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Coverage optimization is an important research topic in wireless sensor networks (WSNs). By studying the coverage optimization
problem, the coverage rate of the network can be improved, and the number of redundant sensors can be reduced. In order to
improve the coverage performance of wireless sensor networks, we propose an improved ant lion optimizer (IALO) to solve
the coverage optimization problem in a WSN. Firstly, we give a network coverage optimization model with the objective of
maximizing network coverage rate. Secondly, we alternately execute Cuckoo Search (CS) and Cauchy mutation to update the
positions of the ants to enhance population diversity and accelerate convergence speed. Then, we introduce differential
evolution (DE) to mutate the population of antlions to improve the convergence accuracy of our algorithm. We compare
IALO with the original ant lion optimizer (ALO) and other algorithms on 9 benchmark functions to verify its effectiveness.
Finally, IALO is applied to the coverage optimization in wireless sensor networks. Simulation results show that, compared with
previous works, IALO provides higher coverage rate, makes the sensor distribution more uniform, and effectively reduces the
deployment cost.

1. Introduction

A wireless sensor network is a distributed system with a
large number of sensor nodes [1]. In recent years, with the
development of wireless communication technology, WSNs
have been widely used in target tracking [2], environment
monitoring [3], military applications [4], medical applications
[5], etc. As network coverage affects the service quality of a
WSN, sensor distribution becomes a key problem in the
research fields of WSN. Because of the limitations of the phys-
ical environment, sensors are usually randomly deployed in
the monitor area in practical applications. Consequently, the
blank areas with no sensor and the areas with redundant sen-
sors coexist in the monitor field. Therefore, it is necessary to
adaptively adjust the positions of sensors in aWSN to improve
its coverage rate, reduce the coverage blind area, and reduce
the deployment cost.

The swarm intelligence optimization algorithm provided
new ways to solve the coverage optimization problem in

WSNs. In recent years, many researchers have applied it to
the coverage control of WSN and studied its performance.
The authors in [6] used particle swarm optimization (PSO)
to optimize network coverage. This algorithm has strong
global convergence ability, but it was easy to fall into the
local optima. An optimization method based on artificial fish
swarm algorithm was proposed in [7]. It effectively achieved
wireless sensor network coverage optimization, but its
redundancy is high. A method using bee algorithm was
introduced in [8]. This algorithm provides higher coverage
rate than the genetic algorithm and uses less system
resources. In [9], the authors proposed a sensor deployment
scheme based on glowworm swarm optimization (GSO) to
enhance the network coverage after their initial random
deployment of the mobile sensors. A novel sensor deploy-
ment scheme based on fruit fly algorithm (FOA) was pro-
posed in [10] to improve the coverage rate. Compared with
the classic standard PSO and GSO, this algorithm has faster
convergence speed and higher coverage rate, but it needs to
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be improved to achieve approximately complete coverage.
The existing works show that the swarm intelligence optimi-
zation algorithm can improve the coverage rate and service
performance of a WSN. But in order to meet the practical
application requirements, the coverage rate and uniformity
of WSN still need to be improved.

The ant lion optimizer (ALO) is a natural-inspired opti-
mization algorithm proposed by Mirjalili in 2015.
Researchers found that ALO surmounts other famous tech-
niques like genetic algorithm (GA) and particle swarm opti-
mization for various engineering problems [11]. At present,
ALO algorithm is successfully applied to multiobjective
transformer design optimization [12], power system optimi-
zation [13], WSN data gathering [14], route planning for
unmanned aerial vehicle [15], etc. However, similar to other
intelligent algorithms, the ALO algorithm also has problems
such as slow convergence and easy to fall into local optima,
and its optimization ability still needs to be improved. In this
regard, scholars suggested many effective improved ALO
algorithms. In [16], the authors proposed a novel quasioppo-
sitional chaotic antlion optimizer (QOCALO). This algo-
rithm is designed by combining the quasiopposition-based
learning (QOBL) and chaotic local search (CLS), which
offers better results than the original ALO in terms of solu-
tion quality and convergence speed. In [17], the authors pro-
posed an opposition-based Laplacian antlion optimizer (OB-
L-ALO), which accelerates the convergence speed very effi-
ciently and proficiently to avoid local optima. In [18], the
authors proposed an improved ALO algorithm (OB-LF-
ALO) integrating levy flight (LF) and opposition-based
learning (OB), which enhances the exploration of the unvis-
ited region of the search space and accelerated the conver-
gence rate of basic ALO.

In order to maximize the coverage rate of WSN, aiming
at the defects of ALO algorithm, we propose an improved
ant lion algorithm (IALO) based on Cuckoo Search, Cauchy
mutation, and differential evolution. The effectiveness of
IALO is verified by comparing the benchmark functions.
Then, IALO is applied to coverage optimization in WSN,
and its application value is verified compared with other
four algorithms in the same scene.

The rest of the paper is organized as follows. In Section
2, we give the coverage model. In Section 3, we introduce
the standard ALO algorithm and present our IALO algo-
rithm in detail. We give the experiment results and conclu-
sions in Section 4 and 5, respectively.

2. Coverage Model

We assume that the monitor area A is a two-dimensional
region with an area of L × Lm2. N mobile sensors are
deployed randomly in this area. The coordinate of the i-th
node is nodei = ðxi, yiÞ. The sensors are homogeneous; their
sensing radius and communication radius are presented as rs
and rc. Since the sensing range of each sensor node is a
closed circular area with ðxi, yiÞ as its center and rs as a fixed
radius, the monitor area is discretized into m × n pixels to be
covered for the convenience of calculation. Each pixel is
expressed as pj = ðxj, yjÞ, j = 1, 2,⋯m × n. The Euclidean

distance between nodei and pixel pj = ðxj, yjÞ is defined by
the following equation:

d nodei, pj
� �

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi − xj
� �2 − yi − yj

� �2r
: ð1Þ

We use a probabilistic detection model in this paper. The
sensing probability Pcov of the node nodei to the pixel pj is
described as follows [19]:

Pcov nodei, pj
� �

=

0 rs + re ≤ d nodei, pj
� �

,

exp −α1λ1
β1

λ2
β2 + α2

 !
rs − re < d nodei, pj

� �
< rs + re,

1 rs − re ≥ d nodei, pj
� �

,

8>>>>>>>><
>>>>>>>>:

ð2Þ

where re (0 < re < rs) is a measure of uncertainty caused by
environmental interference in detection. α1, α2, β1, and β2
are the detection probability parameters related to sensor
node characteristics. λ1, λ2 are input parameters, λ1 = re −
rs + dðnodei, pjÞ, and λ2 = re + rs − dðnodei, pjÞ.

In the monitor area, a pixel can be sensed by multiple
sensors at the same time. Therefore, the joint sensing prob-
ability of the sensor set Nodeall to the pixel pj shows if pj is
effectively covered [19].

C Nodeall, pj
� �

= 1 −
Y

nodei∈Nodeall

1 − Pcov nodei, pj
� ��

: ð3Þ

When CðNodeall, pjÞ is greater than or equal to a certain
threshold Cth, it is considered that the pixel pj can be
detected by the sensor node.

In this paper, the coverage rate of a wireless sensor net-
work is defined as the ratio of the number of the pixels that
have been covered to the total number of all pixels in the mon-
itor area. The coverage rate Rcov is calculated as follows [19]:

Rcov =
∑m×n

j=1 C Nodeall, pj
� �
m × n

: ð4Þ

Equation (4) is used as the objective function to maximize
the network coverage. We use IALO to obtain the optimal
value of Rcov to improve the coverage performance of a WSN.

3. The Wireless Sensor Network Coverage
Optimization Algorithm

3.1. Standard ALO Algorithm. ALO optimizes network cov-
erage by mimicking the interaction between antlions and
ants in a trap. The ants explore the search space by randomly
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walking around the antlions, and they learn from the
selected antlion and the elite to ensure the diversity of the
population and the optimization performance of the algo-
rithm. An antlion is equivalent to a solution of the problem,
and it updates and saves the approximate optimal solution
by hunting the ants with high fitness. The five preying steps
of the antlion can be represented by the following mathe-
matical model (equations (5)–(14)) [11].

3.1.1. Random Walks of Ants. The ants walk randomly
around the antlion to find food in the search space, and

the antlions build traps to trap them. A random walk is cho-
sen for modelling the ants’ movement as follows:

X tð Þ = 0, cumsum 2r t1ð Þð Þ½
− 1,⋯, cumsum 2r tnð Þð Þ − 1�, ð5Þ

r tð Þ =
1, rand > 0:5,
0, rand ≤ 0:5,

(
ð6Þ

Start

Set parameters

Initialize the ants and antlions
randomly

Select an antlion using Roulette wheel

Update the boundary of a random walk using equation (10-11)
Create a random walk and normalize it using equation (5-7)

Update the positions of ants using equation (14)

Update elite if an antlion
becomes fitter than the elite

Calculate the values of the fitness of all ants. Replace an antlion
with its corresponding ant using equation (13)

Update the positions of antlions using equation (23), (24) and (25)

N

Y

Calculate the fitness of the antlions, and
find the best ant lion as an elite

P < 0.5

Perturb the positions of
ants using equation (18)

Perturb the positions of
ants using equation (20)

Update the positions of ants using equation (22)

t < T

Return the elite and the best
positions

End

Y

t  = t  + 1

N

Figure 1: Coverage optimization in IALO.
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where XðtÞ is the set of the steps of the random walk,
cumsum is the calculated cumulative sum, n is the maxi-
mum number of iterations, t shows the step of random walk,
rðtÞ is a stochastic function, and rand is a random number
with uniform distribution in the interval of ½0, 1�. The posi-
tion of an ant is updated at every step of the optimization.
In order to keep the random walks inside the search space,
we use normalization by

Xt
i =

Xt
i − ai

� �
dti − cti
� �

bi − ai
+ cti , ð7Þ

where ai and bi are the minimum and maximum of the ran-
dom walk of the i-th variable and cti and dti are the lower and
upper bound of the i-th variable at the t-th iteration.

3.1.2. Trapping in Antlion’s Pits. The ants select an antlion
for random walk at every iteration, and their random walks
are affected by antlions’ traps. This mathematical model can
be expressed as follows:

cti = Antliontj + ct , ð8Þ

dti = Antliontj + dt , ð9Þ

where Antliontj is the position of the selected j-th antlion at

the t-th iteration and ct and dt are the minimum and maxi-
mum values of all variables for the i-th ant at the t-th
iteration.

3.1.3. Sliding the Ants towards an Antlion. The ALO algo-
rithm uses a roulette wheel selection operator to select

antlions based on their fitness during optimization. An
antlion with better fitness has greater chances to be selected
and to catch ants. Once an antlion realizes that an ant is in
the trap, it shoots sands outward the center of the trap to
prevent the ant from escaping. As a result, the trap decreases
adaptively, and the range of the ant’s random walk becomes
smaller. Finally, the ant slowly slides toward the antlion. As
the number of iterations increases, the change of the trap
range can be expressed as follows:

ct = ct

I
, ð10Þ

dt = dt

I
, ð11Þ

I = 10ω t
T

ω = 2, if t > 0:10T ,
ω = 3, if t > 0:50T ,
ω = 4, if t > 0:75T ,
ω = 5, if t > 0:90T ,
ω = 6, if t > 0:95T:

8>>>>>>>><
>>>>>>>>:

ð12Þ

In these equations, t shows the current iteration, T is the
maximum value of the iterations, I is a ratio, I = 1 when t
≤ 0:1T , and ω is a constant based on the current iteration.
The range of the traps shrinks sharply in the late iterations.

3.1.4. Catching Prey and Rebuilding the Trap. The fitness of
the new position of an ant is calculated in this stage. If an
ant has a better fitness than its corresponding antlion, the
ant is caught by the antlion and then the antlion reconstructs

1: Set the parameters of the WSN: the sensing radius of sensor rs, the number of the nodes N , and the area of the monitoring area
L × L
2: Set the parameters of the algorithm: the population size Num, the dimension d, the maximum iteration number T , the lower
bound lb, and the upper bound ub
3: Initialize the ants and antlions randomly
4: Calculate the fitness of the antlions, and find the best antlion as an elite
5: Whileðt < TÞ
6: for1i = 1 to Num
7: Select an antlion using roulette wheel
8: Update the boundary of a random walk using equations (10) and (11)
9: Create a random walk and normalize it using equation (5), (6), and (7)
10: Update the positions of ants using equations (14), (21), and (22)
11: End for1
12: Calculate the values of the fitness of all ants
13: Replace an antlion with its corresponding ant using equation (13)
14: for2i = 1 to Num
15: Update the positions of antlions using equations (23), (24), and (25)
16: End for2
17: Update the elite if an antlion has a better fitness than it
18: t = t + 1
19: End while
20: Output the elite (coverage rate) and the best positions (the deployment of the nodes).

Pseudocode 1: Improved ant lion optimizer.
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the trap for the next hunt. The antlion is required to update
its position to the latest position of the hunted ant to
enhance its chance of catching new prey. The following
equation is presented in this regard:

Antliontj = Antti if f Antti
� �

> f Antliontj
� �

: ð13Þ

Antliontj is the position of the j-th antlion selected at the

t-th iteration, Antti is the position of the i-th ant at the t-th
iteration, and f shows the objective function.

3.1.5. Elitism. The best antlion is saved and considered as an
elite antlion in each iteration, which affects the movements
of all the ants during the iterations. Since every ant ran-
domly walks around an antlion selected by the roulette
wheel and the elite simultaneously, the position of the i-th
ant at the t-th iteration can be expressed as follows:

Antti =
Rt
A + Rt

E

2 : ð14Þ

Rt
A is the random walk around the antlion selected at the

t-th iteration, and Rt
E is the random walk around the elite at

the t-th iteration.

3.2. Improved ALO Algorithm. We propose an improved ant
lion optimizer integrating with Cuckoo Search, Cauchy
mutation, and differential evolution (IALO). Compared to
ALO, IALO has faster convergence speed and higher optimi-
zation accuracy.

3.2.1. Cuckoo Search. Cuckoo Search [20] is a nature-
inspired optimization algorithm proposed by Xin-She Yang
and Suash Deb. This algorithm mimics the aggressive repro-
duction strategy of cuckoo bird species with the Levy flight
action of birds and fruit flies. The cuckoo birds lay their eggs
in the nests of other birds so that they would not hatch their
own eggs. In CS, three idealized rules are used:

(1) Each cuckoo lays one egg at a time and randomly
chooses a nest to dump it

(2) The best nests with high quality eggs will be pre-
served for the next generation

(3) The number of available parasitic host nests is fixed,
and a host bird detects a parasitic cuckoo egg with a
probability pa ∈ ½0, 1�

According to the above rules, the update of nests is gen-
erated by the random walk of Levy flight as follows [20]:

xt+1i = xti + α ⊕ Levy βð Þ, ð15Þ

Table 1: Benchmark test functions.

Function Formula Dim Bounds Optimum

Sphere F1 xð Þ =〠d

i=1x
2
i 30 −100,100½ � 0

Schwefel 2.22 F2 xð Þ =〠d

i=1 xij j +
Yd

i=1
xij j 30 −10, 10½ � 0

Schwefel 1.2 F3 xð Þ =〠d

i=1 〠i

j=1xj
� �2

30 −100,100½ � 0

Rosenbrock F4 xð Þ =〠d−1
i=1 100 xi+1 − x2i

� �2 + xi − 1ð Þ2
h i

30 −30, 30½ � 0

Quartic F5 xð Þ =〠d

i=1ix
4
i + random 0, 1½ Þ 30 −1:28,1:28½ � 0

Rastrigin F6 xð Þ =〠d

i=1 x2i − 10 cos 2πxið Þ + 10
� �

30 −5:12,5:12½ � 0

Ackley F7 xð Þ = −20 exp −0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/d〠d

i=1x
2
i

r !
− exp 1/d〠d

i=1cos 2πxið Þ
� �

+ 20 + e 30 −32, 32½ � 0

Griewank F8 xð Þ = 1/4000〠d

i=1x
2
i −
Yd

i=1 cos xi/
ffiffi
i

p� �
+ 1 30 −600,600½ � 0

Penalized

F9 xð Þ = π/dð Þ 10 sin πy1ð Þ +〠d−1
i=1 yi − 1ð Þ2 1 + 10 sin2 πyi+1ð Þ� �

+ yd − 1ð Þ2
n o

+〠d

i=1u xi , 10, 100, 4ð Þ, yi = 1 + xi + 1/4ð Þ, u xi, a, k,mð Þ

=
k xi − að Þm xi > a

0 −a < xi < a

k −xi − að Þm xi > a

8>><
>>:

30 −50, 50½ � 0

Table 2: Parameter setting.

Algorithm Parameter setting

FOA s = 0:3
PSO c1 = c2 = 2, ωmax = 0:9, ωmin = 0:4
WOA [23] a1 = 2, 0½ �, a2 = −2, 1½ �, b = 1
GWO [24] a = 2, 0½ �
IALO CR = 0:95
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where xt+1i shows the new solution and xti shows the solution
of the i-th cuckoo. The product ⊕ means entry-wise multi-
plication. α is the step size, which is usually selected as 1; it
also can be set by

α = α0 xti − xtbest
� �

: ð16Þ

In equation (16), α0 shows the initial search step size,
and xtbest is the global optimal solution at the t-th iteration.
In the random walk provided by Levy flight, the random step
size is drawn from a Levy distribution.

L βð Þ ∼ u = t−1−β, 0 < β ⩽ 2: ð17Þ

In this work, CS is embedded into IALO to perturb the
positions of ants, in order to increase the chance of IALO
to jump out of the local optima and enhance its ability to
converge towards global optima. Using CS to perturb the
positions of ants can be expressed as follows:

Antt∗i = Antti + α0 Antti − elite
� �

⊕ Levy βð Þ, ð18Þ

where Antt∗i shows the new position of an ant after perturba-
tion and elite shows the best antlion of the t-th iteration.

3.2.2. Cauchy Mutation. Cauchy mutation is used in IALO
to improve the diversity of the population of ants, increase
the search space, accelerate the convergence speed, and

improve the global search ability. The origin-centered 1D
Cauchy density function is defined as follows [21]:

f xð Þ = 1
π

t
x2 + t2

	 

: ð19Þ

After Cauchy mutation, the ants use less time to search
the adjacent intervals and spend more time to search for
the global optima. Therefore, Cauchy mutation is beneficial
to increase the population diversity, and it also improves
the global search ability of IALO. In this work, the Cauchy
mutation carried out by an ant should be calculated as

Antt∗i = Antti + Antti ⊕ Cauchy 0, 1ð Þ, ð20Þ

where Cauchy ð0, 1Þ is a random number produced by the
Cauchy distribution with t = 1.

In order to further improve the optimization perfor-
mance of IALO, we adopt a dynamic selection strategy to
mutate the position of an ant. Cuckoo Search and Cauchy
mutation are used alternately under a certain probability of
50%.

Antt∗i = Antti + α0 Antti − elite
� �

⊕ Levy βð Þ, p < 0:5,

Antt∗i = Antti + Antti ⊕ Cauchy 0, 1ð Þ, p ≥ 0:5,

(

ð21Þ

where p is a random number in ½0, 1�.

Table 3: Comparison results of function optimization.

Function Metrics IALO ALO FOA WOA GWO PSO
OB-L-ALO

[17]
OB-LF-ALO

[18]

F1
Mean 0:0000E + 00 1:0654E − 05 1:0146E − 03 4:8198E − 151 1:0907E − 58 3:8243E − 01 1:0100E − 09 0:0000E + 00
Std 0:0000E + 00 7:6999E − 06 1:3999E − 04 2:6394E − 150 3:0615E − 58 1:0367E − 01 4:6300E − 09 0:0000E + 00

F2
Mean 0:0000E + 00 3:6011E + 01 1:6207E + 00 1:6570E − 104 1:0141E − 34 3:4169E + 00 5:9800E − 05 0:0000E + 00
Std 0:0000E + 00 4:6837E + 01 1:0403E − 01 5:8354E − 104 1:0483E − 34 1:4875E + 00 4:2600E − 05 0:0000E + 00

F3
Mean 0:0000E + 00 1:0400E + 03 2:7936E − 01 2:0499E + 04 2:2381E − 14 2:7138E + 01 1:1600E − 29 0:0000E + 00
Std 0:0000E + 00 5:0487E + 02 4:5952E − 02 8:5427E + 03 1:0848E − 13 7:0735E + 00 5:9500E − 29 0:0000E + 00

F4
Mean 1:7788E − 04 1:2881E + 02 2:8844E + 01 2:7102E + 01 2:6849E + 01 2:7229E + 02 5:4600E − 03 9:5900E − 03
Std 2:8763E − 04 2:2785E + 02 2:1101E − 01 5:2570E − 01 7:8341E − 01 2:6406E + 02 7:1700E − 03 1:2800E − 02

F5
Mean 5:7664E − 05 9:8351E − 02 2:4607E + 01 2:5284E − 03 7:2906E − 04 1:3874E + 00 2:7800E − 04 9:7300E − 05
Std 5:7176E − 05 2:6388E − 02 7:1563E + 00 2:2613E − 03 3:1465E − 04 3:0946E + 00 2:5300E − 04 8:6900E − 05

F6
Mean 0:0000E + 00 8:6163E + 01 7:1921E + 01 0:0000E + 00 5:2374E − 01 8:9437E + 01 3:0100E − 09 0:0000E + 00
Std 0:0000E + 00 3:1014E + 01 7:4816E + 00 0:0000E + 00 1:7055E + 00 1:7614E + 01 4:8200E − 09 0:0000E + 00

F7
Mean 8:8818E − 16 2:0733E + 00 8:8257E − 02 3:7303E − 15 1:7349E − 14 2:0203E + 00 2:1000E − 05 8:8818E − 16
Std 0:0000E + 00 6:0300E − 01 7:9936E − 03 2:3603E − 15 3:0208E − 15 5:8398E − 01 1:4600E − 05 4:0100E − 31

F8
Mean 0:0000E + 00 1:0299E − 02 1:5752E − 06 0:0000E + 00 2:0188E − 03 6:6705E − 02 6:3200E − 09 0:0000E + 00
Std 0:0000E + 00 6:4416E − 03 3:5681E − 07 0:0000E + 00 7:1923E − 03 2:4607E − 02 1:2700E − 08 0:0000E + 00

F9
Mean 6:0988E − 09 9:1844E + 00 1:7176E + 00 7:1550E − 03 3:4505E − 02 3:5577E + 00 6:4400E − 07 3:2000E − 05
Std 1:1969E − 08 4:3550E + 00 4:0992E − 03 8:2659E − 03 1:5983E − 02 1:6070E + 00 5:8100E − 07 8:4100E − 05
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After mutation, a greedy criterion is introduced to com-
pare the fitness of the new position of an ant with its old one
to determine whether to update the ant’s position.

Antt+1i = Antt∗i f Antt∗i
� �

> f Antti
� �

,

Antt+1i = Antti f Antt∗i
� �

≤ f Antti
� �

:

(
ð22Þ

3.2.3. Differential Evolution Algorithm. Differential evolution
(DE) includes three operations: mutation, crossover, and
selection [22]. DE first generates a new mutant vector by
mutation strategy and then mixes the new vector with the
target vector to generate a trial vector. The trial vector is
compared to the target vector by a greedy criterion. If the
trial vector outputs a smaller cost function value than the
target vector, the target vector is replaced by the trial vector
in the following iteration. Otherwise, the target vector is
retained. The common differential mutation strategies are

DE/rand/1, DE/rand/2, DE/best/1, DE/best/2, etc. In IALO,
we use DE/rand/1 mutation strategy. We assume that there
is a target vector XiðtÞ, and we generate the mutant vector
ViðtÞ according to

Vi tð Þ = Xr1 tð Þ + F Xr2 tð Þ − Xr3 tð Þð Þ: ð23Þ

In equation (23), F is the mutation factor; it is a constant
from ½0, 1�. r1, r2, and r3 are random integers that are differ-
ent with the running index i. Xr1ðtÞ, Xr2ðtÞ, and Xr3ðtÞ are
distinct vectors randomly chosen from the current popula-
tion at the t-th iteration. The mutant vector ViðtÞ is mixed
with XiðtÞ; they generate the trial vector UiðtÞ using

Ui,j tð Þ =
Vi,j tð Þ, if randi,j 0, 1ð Þ ≤ CR or j = jrand,
Xi,j tð Þ, otherwise:

(

ð24Þ

In equation (24), jrand is a randomly chosen index in the
interval ½1,D�, D shows the dimension of the vector, and
randi,j ½0, 1� is a uniform random number in ½0, 1�. CR is
the crossover factor in ½0, 1�.

The selection of the differential evolution algorithm
determines whether the target vector or the trial vector is
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Figure 2: The convergence curves of six algorithms.

Table 4: Experiment setting.

Experiment Area
Number of sensors

(N)
Sensing radius

(rs)

1 50m × 50m 30,40,50,60,70 5m

2 100m × 100m 50,60,70,80,90 7m
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retained in the next iteration. For the maximization prob-
lem, the selection is defined as follows:

Xi t + 1ð Þ =
Ui tð Þ if f Ui tð Þð Þ > f Xi tð Þð Þ,
Xi tð Þ if f Ui tð Þð Þ ≤ f Xi tð Þð Þ:

(
ð25Þ

In this work, DE is introduced into IALO to perform dif-
ferential mutation on the population of antlions to improve
the convergence accuracy.

3.3. Coverage Optimization Based on IALO. In this paper,
IALO is used to optimize the deployment of sensors. Its

optimization objective is to maximize the coverage rate
Rcov in the coverage model of a WSN. The coverage optimi-
zation problem is transformed into a high-dimensional vec-
tor optimization problem with equation (4) as its objective
function. The process of node position optimization is trans-
formed into a series of behaviors of antlions preying on ants.
After the iterations, the position of the elite antlion is the
optimal solution of the node distribution.

Each antlion in our algorithm represents a coverage dis-
tribution scheme of the sensors. The dimension of the
antlion is twice the number of the sensors, where the 2i
and 2i − 1 dimensions represent the abscissa and ordinate
of the node, respectively. The flow of the coverage
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Figure 3: The coverage rate curves of the five algorithms in experiment 1.
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optimization algorithm is shown in Figure 1, and its pseudo-
code is as follows.

4. Simulations

4.1. Function Optimization

4.1.1. Experiment Setting. In order to present the advantage
of IALO, we select FOA, WOA [23], GWO [24], PSO,
ALO, OB-L-ALO [17], and OB-LF-ALO [18] for algorithm
experiment comparison on 9 benchmark test functions.
The mathematical formula, dimension, boundary range,
and global optimum of the test functions are shown in

Table 1. Among the test functions, F1-F5 are unimodal func-
tions, and F6-F9 are multimodal functions. The unimodal
functions have only one global optimum which is used to
evaluate the exploitation ability and convergence speed of
an algorithm. Because the multimodal functions contain
many local optima, they can be used to evaluate the ability
to exploration and jump out of the local optima.

The experimental environment is Intel(R) Core (TM) i7-
9750H dual-core CPU, 16GB memory, Win10 64-bit oper-
ating system, and the simulation software is MATLAB
R2019b. For the fairness of the experimental results, the
population size of each algorithm is set to 30, the maximum
number of iterations is set to 1000, and each algorithm is
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Figure 4: The coverage rate curves of the five algorithms in experiment 2.

9Wireless Communications and Mobile Computing



Table 5: The coverage rates of the five algorithms in experiment 1.

N Metrics IALO ALO PSO FOA GSO

N = 30

Mean 0.85018 0.78943 0.75497 0.77363 0.71192

Std 5:763E − 03 8:878E − 03 1:829E − 02 1:855E − 02 9:339E − 03
Best 0.85999 0.80723 0.79885 0.80948 0.73153

Worst 0.83836 0.77146 0.72086 0.74009 0.69399

N = 40

Mean 0.97020 0.93377 0.89192 0.93411 0.89067

Std 3:171E − 03 1:153E − 02 2:077E − 02 1:395E − 02 8:572E − 03
Best 0.97378 0.95225 0.92028 0.95417 0.90321

Worst 0.96157 0.91060 0.85125 0.89470 0.87260

N = 50

Mean 0.99348 0.98475 0.95435 0.98569 0.97542

Std 3:792E − 04 2:195E − 03 1:163E − 02 5:305E − 03 3:419E − 03
Best 0.99424 0.98836 0.97348 0.99006 0.98244

Worst 0.99292 0.97993 0.92907 0.97034 0.96966

N = 60

Mean 0.99827 0.99506 0.98086 0.99537 0.99004

Std 1:151E − 04 8:077E − 04 6:670E − 03 3:270E − 03 2:187E − 04
Best 0.99842 0.99626 0.98994 0.99682 0.99061

Worst 0.99797 0.99338 0.96682 0.98168 0.98970

N = 70

Mean 0.99954 0.99842 0.98875 0.99869 0.99405

Std 3:237E − 05 3:001E − 04 1:093E − 02 1:756E − 04 2:329E − 04
Best 0.99958 0.99887 0.99612 0.99895 0.99449

Worst 0.99948 0.99769 0.95062 0.99826 0.99367

Table 6: The coverage rates of the five algorithms in experiment 2.

N Metrics IALO ALO PSO FOA GSO

N = 50

Mean 0.79227 0.72887 0.66010 0.72116 0.60691

Std 7:415E − 03 9:514E − 03 4:070E − 02 1:305E − 02 6:160E − 03
Best 0.80641 0.74323 0.70827 0.73651 0.62004

Worst 0.78046 0.70679 0.56853 0.68272 0.59624

N = 60

Mean 0.90010 0.83108 0.71850 0.83845 0.70815

Std 4:893E − 03 1:000E − 02 5:866E − 02 1:201E − 02 6:198E − 03
Best 0.90962 0.84976 0.79331 0.85503 0.71806

Worst 0.89157 0.81256 0.61528 0.80525 0.69819

N = 70

Mean 0.96036 0.89981 0.74013 0.91508 0.79441

Std 3:989E − 03 9:879E − 03 5:724E − 02 1:799E − 02 5:576E − 03
Best 0.96672 0.91706 0.81953 0.93925 0.80562

Worst 0.95329 0.87995 0.67545 0.86460 0.78722

N = 80

Mean 0.98486 0.94529 0.79494 0.95769 0.86995

Std 1:974E − 03 7:423E − 03 4:869E − 02 8:188E − 03 4:215E − 03
Best 0.98709 0.95682 0.87494 0.96939 0.88118

Worst 0.98109 0.92239 0.73325 0.93539 0.86284

N = 90

Mean 0.99356 0.97189 0.82679 0.98498 0.93154

Std 6:255E − 04 5:727E − 03 5:189E − 02 4:129E − 03 4:299E − 03
Best 0.99455 0.98038 0.91795 0.98895 0.93739

Worst 0.99214 0.95947 0.76388 0.97370 0.92491

10 Wireless Communications and Mobile Computing



independently run 30 times for comprehensive testing. The
parameter setting of each algorithm is shown in Table 2.

4.1.2. Comparison of Optimal Results. The comparison
results of function optimization are shown in Table 3.
Among them, ALO, FOA, WOA, GWO, PSO, and IALO
are the results of 30 experiments of the test function, while
OB-L-ALO and OB-LF-ALO are obtained by referring to
other literature data.

The data in Table 3 demonstrate that IALO ranked first
or tied first on average when solving F1-F5. In F1-F3, both
IALO and OB-LF-ALO achieve global optima, and the stan-
dard deviation is 0. In F4-F5, IALO does not converge to the
global optimum, but it has the best mean and standard devi-
ation value among all the test algorithms. It is evident from
the results that IALO has efficient exploitation ability. From
the results of F6-F9, we can see that IALO is still competitive
in multimodal function. In F6-F8, IALO can converge to the
global optimum, which is the best or the best in parallel
compared with other algorithms. In F9, the convergence
accuracy of IALO is much higher than the other algorithms.
It can be observed that IALO has also a very good explora-
tion ability.

4.1.3. Comparison of Convergence Curves. The benchmark
function curve can intuitively reflect the convergence speed
and accuracy of each algorithm and also clearly show the
ability of the algorithm to jump out of the local optima.
The convergence curves of the nine benchmark test func-
tions are shown in Figure 2. We can see that IALO can
achieve or get close to the global optima in the shortest time,
which shows that IALO has faster convergence speed and
higher convergence accuracy. For F1-F3, F6-F8, the conver-
gence curve of IALO decreases obviously from the beginning

of iteration and the convergence speed is fast. For example,
F1 and F3 achieve the global optima in the 96th and 47th
generations, respectively. For F4-F5, F9, IALO does not con-
verge to the global optima, but it can quickly jump out of the
local optima, and its convergence accuracy is closer to the
global optima than other algorithms. Therefore, IALO has
good optimization performance and is effective and reliable
in function optimization.

4.2. Coverage Optimization in WSNs. In order to verify the
performance of IALO in the coverage optimization of a
WSN, we assume that different numbers of sensors are ran-
domly placed in the monitoring areas of different sizes. We
compare IALO with GSO [9], FOA [10], ALO, and PSO.
To eliminate the error caused by randomness, each algo-
rithm was run 20 times in each experiment, and the final
average results were compared.

4.2.1. Experiment Setting. As shown in Table 4, the monitor-
ing areas of experiment 1 and experiment 2 are 50m × 50m
and 100m × 100m, respectively. All sensors are homoge-
neous; they are with the same sensing radius in each exper-
iment. The parameter settings of FOA, PSO, and IALO are
the same as the ones in Section 4.1. The luciferin enhance-
ment constant γ = 0:1, the luciferin decay constant ρ = 0:9,
and the step size s = ð ffiffiffi

3
p

rs − dijÞ/2 in GSO. All algorithms
uniformly set the population to 30 and the maximum of iter-
ation is 1000, and Cth = 0:75, α1 = 1, α2 = 0, β1 = 1, β2 = 2,
re = rs/2.

4.2.2. Comparison of Coverage Rate. Coverage rate is one of
the important elements to indicate the performance of the
distribution of the sensors. Figures 3 and 4 show the cover-
age rate of ALO, GSO, FOA, PSO, and IALO with the
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Figure 5: Comparison of coverage rate under different numbers of sensors.
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Figure 6: Sensor distribution in experiment 1.
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increase of the number of iterations. Figure 3 shows the cov-
erage rate of the five algorithms under different number of
sensors in experiment 1. We can see from Figure 3 that when
the number of iterations grows, the coverage rates of the five
algorithms first rise sharply ad then tend to stable gradually.
For example, as shown in Figure 3(b), the coverage rate of
the five algorithms increases sharply in the first 1-100 itera-
tions. In the 100-300 iterations, the rising speed of the cov-
erage rates of the five algorithms slows down. When the
iteration reaches 400 times, GSO reaches its maximum value
and does no change, while the coverage rates of the other
algorithms are still slowly increasing. The final coverage rate
of IALO is 97.02%, ALO is 93.38%, PSO is 89.13%, FOA is
93.41%, and GSO is 89.07%. Compared with ALO, PSO,
FOA, and GSO, the coverage rate of IALO increased by
3.64%, 7.83%, 3.61%, and 7.95%, respectively. Because CS,
Cauchy mutation, and DE are used to enhance its global
optimization ability, the coverage rate of IALO is better than
the original ALO in each iteration.

In addition, the coverage rates of the five algorithms
under different number of sensors in experiment 2 are
shown in Figure 4. We can see that IALO has much higher
coverage rate and faster convergence speed than ALO,
PSO, FOA, and GSO. IALO is better than the other five algo-
rithms in solving the coverage optimization problem.

Tables 5 and 6 show the final coverage rates of the five
algorithms in experiment 1 and experiment 2, where Mean,
Std, Best, and Worst represent the average value, standard
deviation, the best value, and the worst value of the coverage
rates, respectively. We can see from Table 5 that the cover-
age rate of each algorithm increases with the increase of
the number of sensors. The four metrics (Mean, Std, Best,
and Worst) of IALO are much better than those of the rest
of the algorithms, and when the number of sensors is small,
the coverage advantage of IALO is more obvious. For exam-
ple, in experiment 1, when N = 70, compared with ALO,
PSO, FOA, and GSO, IALO has improved the coverage rate
by 0.11%, 1.08%, 0.08%, and 0.55%, respectively. However,
when N = 30, the coverage rate of IALO was higher than
them by 6.07%, 9.52%, 7.66%, and 13.83%, respectively.
From Table 6, we can see that in experiment 2, with the
increase of the number of sensors, the coverage rate of
IALO, ALO, and FOA increases greatly. However, IALO still
has the highest coverage rate and it is more stable as it has
the smallest standard deviation.

Figure 5 shows the coverage rates of the five algorithms
under different number of sensors. We can see that when
the number of sensors is the same, the coverage rate of IALO
is higher than the other algorithms. In our experiment 1,
IALO obtains a coverage rate 99.561% when N = 53 in the
50m × 50m monitoring area. This result is higher than the
ones of ALO and FOA at N = 60 (99.506%, 99.537%), and
it is also higher than the results of PSO and GSO at N = 70
(98.875%, 99.405%). IALO can provide the same coverage
rate with fewer sensors than the other four algorithms.

4.2.3. Comparison of Coverage Effects. Figures 6 and 7 show
the sensor distribution of N = 50 in experiment 1 and N = 90
in experiment 2, respectively. In these two figures, “•” repre-

sents a sensor, and the corresponding circle is the coverage
area of the sensor.

Figure 6(a) shows the initial deployment of the sensors.
There are many blank areas and overlap areas because of
the random deployment of sensors. Figures 6(b)–6(e) are
the final sensor distribution after executing ALO, PSO,
FOA, and GSO, respectively. Figure 6(f) is the final sensor
deployment of IALO. It can be seen that the sensor distribu-
tion of IALO is the most uniform one with the smallest sen-
sor redundancy. It can also be seen from Figure 7 that the
IALO has the best coverage rate, the smallest redundant
area, and the smallest blank coverage.

5. Conclusions

In order to improve the network coverage in a WSN, we
designed the IALO algorithm according to the standard
ALO algorithm. In IALO, we used Cuckoo Search and Cau-
chy mutation to enhance the population diversity of ants,
improve its global optimization ability, and accelerate its
convergence speed. We mutated the population of antlions
by differential evolution to improve the convergence accu-
racy of IALO. Experiments on 9 benchmark functions show
that IALO has efficient exploitation and exploration ability.
Compared with other algorithms, IALO has faster conver-
gence speed and higher convergence accuracy, and it can
effectively jump out of the local optima. We applied IALO
to the coverage optimization problem in a WSN and com-
pared it with the standard ALO algorithm and other related
optimizations. Simulations results show that under the same
test environment, IALO achieves higher network coverage.
IALO also provides more uniform sensor distribution with
effectively reduced number of nodes.
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