Researchers trained and evaluated a multiclass classifier
on the collected and manually labeled dataset from net-
work traffic data of twenty-seven IoT devices of nine dif-
ferent types. They examined that it accurately identifies
the ninth type as unknown and the remaining belonged
to authorized devices.

Suárez and Salcedo [23] applied different classification
techniques such as K-means and ID3 on the dataset col-
lected from twelve different devices such as cameras, lights,
sensors, and fridges. They used twelve features extracted
from network communication data of IoT devices such as
the capacity of the battery, size of memory, internet band-
width required, gateway, Bluetooth enabled, etc. and deter-
mined four classes of devices using ML algorithms with the
help of similar features of these devices. K-mean was tested
on three, four, and five clusters and grouped the devices into
four categories such as mobile orchestrators, fixed orchestra-
tors, fixed followers, and dummy followers.

4 Wireless Communications and Mobile Computing



Lopez-Martin et al. [28] used deep learning approaches
to classify the application layer protocols by using the fea-
tures extracted from the data of packets captured at layer
3. Researchers tested the classification with many different
sets of features, including both ports in some sets, win size,
and payload size. In this paper, it has been shown the possi-
bility of using the traffic rate to classify and identify informa-
tion from network traffic.

Miettinen et al. [24] proposed a system capable of iden-
tifying the types of IoT devices automatically connected in
the IoT smart environment. The authors used fingerprint
classification that enabled enforcement of protocols and
constraints to overcome damage as a result of unauthorized
access to the network. The proposed system imposes some
filtering traffic rules in the network to protect devices com-
municating in the smart environment due to threats origi-
nating from other highly risky devices in the network. The
designed method was attempted by researchers to separate
traffic for the IoT devices which were already seen in the net-
work. This method is impractical because many IoT devices
are being released every year. They have not used the
method for mixed traffic generated from non-IoT devices.
This method provides a way to generate and collect data.

Cvitić et al. [25] proposed a novel technique for the
detection of distributed denial of services DDoS traffic gen-
erated by IoT devices, and this approach worked as a con-
ceptual network model for anomaly detection. This model
was based on the device classes and respective classes are
totally dependent on the traffic generated by these devices
separately.

In the last few years, different researchers worked on IoT
device identification based on port information and MAC
address. Nmap is an open-source tool that has robust func-
tionality used to detect 2600 different versions of operating
systems, but it is very difficult to guess the IoT device based
on port information when IoT devices use HTTP or HTTPS
ports as communication sources. Therefore, there must be a
robust framework to identify and classify IoT devices and
their categories based on traffic patterns generated from dif-
ferent devices in heterogeneous networks [26].

In this work, we have presented a framework that can
discriminate between IoT devices from non-IoT devices
and identify the type of IoT devices with the required accu-
racy according to a given traffic session or sequence of
sessions.

3. Methodology

This research employs deep learning with a collection of dif-
ferent algorithms such as DBN, convolutional neural net-
work, and DNN, inspired by the brain’s functionality and
structure. We have proposed a robust framework for IoT
device identification and classification based on hierarchical
deep neural networks using the Keras framework [27]. A
type of artificial neural network with one input layer for
input variables and one hidden layer and one output layer
is known as a shallow neural network [28]. DNN is similar
to the shallow neural network, but there is more than one
hidden layer of neurons that process the inputs. All neurodes

of hidden layers are fully connected to all neurodes of input
layers. Similarly, all neurodes of output layers are fully con-
nected to all neurodes of previously hidden layers. Hidden
layers are normally used for feature extraction or feature
selection from features fed in the input layer. Neurodes in
hidden layers act as feature detectors, and the number of
hidden layers is increased; then hidden layers will be more
optimal and more important features to the output layer
for identification and Classification.

In ANN, there are three layers which are as follows:

(i) Input layer (all inputs (features) provided to the
model through this layer)

(ii) Hidden layer (maybe more than one depending
upon the problem and used for processing the
inputs received from the input layer)

(iii) Output layer (for prediction)

The input layer is used for communication with the exter-
nal environment that provides the pattern to the neural net-
work. This layer works with independent variables, and the
neurons in this layer take decisions and fed them to the next
hidden layer. The input layer must show the situation for
which we have been training the neural network. Every neu-
ron in the input layer represents independent variables with
influence on the target variable in a neural network.

This hidden layer has a collection of neurons with differ-
ent activation functions that can be applied to it, which can
be found in between the input and output layers. It deals
with the input layer’s processed input, and its responsibility
is just to extract the required features from the input data.
There can be more than one hidden layer in DNN. The
model’s accuracy can be increased by increasing the number
of neurons in the network and additional layers are useful up
to a limit of 9-10. Accuracy may be constant or may be
decreased as their predictive power can be declined. How-
ever, 3 to 10, mostly hidden layers, are being used nowadays.
The number of neurons should be considered in each net-
work, as the number of neurons depends on the problems’
complexity. If there are unnecessary neurons in the network,
then the model will lead to overfitting. If there are few neu-
rons in the network, then these few neurons adequately
detect the signal in the complex dataset.

The machine learning and deep learning models contain
two types of parameters (hyperparameters and model
parameters). Model parameters indicate how the input data
can be used to get desired output by learning at training time
whereas hyperparameters tell how our model can be defined
at the start of training like how many hidden layers can be
used in ANN. These hyperparameters can be decided as a
judgment of an expert and can be changed concerning time
for optimization, and similarly, model parameters like
weights can be updated during backpropagation network
for strong relationship or better accuracy.

The output layer receives the input from the hidden
layer and executes it for identification and classification. It
will check the predicted output with actual outputs, and if
the difference between predicted and actual output is very

5Wireless Communications and Mobile Computing



high, then this layer traces the information back to the input
layer and adjusts the weights by using a backpropagation
network for every epoch. The number of neurons in the out-
put layer must be according to the problem that is to be
processed.

In this part of the paper, we have covered how pcap files
(Wireshark files) are converted into executable (CSV) for-
mat. The dataset has been collected at the request of the Uni-
versity of New South Wales, Sydney (UNWS), Australia, as
self-generated data in 28 pcap files collected from the testbed
as a smart environment that has a number of IoT devices
and non-IoT devices. The same dataset was employed by
Bai et al. [13]. In the testbed, they used 28 IoT and non-
IoT devices for communication, and their data were
recorded under a synthesized network traffic trace for 6
months period.

Figure 3 shows the devices IoT and non-IoT used in the
testbed.

As a first step, we converted the pcap files into an execut-
able format (CSV format). For that purpose, the pcap files
were transformed into CSV files using Python queries with
83 generalized features followed by data labeling for IoT
device classification in a heterogeneous network. To label

our dataset with the specific device, we have used SQL server
management studio. The dataset contains information about
the network traffic stream of the devices that were used in
the testbed for the collection of the dataset in a smart
environment.

Using the large range of feature values in the data might
lead to less accurate results and problems with the training.
Hence, we have decided to use the built-in MinMaxScaler
of the sklearn library in Python. This scaler can be used to
perform min-max scaling, which will lead to the state that
every value in the dataset is in the range (0, 1). We noticed
that after performing the feature scaling, the test set results
were better because the accuracy can be increased after the
scaling of features.

Feature selection is one of the most important parts con-
sidered in IoT traffic for machine learning algorithms
because this technique gives the most important and rele-
vant features for target variables. Hence, the accuracy of
the model can be increased. Feature selection also helps to
reduce “the curse of dimensionality” that is well-known
and might cause the model to overfit or perform poorly. Dif-
ferent machine learning algorithms do not often require fea-
ture selection like decision tree (DT) and random forest

Energy management

Belkin motion
sensor

LIFX
Light bulb

TP Link power
plug

Belkin
switch

Philip hue
lightbulb

Ihome
power plug

Controllers/Hubs

Amazon
echo

Samsung
smart thingsHue

bridge

Cameras

Samsung smart
camera

TP link
camera

Belkin
camera

Netattmo
camera Drop

camera

Internet

Analyzer

Gateway

Temparary

Non IoT Devices

Smart phone
Tablet

Laptop Computer

Health Care Devices

Netatmo
weather station

Awair air quality
monitor

Nest smoke
alarm Withthigs scale Blipcare BP

monitor

Appliances

Pixstar photo
frame

HP envey
printer

Triby
speaker

Google
cromecast

Wired
Wireless

Figure 3: Testbed architecture for IoT and non-IoT devices.

6 Wireless Communications and Mobile Computing



(RF). The reason is that the feature selection process is being
done on the fly due to the way these models are being
trained (the “best” feature is selected at each split of the tree).
However, some models may need feature selection to be per-
formed to reach better results. In this work, we have used a
hierarchical deep neural network, so we have to perform fea-
ture selection for that purpose. We have used different fea-
ture selection methods, but the recursive feature
elimination (RFE) selected important and optimal features
which we have used in our training dataset for the proposed
framework. The features gave better results instead of other
features.

Table 1 shows the most important and optimal features.

3.1. Experimental Evaluation

3.1.1. Identification and Classification of Devices. To identify
and classify IoT devices for security analysis in heteroge-
neous networks, we have proposed an end-to-end robust
framework based on hierarchical deep neural networks.
Our proposed method is actually in two stages. In the first
stage, we have used a deep neural network with one input
layer, 4 hidden layers, and one output layer, all layers are
fully connected, and it is used to distinguish between IoT
devices from non-IoT devices such as laptops, MacBook,
and Samsung Galaxy Tab. In the second stage, we have used
a second deep neural network with 4 hidden layers with a
different number of neurons, and it is used to classify IoT
devices into their respective classes.

The mathematical model of the proposed deep neural
network is given below [29]:

xð Þ jð Þ = f b + 〠
n

i=1
xi

j−1ð Þ ×wi

 !
, ð1Þ

Pt = Sof tMax x jð Þ
� �

, ð2Þ

where b is bias, x is a vector that has input to the input layer,
w is weights, n is the number of previous layer inputs, j is the
number of hidden layers, P is a vector which has probability
after SoftMax, and t represents the number of values in the P
vector, if P1 > P2.

We find the total input for each neuron of the hidden
layer and squash the total net input using the sigmoid activa-
tion function or logistic activation function. For the hidden
layer, we have used the logistic activation function, and this
same process will be repeated for all neurons of hidden
layers and the output layer neurons. We can simplify Equa-
tion (1) as follows:

neth1 = 〠
n

i=1
wi × xi + b: ð3Þ

After the net input of each hidden layer, the neuron then
squashes this net input using the logistic activation function
to find the output of each neuron of the hidden layer, this

Table 1: Optimal features after recursive feature elimination.

Features Description

Source MAC MAC address of the source

Source_port Port number of source

Dest_MAC MAC address of destination

Dest port Destination port number

Flow ID ID of network flow

Protocol Protocols for communication (6 and 17)

Tot forw pack Total forward packets

Flow duration Total duration of network flow

Tot Back pack Total number of packets backward

TotLen Bwd_Pkts Length of all backward packets

TotLen Fwd_Pkts Length of all forward packets

Forward_Pkt Len max Max length of a forward packet from forward packets

Forward_Pkt Len min Min length of a forward packet from forward packets

Forward_Pkt Len mean Mean of forward packets

Forward_Pkt Len Std STD of forward packets length

Backword_Pkt Len max Greater length of a backward packet from all backward packets

Backwaord_Pkt Len_mean Mean(average)length of backward packets

Backword_Pkt Len_Std STD of backward packets length

Flow_Byts/s Traffic flow in bytes/second

Flow_Pkts/s Packets flow/second

Forward_Header Len Length of header of forward packets

Backword_Header Len Length of header of backward packets

7Wireless Communications and Mobile Computing



same process can be used for all neurons of the output layer as
well, and outputs of hidden layer neurons become the inputs
of the output layer and at the output layer; we have used sig-
moid function which can map value between 0 and 1.

outh1 =
1

1 + e−neth1
: ð4Þ

The error can be computed for each output neuron by
using the squared error function and summed to get the total
error:

ETotal =〠 1
2 target − actualð Þ2: ð5Þ

After getting the target value from the output of the output
layer, we can calculate the error to adjust weights by using a
backpropagation network.

Figure 4 shows the proposed methodology with two deep
neural networks for IoT device classification.

The second deep neural network is also expressed as

xð Þj1 = f b1 + 〠
n

i=1
xi

j1−1ð Þ ×wi

 !
,

Pt1 = Sof tMax x j1ð Þ
� �

,
ð6Þ

where b1 is bias, x is a vector that has input to the input
layer, w is weights, n is the number of previous layer inputs,
j is number of hidden layers, P is a vector which has proba-
bility after SoftMax, and t1 represents the number of values
in the P vector.

We find the total input for each neuron of hidden layer
and squash the total net input using the sigmoid activation
function or logistic activation function. For the hidden layer,
we have used the logistic activation function, and this same

Start

Pcap files (Real time
capturing)

Convert into readable
format (Using python

queries)

Database format and
labeling

Data analysis and
preprocessing

Feature selection

Build a DNN with 4
hidden layer

Complete the DNN
training

IOT
device?

No

Yes

Build another DNN
with 7 hidden layer

Complete the DNN
training

Output as a IOT
specific class

End

Input layer 22
neurons

300
neurons

300
neurons

500
neurons

150
neurons

2 neurons
output layer

Input layer 
22

neurons

300
neurons

700
neurons

500
neurons

500
neurons

Output layer
4 neurons

Figure 4: Proposed methodology with two DNNs.

8 Wireless Communications and Mobile Computing



Table 2: List of devices with labelled data.

Category Device name Label Connection type

Controllers and hubs
Samsung smart things

1
Wired connection

Amazon Echo Wireless connection

Cameras

Netatmo camera

2

Wireless connection

Belkin camera Wireless

Samsung smart camera Wireless

Drop camera Wireless

TP-Link camera Wireless

Switches and triggers

iHome power plug

3

Wireless

Philip hue light bulb Wireless

Belkin switch Wireless

TP-link power plug Wireless

Healthcare devices

Netatmo weather station

4

Wireless

Awair air quality monitor Wireless

Nest smoke alarm Wireless

With things scale 4 Wireless

Electronics

Google Chromecast

5

Wireless

HP envy printer Wireless

Triby speaker Wireless

Router Bridge LAN (gateway) TP-Link router 6 Wired/wireless

Table 3: Nonoptimal hyperparameter list.

First deep neural network

Input layer with tan h activation function 22 neurons

Total hidden layers 3 hidden layers

First unseen (hidden) layer using the best activation function, Rectified Linear Unit (ReLu) 200 neurons

Second unseen (hidden) layer using the best activation function, Rectified Linear Unit (ReLu) 300 neurons

Third first unseen (hidden) layer using the best activation function, Rectified Linear Unit (ReLu) 100 neurons

Output layer with SoftMax activation function 2 neurons

Learning rate (LR) 0.01

Decay, momentum 1e − 6, 0.9
Loss, optimizer mean_squared_error, sgd

Epochs 99

Batch_size 35

Second deep neural network

Input layer with tan h activation function 22 neurons

Total hidden layers 3 hidden layers

First unseen layer using a best activation function, Rectified Linear Unit (ReLu) 100 neurons

Second unseen (hidden) layer using a best activation function, Rectified Linear Unit (ReLu) 200 neurons

Third first unseen (hidden) layer using a best activation function, Rectified Linear Unit (ReLu) 100 neurons

Output layer with SoftMax activation function 6 neurons

Learning rate (LR) 0.01

Decay, momentum 1e − 6, 0.9
Loss, optimizer categorical_crossentropy, sgd

Epochs 99

Batch_size 35

9Wireless Communications and Mobile Computing



process will be repeated for all neurons of hidden layers and
the output layer neurons. We can simplify Equation (1) as
follows:

neth1 = 〠
n

i=1
wi × xi + b: ð7Þ

After the net input of each hidden layer, neuron squashed
this net input using the logistic activation function to find the
output of each neuron of the hidden layer, this same process
can be used for all neurons of the output layer as well, and
the outputs of hidden layer neurons become the inputs of
the output layer; and at the output layer, we have used sigmoid
function which can map value between 0 and 1.

outh1 =
1

1 + e−neth1
: ð8Þ

The error can be computed for each output neuron by
using the squared error function and summed to get the total
error [30]:

ETotal =〠 1
2 target − actualð Þ2: ð9Þ

After getting the target value from the output of the output
layer, we can calculate the error to adjust weights by using a
backpropagation network.

Table 2 shows the devices with their specific categories
and labels that we have used in our proposed method. This
figure has not used the light bulb category in our proposed
model because there is only one device in this category.
Therefore, we have used only 6 categories for IoT devices
labeled 1-6.

Confusion matrix for IOT devices and Non-IOT devices

0 1

0
1

Predicted class

A
ct

ua
l c

la
ss

100000

80000

60000

40000

20000

Sc
al

e

1.6e+04 2.4e+03

1.2e+04 1.2e+05

Figure 5: Confusion matrix of IoT vs. non-IoT devices.

Confusion matrix for IOT devices and Non-IOT devices

0 3 4 521

0
3

4
5

2
1

Predicted class

A
ct

ua
l c

la
ss

3000

2500

2000

1500

1000

500
Sc

al
e

1.6e+03 3.1e+02

2.7e+03 2.2e+02

3e+02

2.4e+02

1.1e+02 3e+03 1.6e+02

1.9e+02

10 17 39 16

216156

7 16

11 81

1

13

23

3

168

57

34

5820

2

4

6

Figure 6: Confusion matrix for the 2nd phase of the framework.

10 Wireless Communications and Mobile Computing



Table 4: Optimal hyperparameters list values.

First deep neural network

Input layer with tan h activation function 22 neurons

Total hidden layers 4 hidden layers

First unseen (hidden) layer using the best activation function, Rectified Linear Unit (ReLu) 300 neurons

Second unseen (hidden) layer using the best activation function, Rectified Linear Unit (ReLu) 500 neurons

Third first unseen (hidden) layer using the best activation function, Rectified Linear Unit (ReLu) 150 neurons

Fourth unseen (hidden) layer using the best activation function, Rectified Linear Unit (ReLu) 300 neurons

Output layer with SoftMax activation function 2 neurons

Learning rate (LR) 0.0001

Decay, momentum 1e − 6, 0.9
Loss, optimizer mean_squared_error, sgd

Epochs 3800

Batch_size 15

Second deep neural network

Input layer with tan h activation function 22 neurons

Total hidden layers 4 hidden layers

First unseen layer using the best activation function, Rectified Linear Unit (ReLu) 300 neurons

Second unseen (hidden) layer using the best activation function, Rectified Linear Unit (ReLu) 500 neurons

Third first unseen (hidden) layer using the best activation function, Rectified Linear Unit (ReLu) 700 neurons

Fourth unseen (hidden) layer using the best activation function, Rectified Linear Unit (ReLu) 300 neurons

Output layer with SoftMax activation function 6 neurons

Learning rate (LR) 0.00001

Decay, momentum 1e − 6, 0.9
Loss, optimizer categorical_crossentropy, sgd

Epochs 3800

Batch_size 30

0 20 40 60 80 100

0.6

0.7

0.8

Train
Test

Accuracy

0 20 40 60 80 100

0.4

0.6

0.8

1.0

1.2

Train_loss
Test_loss

Loss

Figure 7: Accuracy and loss of the proposed framework for 99 epochs.

11Wireless Communications and Mobile Computing



4. Performance Evaluation

4.1. Data Construction and Modeling. Data construction and
modeling are as follows:

(i) A total of 936893 samples were selected from the
data pcap files for applying the hierarchical DNN
technique

(ii) 70% of training data for training the models and
30% of data for testing the model

(iii) We also used cross-validation on the training data-
set with 10-folds

(iv) The hierarchical DNN technique is applied, and the
respective accuracies are mentioned in the results

4.2. Hyperparameter Setting for the Proposed Framework.
The models’ parameters are used to describe a way of con-
verting the input data into the model’s desired output.
Hyperparameters instead of model parameters are used to
determine the structure of the model in use. The outcome

0 500 1000 1500 2000 2500 3000 3500
Epoch

Train
Test

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

Model accuracy

Figure 9: Training and testing accuracy of the first-stage DNN.

0 1

0

1

Predicted label

Tr
ue

 la
be

l

Confusion matrix

16905 1428

11776211748

Figure 8: Confusion matrix for IoT and non-IoT devices.

12 Wireless Communications and Mobile Computing



of the model can be changed by changing the values of
hyperparameters. Therefore, the choice of hyperparameters
is a crucial task and plays an important role. Keeping hyper-
parameters in mind is half part of the solution. The second
part of the solution is knowing what kind of hyperparameter
will be best for themodel. In the proposed framework, we have
set different hyperparameters according to requirements.
Table 3 shows the values of nonoptimal hyperparameters that
we have used in hierarchical deep neural networks but not get-
ting high performance. Figures 5 and 6 represent the confu-
sion matrix of the first- and second-stage hierarchical deep
neural networks with nonoptimal hyperparameters. Figure 7
represents the accuracy and loss of the proposed framework
for 99 epochs for nonoptimal hyperparameters.

Table 4 shows the optimal hyperparameters and
achieved the required performance of the system.

In the proposed framework, we have applied the hierar-
chical DNN technique, and the respective performance mea-
sures are mentioned in the results.

Figure 8 describes the confusion matrix of the first-stage
deep neural network with 4 hidden layers with a different
number of neurons for optimal hyperparameters. In this fig-
ure, along the y-axis, the actual values are presented, and
along the x-axis, predicted values are presented in which 0
shows non-IoT devices and 1 shows IoT devices.

The accuracy of the model can be measured as follows:

Accuracy = All right Diagnols
Total Number of samplesð Þ

= 117762 + 16903
147,841

= 0:9089 with unseen datað Þ,

Precision = True Positive
Total predicted true

, Recall = True Positive
Total Actual true

: ð10Þ

4

4

3

3

2

2
predicted label

tr
ue

 la
be

l

1

1666

109

207 14

Confusion Matrix

42

13

61 159 21

22812

810

0

1

1

1

39 16

20 58

34 3

3

547

8

14

16

2

6

3014

2701

201

245

596

1

0

0

5

5

Figure 11: Confusion matrix of the second-stage DNN for IoT
device classification.

Table 5: Classification report.

Label Support Precision Recall F1-score
0 1817 0.85 0.92 0.88

1 3368 0.88 0.89 0.89

2 2781 0.89 0.97 0.93

3 279 0.63 0.72 0.67

4 456 0.79 0.54 0.64

5 943 0.95 0.63 0.76

0
0 500 1500 2000

epoch

model loss

2500 3000 35001000

1

2

lo
ss

4

5

6

3

train
test

Figure 10: Loss of model with 0.2 of the first-stage DNN.

13Wireless Communications and Mobile Computing



Figure 9 shows the accuracy (0.9120) curve for training
as well as for testing the accuracy of the first-stage deep neu-
ral network (DNN) used to discarnate IoT devices and non-
IoT devices. Figure 10 shows the loss curve for training as
well as for testing the loss of the first-stage deep neural net-
work (DNN) used to distinguish between IoT devices from
non-IoT devices.

Figure 11 shows the confusion matrix of the second-
stage deep neural network used for IoT device classification
using the heterogeneous network dataset.

Figure 11 describes the confusion matrix of the second-
stage deep neural network with 4 hidden layers with a differ-
ent number of neurons for optimal hyperparameters. In this

graph, along with the y-axis, the actual values are presented,
and along the x-axis, the predicted values are presented
within the range 0-5. Every value from 0 to 5 represents a
particular class. The accuracy of the model can be measured
as follows:

Accuracy = All Right Dignalsð Þ
Total Number of samplesð Þ

= 1666 + 3014 + 2701 + 201 + 245 + 696ð Þ
9288

= 0:917958 On unseen datað Þ,

epoch

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

Model accuracy

0 500 1500 2000 2500 3000 35001000

train
test

Figure 12: Training and testing accuracy of the second-stage DNN for IoT device classification.

0
0 500 1500 2000

epoch

model loss

2500 3000 35001000

1

2

lo
ss

4

5

6

3

train
test

Figure 13: Training and testing loss of the second-stage DNN.

14 Wireless Communications and Mobile Computing



Precision = True Positiveð Þ
Total predicted trueð Þ ,

Recall = True Positiveð Þ
Total Actual trueð Þ : ð11Þ

Table 5 shows a classification report of the model, which
has different types of performance parameters. Precision can
be calculated by dividing the true positive by the total num-
ber of predicted true as given in the equation. Similarly,
recall can be calculated by dividing the true positives by
the total number of actual trues as shown in the equation.

Figure 12 shows the accuracy curve for training and testing
accuracy of the second-stage deep neural network (DNN)
used to classify IoT devices with a validation accuracy of
0.9179. The y-axis represents the accuracy of the proposed
model, and the x-axis represents the number of epochs. We
trained our model for 3800 epochs. The blue curve shows
the training accuracy, and the orange line shows the accuracy
of the test dataset, which is clear that there is no overfitting,
and the performance of the model is better. Figure 13 shows
the loss curve for training as well as for testing the loss of the
second-stage deep neural network (DNN) used to classify
IoT devices into their respective class using traffic stream.

Table 6 shows a performance metric on existing tech-
niques that we have applied and our proposed framework.

Previous systems were able to identify and classify IoT
devices with a very small range of the dataset, and these were
not end-to-end systems for a smart or intelligent environ-
ment. But the proposed HDNN is an end-to-end system that
is used to discriminate IoT devices from non-IoT devices
and, at the same time, classify IoT devices into their respec-
tive categories with reasonable accuracy, as shown in the
proposed framework diagram. According to the comparison
matrix, it is clear that the proposed system gave better per-
formance than the previous ones.

5. Conclusion

With the emergence of the Internet of Things (IoT), a signif-
icant number of IoT devices are built in various areas, such
as businesses, households, warehouses, and highways. The
appropriate security of IoT devices is crucial since the state
of different IoT devices has other properties. The literature
survey demonstrated an excellent number of cited works
on IoT device identification and classification. Still, most of
the work applied to small enterprise networks is based on
static information such as port information, MAC addresses,
and model train test for devices.

The proposed framework based on hierarchical deep
neural networks (DNNs) is used to discriminate IoT and
non-IoT devices and classify IoT devices to their specific cat-
egory. It has been shown that the proposed method is capa-
ble of an end-to-end system to distinguish IoT and non-IoT
with 91% accuracy, besides classifying IoT devices to the
respective classes with an accuracy of 91.33% in heteroge-
neous networks. According to the comparison matrix as
shown in Table 6, it has been clear that already-proposed
models were machine learning algorithms like random for-
est and decision tree for the classification of IoT devices in
the environment in which only IoT devices were present.

However, proposed framework in this research can iden-
tify IoT devices and non-IoT devices and classify legitimate
IoT devices into their specific classes with approximately
91% accuracy as an end-to-end system in a smart environ-
ment. This helps formulate administrative policies and regu-
late/police traffic in the network for better QoS management.
In a future study, we aim to examine a broader range of IoT
device types and non-IoT devices for building an intelligent
environment, explore new communication technologies and
as well as new deep learning techniques, and experiment
with data from IoT devices compromised with spyware
and cyber espionage and detection of unauthorized devices
for security purpose.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The authors are grateful to the Taif University Researchers
Supporting Project (number TURSP-2020/36), Taif Univer-
sity, Taif, Saudi Arabia. This research work was also partially
supported by the Faculty of Computer Science and Informa-
tion Technology, University of Malaya, under Postgraduate
Research Grant PG035-2016A.

References

[1] H. Tahaei, F. Afifi, A. Asemi, F. Zaki, and N. B. Anuar, “The
rise of traffic classification in IoT networks: a survey,” Journal
of Network and Computer Applications, vol. 154, article
102538, 2020.

Table 6: Comparison matrix.

Technique Dataset Result

Random forest (identification of devices) UNSW 82.34%

Decision tree (identification of devices) UNSW 79.88%

CNN-LSTM (categories [13]) UNSW 74.5%

Proposed framework (HDNN) UNSW 91.30% (average)

15Wireless Communications and Mobile Computing



[2] Z. Guan, J. Li, L. Wu, Y. Zhang, J. Wu, and X. Du, “Achieving
efficient and secure data acquisition for cloud-supported inter-
net of things in smart grid,” IEEE Internet of Things Journal,
vol. 4, no. 6, pp. 1934–1944, 2017.

[3] D. Yu, L. Zhang, Y. Chen, Y. Ma, and J. Chen, “Large-scale IoT
devices firmware identification based on weak password,”
IEEE Access, vol. 8, pp. 7981–7992, 2020.

[4] M. Jindal, J. Gupta, and B. Bhushan, “Machine learning
methods for IoT and their Future Applications,” in 2019 Inter-
national Conference on Computing, Communication, and
Intelligent Systems (ICCCIS), pp. 430–434, Greater Noida,
India, 2019.

[5] A. Sivanathan, D. Sherratt, H. H. Gharakheili et al., “Charac-
terizing and classifying IoT traffic in smart cities and cam-
puses,” in 2017 IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS),
pp. 559–564, Atlanta, GA, USA, 2017.

[6] Y. Yang, L. Wu, G. Yin, L. Li, and H. Zhao, “A survey on secu-
rity and privacy issues in Internet-of-Things,” IEEE Internet of
Things Journal, vol. 4, no. 5, pp. 1250–1258, 2017.

[7] B. Lam and C. Larose, How did the internet of things allow the
latest attack on the internet?, Ed, 2016.

[8] A. Alkhalil and R. A. Ramadan, “IoT data provenance imple-
mentation challenges,” Procedia Computer Science, vol. 109,
pp. 1134–1139, 2017.

[9] R. Roman, J. Zhou, and J. Lopez, “On the features and chal-
lenges of security and privacy in distributed internet of things,”
Computer Networks, vol. 57, no. 10, pp. 2266–2279, 2013.

[10] M. A. Al-Garadi, A. Mohamed, A. Al-Ali, X. Du, and
M. Guizani, “A survey of machine and deep learning methods
for Internet of Things (IoT) security,” 2018, http://arxiv.org/
abs/1807.11023.

[11] F. Meneghello, M. Calore, D. Zucchetto, M. Polese, and
A. Zanella, “IoT: Internet of threats? A survey of practical
security vulnerabilities in real IoT devices,” IEEE Internet of
Things Journal, vol. 6, pp. 8182–8201, 2019.

[12] M. Chiang and T. Zhang, “Fog and IoT: an overview of
research opportunities,” IEEE Internet of Things Journal,
vol. 3, no. 6, pp. 854–864, 2016.

[13] L. Bai, L. Yao, S. S. Kanhere, X. Wang, and Z. Yang, “Auto-
matic device classification from network traffic streams of
internet of things,” in 2018 IEEE 43rd Conference on Local
Computer Networks (LCN), Chicago, IL, USA, 2018.

[14] P. Bajpai, A. K. Sood, and R. J. Enbody, “The art of mapping
IoT devices in networks,” Network Security, vol. 2018, no. 4,
pp. 8–15, 2018.

[15] A. Sivanathan, H. H. Gharakheili, F. Loi et al., “Classifying IoT
devices in smart environments using network traffic character-
istics,” IEEE Transactions on Mobile Computing, vol. 18, no. 8,
pp. 1745–1759, 2019.

[16] A. Sivanathan, H. H. Gharakheili, and V. Sivaraman, “Manag-
ing IoT cyber-security using programmable telemetry and
machine learning,” IEEE Transactions on Network and Service
Management, vol. 17, no. 1, pp. 60–74, 2020.

[17] M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, and
J. Lloret, “Network traffic classifier with convolutional and
recurrent neural networks for internet of things,” IEEE Access,
vol. 5, pp. 18042–18050, 2017.

[18] R. Falk and S. Fries, “Using managed certificate whitelisting as
a basis for internet of things security in industrial automation

applications,” International Journal on Advances in Security,
vol. 8, no. 1 & 2, p. 2015, 2015.

[19] Y. Meidan, M. Bohadana, A. Shabtai et al., “Detection of unau-
thorized IoT devices using machine learning techniques,”
2017, http://arxiv.org/abs/1709.04647.

[20] P. R. J. Pêgo and L. Nunes, “Automatic discovery and classifi-
cations of IoT devices,” in 2017 12th Iberian Conference on
Information Systems and Technologies (CISTI), Lisbon, Portu-
gal, 2017.

[21] R. Ferrando and P. Stacey, “Classification of device behaviour
in internet of things infrastructures,” in Proceedings of the 1st
International Conference on Internet of Things and Machine
Learning, New York, 2017.

[22] J. Shen, Y. Li, B. Li, H. Chen, and J. Li, “IoT eye an efficient sys-
tem for dynamic IoT devices auto-discovery on organization
level,” in 2017 IEEE 4th International Conference on Cyber
Security and Cloud Computing (CSCloud), pp. 294–299, New
York, NY, USA, 2017.

[23] J. N. Suárez and A. Salcedo, “ID3 and k-means Based method-
ology for Internet of Things device classification,” in 2017
International Conference on Mechatronics, Electronics and
Automotive Engineering (ICMEAE), pp. 129–133, Cuernavaca,
Mexico, 2017.

[24] M. Miettinen, S. Marchal, I. Hafeez et al., “IoT sentinel demo:
automated device-type identification for security enforcement
in IoT,” in 2017 IEEE 37th International Conference on Distrib-
uted Computing Systems (ICDCS), pp. 2511–2514, Atlanta,
GA, USA, 2017.

[25] I. Cvitić, D. Peraković, M. Periša, and M. Botica, “Novel
approach for detection of IoT generated DDoS traffic,” Wire-
less Networks, vol. 27, no. 3, pp. 1573–1586, 2021.

[26] A. S. Hsu, Automatic Internet of Things device category identi-
fication using traffic rates, Virginia Tech, 2019.

[27] A. Radford, L. Metz, and S. Chintala, “Unsupervised represen-
tation learning with deep convolutional generative adversarial
networks,” 2015, http://arxiv.org/1511.06434.

[28] M. Lopez-Martin, B. Carro, and A. Sanchez-Esguevillas, “IoT
type-of-traffic forecasting method based on gradient boosting
neural networks,” Future Generation Computer Systems,
vol. 105, pp. 331–345, 2020.

[29] O. Salman, I. H. Elhajj, A. Chehab, and A. Kayssi, “A machine
learning based framework for IoT device identification and
abnormal traffic detection,” Transactions on Emerging Tele-
communications Technologies, vol. 33, no. 3, article e3743,
2022.

[30] I. Cvitić, D. Peraković, B. Gupta, and K.-K. R. Choo, “Boost-
ing-based DDoS detection in Internet of Things systems,”
IEEE Internet of Things Journal, vol. 9, no. 3, pp. 2109–2123,
2022.

16 Wireless Communications and Mobile Computing

http://arxiv.org/abs/1807.11023
http://arxiv.org/abs/1807.11023
http://arxiv.org/abs/1709.04647
http://arxiv.org/1511.06434

	A Framework for Identification and Classification of IoT Devices for Security Analysis in Heterogeneous Network
	1. Introduction
	2. Literature Review
	2.1. Machine Learning Approaches for Traffic Analyses
	2.2. Machine Learning Approaches for IoT Identification and Classification

	3. Methodology
	3.1. Experimental Evaluation
	3.1.1. Identification and Classification of Devices


	4. Performance Evaluation
	4.1. Data Construction and Modeling
	4.2. Hyperparameter Setting for the Proposed Framework

	5. Conclusion
	Data Availability
	Conflicts of Interest
	Acknowledgments

