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Gliomas, often known as low-grade gliomas, are malignant brain tumors. Codeletion of chromosomal arms 1p/19q has been
connected with a good response to treatment in low-grade gliomas (LGG) in several studies. For treatment planning, the
ability to anticipate 1p19q status is crucial. This research’s purpose is to develop a noninvasive approach based on MR images
using our efficient CNNs. While public networks like VGGNet, GoogleNet, and other well-known public networks can use
transfer learning to identify brain cancer on MRI, the model contains a large number of components that are unrelated to
brain tumors. We build a model from the bottom-up, rather than relying on transfer learning. Our network structure flexibly
uses a deep convolution stack mixed with dropout and dense operation, which reduces overfitting and enhances performance.
We increase the number of samples by augmenting the dataset. The Gaussian noise is introduced during the model training.
To address the issue of data imbalance, we use stratified k-fold cross-validation during training to find the best model. Our
proposed model is compared with models fine-tuned through transfer learning, such as MobileNetV2, InceptionResNetV2, and
VGG16. Our model achieves better results than these models on the same small dataset. In the test set, when deciding whether
or not an image should be 1p/19q codeleted, the proposed architecture achieved an F1-score of 96.50%, precision of 96.50%,
recall of 96.49%, and accuracy of 96.50%. By comparing with the transfer model, we found that transfer learning does not
outperform CNN on a small dataset.

1. Introduction

Low-grade gliomas (LLG) [1] are brain tumors that arise from
astrocytes and oligodendrocytes, which are two separate types
of brain cells [1]. Low-grade gliomas can cause a variety of
symptoms depending on where they are in the brain. The
tumor in the area of the brain that governs language may pre-
vent the patient from speaking or understanding. A brain
tumor diagnosis can be devastating for patients. The majority

of tumors are discovered as a result of a symptom that
prompts doctors to perform a brain MRI or CT scan.

MRI is the most effective method for detecting brain
malignancies. The scans provide a massive amount of image
data. The radiologist examines these images. Tumors of the
brain are difficult to diagnose and treat. The sizes and
locations of brain tumors vary dramatically. As a result, fully
comprehending the nature of the tumor is quite challenging.
For MRI analysis, a qualified neurosurgeon is required. The
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absence of skilled doctors and a lack of information
regarding tumors can make generating reports from MRIs
extremely difficult and time-consuming. A manual inspec-
tion may be susceptible to errors due to the complexities
involved in brain tumors and their characteristics. Machine
learning-based automated classification systems have consis-
tently outperformed manual classification.

The study of the relationship between cancer imaging
features and gene expression is known as radiogenomics.
Biomarkers that determine the genetics of a disease without
the use of an intrusive biopsy can be created using radioge-
nomics. A biomarker is a biological indicator of some state
or condition. The presence or lack of biomarkers is impor-
tant in avoiding intrusive biopsies because certain treat-
ments for brain tumors are more successful in the presence
or absence of a biomarker. The detection of biomarkers
can ensure that patients receive the most effective treatment
for their specific situation [2].

Low-grade gliomas (LLG) [2–4] are tumors that are
considered formed from glial cells, have infiltrative develop-
ment, and lack malignant histopathological characteristics.
One of the biomarkers that appear to be essential in low-
grade gliomas is 1p/19q chromosomal codeletion. When
1p/19q codeletion is discovered in low-grade gliomas, stud-
ies demonstrate that they respond better to chemotherapy
and radiotherapy. The novelty and promising results of
combining deep learning with radiogenomics are what make
this study noteworthy. The detection of 1p/19q codeletion
using deep learning works better with T2 images than with
T1 postcontrast images [2].

In 2017, deep learning was firstly used by Akkus et al. [2]
to predict 1p19q from LGG MRI; tumor segmentation,
image registration, and CNN-based 1p/19q status classifica-
tion are the three primary steps of their method. When data
augmentation is not performed, their multiscale CNNs
overfit the original training data. Lombardi et al. [4] used
popular public networks, including AlexNet, VGG19, and
GoogleNet, for 1p19q categorization through transfer learn-
ing [5–7]. According to their description, even with limited
datasets, the results offered by transfer learning are robust.
Abiwinanda et al. [8] used five different CNN designs, with
the second design with two convolutional layers, one
maxpool layer, and one ReLU layer, then come 64 hidden
neurons, achieving the highest accuracy.

Why are there just thousands of training examples?Maithra
Raghu et al. [9] wondered. They looked upon transfer learn-
ing in small data settings. They discovered that there was a
significant performance difference between transfer learning
and training from scratch for a big model (ResNet), but
not for a smaller model. For a little amount of data, the large
model built by ImageNet can have too many parameters.
They discovered that transfer learning provides limited per-
formance increases for the evaluated medical imaging tasks
after a rigorous performance evaluation and examination of
hidden representations of neural networks. Transfer learning
had little effect on the performance of medical imaging tasks,
and the model trained from the ground up was near as well
as the ImageNet transfer model.

The following are our main contributions:

(i) Using the 3 × 3 convolution and LeakyReLU, we
create a dedicated convolutional neural network
for detecting brain tumors on MRI images

(ii) During training, we use a customizable combination
of dropout and Gaussian noise to reduce overfitting
and increase performance

(iii) Stratified k-fold is used to correct problems in train-
ing induced by data imbalance

(iv) Our proposed model is compared to MobileNetV2,
InceptionResNetV2, and VGG16 that have been
fine-tuned through transfer learning

2. Materials and Methods

We use the provided dataset to train our planned network.
Meanwhile, on the same dataset, we compare the perfor-
mance of MobileNetV2, InceptionResNetV2, VGG16, etc.,
which were fine-tuned using transfer learning approaches.

2.1. Experimental Data. The Kaggle small brain tumor data-
set [10] provided the brain MRI dataset that was utilized to
evaluate the planned study. The dataset contains 253 brain
MRI images in two folders: yes and no. There are 155 tumor-
ous brain MRI images in folder yes, and there are 98 nontu-
morous brain MRI images in folder no.

Figure 1(a) is a brain with a tumor, and Figure 1(b) is a
brain tumor.

2.2. Network Architectures. In Figure 1, there are 14 layers
in the model. Convolutional kernels with smaller con-
volutions—3 × 3—were found to produce positive outcomes,
as these smaller convolutions may capture some of the finer
characteristics of the edges. This network’s convolutional
layers all employ 3 × 3 kernels. It is starting with 16 kernels
per layer; the architecture progresses to 32 kernels per layer,
64 kernels per layer, and finally 128 kernels per layer.

This network depicted in Figure 2 is made up of the con-
volution layer, pooling layer, dropout layer, LeakyReLU
layer, dense layer [11], flatten layer, and softmax layer, with
the input picture.

Table 1 specifies the network activities utilized by each
layer, as well as the size of the convolution kernel and the
size of the input.

Yes No

Figure 1: Brain MRI.
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(i) All images of brain tumors that are fed into the net-
work are scaled to 256 × 256

(ii) This network uses 3 × 3 kernels for all convolutional
layers. The architecture starts with 16 kernels per
layer, then 32, 64, and finally 128 kernels per layer

In Figure 3, we incorporate more hidden layers and
therefore more nonlinear functions, enhancing the decision
function capabilities and introducing fewer parameters,
inspired by a VGGNet stack of three 3 × 3 convolutional
layers, instead of a single 7 × 7 layer.

However, our network differs from the VGGNet struc-
ture, which is made up of a stack of 3 × 3 convolutions and
ReLUs. Our network is made up of 3 × 3 convolutions and
LeakyReLUs.

(i) Because negative values are kept and saturation
concerns are avoided when employing tanh, Lea-
kyReLU was chosen as the activation function

(ii) This model employs 2 × 2 maxpooling at first, then
7 × 7 maxpooling later. The number of neurons in
a layer is reduced when it is dense

(iii) Dense [11] (fully connected) is used twice just
before the softmax layer to reduce the number of
neurons to two, reflecting the binary prediction of
either “codeletion” or “no codeletion”

(iv) Gaussian noise was purposely supplied to the
training data to minimize overfitting, which can
think of it as a form of random data augmentation.
For corrosion processes with genuine inputs, Gauss-
ian noise (GS) is a natural choice. During training,
the error is reduced, and at the same time, the inter-
ference items generated by noise are penalized to
achieve the purpose of reducing the square of the
weight. The noise distribution’s standard deviation
was set to 0.5

The following formula can be used to compute the prob-
ability density of a Gaussian distribution:

F x ; μ, σð Þ = 1
σ
ffiffiffiffiffiffi
2π

p
ðx
−∞

exp −
x − μð Þ2
2σ2

 !
dx: ð1Þ

Assume we introduce Gaussian noise to the inputs in
Figure 4. Before moving on to the next layer, the squared
weight amplifies the noise variation. The squared error
increases as a result of this. When the input is noisy, mini-
mizing the squared error tends to minimize the square of
the weights. Let us assume ynoisy is output by GS at one time:

ynoisy = Σiwixi + Σiwiεi, ð2Þ
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Figure 2: Network architecture.

Table 1: Network layer.

Type Filter shape Input size

Input layer N/A 256 × 256 × 1

Conv2D 16 × 3 × 3 254 × 254 × 16

LeakyReLU N/A 254 × 254 × 16

Conv2D 16 × 3 × 3 252 × 252 × 16

LeakyReLU N/A 252 × 252 × 16

Maxpooling 2 × 2 126 × 126 × 16

Dropout N/A 126 × 126 × 16

Conv2D 32 × 3 × 3 124 × 124 × 32

LeakyReLU N/A 124 × 124 × 32

Conv2D 32 × 3 × 3 122 × 122 × 32

LeakyReLU N/A 122 × 122 × 32

Maxpooling 2 × 2 61 × 61 × 32

Dropout N/A 61 × 61 × 32

Conv2D 64 × 3 × 3 59 × 59 × 64

LeakyReLU N/A 59 × 59 × 64

Conv2D 64 × 3 × 3 57 × 57 × 64

LeakyReLU N/A 57 × 57 × 64

Maxpooling 2 × 2 28 × 28 × 64

Conv2D 128 × 3 × 3 26 × 26 × 128

LeakyReLU N/A 26 × 26 × 128

Conv2D 128 × 3 × 3 24 × 24 × 128

LeakyReLU N/A 24 × 24 × 128

Maxpooling 5 × 5 4 × 4 × 128

Gaussian noise N/A 4 × 4 × 128
Flatten N/A 2048

Dense N/A 1024

LeakyReLU N/A 1024

Dropout N/A 1024

Dense N/A 2

Softmax N/A 2
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where εi is sampled from Nð0, σ2
i Þ:

E ynoisy − t
� �2h i

= E y + Σiwiεi − tð Þ2� �

= E y − tð Þ + Σiwiεið Þ2� �

= y − tð Þ2 + E 2 y − tð ÞΣiwiεi½ � + E Σiwiεið Þ2� �

= y − tð Þ2 + E Σiw
2
i ε

2
i

� �

= y − tð Þ2 + Σiw
2
i σ

2
i :

ð3Þ

Because εi is independent of εi and εi is independent of
ðy − tÞ, σ2i is equivalent to L2 penalty [12]. The error is min-
imized during the training process, and the noise-induced
interference items are penalized in order to reduce the
square of the weight and achieve a comparable result to L2
regularization.

(i) The goal of flatten is to one-dimensionalize the
multidimensional input, which is accomplished by
transitioning from convolutional to fully connected
layers

(ii) During the forward and backward propagation
phases, dropout avoids neurons at random. The
number of neurons that are not updated is deter-
mined by the dropout value. The dropout rate was
set to 0.3

(iii) The probability of each of the binary outcomes—
“codeletion” and “no codeletion”—is included in
the output layer using a softmax classifier

2.3. Hyperparameters. Several hyperparameter values were
explored in this study.

2.3.1. Learning Rate. The learning rate is the amount of time
we spend moving in a particular direction to find the global
minima. Starting with a greater learning rate usually works
fine because the initial weight values are rather random.
We typically grow closer and closer to either the global or
local minima as we proceed through the training phase.
Because we do not want to overshoot the minima, annealing,
the learning rate is a typical method. To put it in another
way, as the training phase progresses, we begin to take
smaller and smaller moves in a specific direction. When
there is no change in the loss value, we will continue to
reduce the learning rate by the square root of 0.1 until it
reaches a reduction of 0:5e − 6.

2.3.2. Early Stopping. Overfitting models to training data can
be prevented or limited by early stopping techniques. More-
over, when the findings are static, early halting procedures
prevent needless computations. If there has not been a
change of at least 0.001 in 10 (epochs), the model provided
here will terminate training. We usually start with smaller
weights when we begin the network. The partial network
weights may grow in size as the training time increases.
We can limit the network’s capabilities to a specific range
by stopping training at the appropriate time. The steps are
as follows:

(i) The validation set is used to collect test results after
every 5 epochs. Stop training if the test error on
the validation set increases as the epoch increases

(ii) After stopping, use the weights as the network’s final
parameters

2.3.3. Batch Size. The batch size specifies how many photos
are handled during forward propagation to produce a loss
value for backpropagation. Batch size is typically set to a
power of two and is restricted by the available memory. Fur-
thermore, while a bigger batch size allows for faster training,
weights update less frequently and may not deliver the great-
est outcomes. The batch size was set to 16.

2.3.4. Number of Epochs. When training your model, the
number of epochs denotes the number of times the complete
training dataset is iterated over. Validation determines how

5
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Figure 3: 3 × 3 convolutions and LeakyReLU.
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well the model generalizes to new data at the end of each
epoch. The number of epochs was set to 32.

2.4. Stratified k-Fold Cross-Validation. k-fold cross-
validation is an excellent technique to examine the bias-
variance tradeoff and guarantee that the model has low bias
and variance. The following is a summary of the testing
procedure:

(a) The data from the original is split into k sections at
random by unrepeat sampling

(b) Each time, as the test set, one of these is chosen. The
other k − 1, on the other hand, is employed as a
model training set

(c) Repeat the second step k times more to give a
probability for each subgroup and the rest to be the
training set

(d) After each training set, obtain a model

(e) Use this model to test on the relevant test set, as well
as to calculate and save the model’s evaluation
metrics

(f) Using the current k-fold cross-validation procedure,
calculate the average of all the test results from the
k sets as a measure of the model’s accuracy and
performance

Choosing a good “k” number ensures that the testing
procedure provides the most accurate assessment of the
performance of our model. When increasing the number
of splits k, the variance increases while the bias decreases.
Lowering k, on the other hand, increases the bias while
decreasing the variance. The tradeoff between bias and vari-
ance is a difficult problem.

The predictors X and response Y can both be written as
variables:

Y = f Xð Þ + ϵ ∼N 0, σϵð Þ: ð4Þ

The quadratic error’s expected value can then be repre-
sented as

SE xð Þ = E Y − f xð Þð Þ2� �
: ð5Þ

After some arithmetic, we get

SE xð Þ = E f xð Þ½ � − f xð Þð Þ2 + E f xð Þ − E f xð Þ½ �ð Þ2� �
+ σ2e : ð6Þ

In the formula above, ðE½ f ðxÞ� − f ðxÞÞ2 is bias2,
E½ ð f ðxÞ − E½ f ðxÞ�Þ2 is variance, and σ2e is irreducible error.

The square of a random variable X should have the
following expected value:

E X2� �
= Var X½ � + E X½ �2,

E y½ � = E f + ϵ½ � = E f½ � = f :
ð7Þ

This is how it works:

E y − fð Þ2� �
= E y2 + f 2 − 2yf
� �

= E y2
� �

+ E f 2
� �

− E 2yf½ �
= Var y½ � + E y½ �2 + Var f½ � + E f½ �2 − 2f E f½ �
= Var y½ � + Var f½ � + f − E f½ �ð Þ2
= Var y½ � + Var f½ � + E f − f½ �2
= σ2 +Var f½ � + Bias f½ �2:

ð8Þ

The relationship between mistake and the bias-variance
tradeoff is depicted in Figure 5. The best model is one that
minimizes both bias and variance at the same time, resulting
in the lowest error rate. The vertical dashed line represents a
model with just the correct level of complexity. This model
will have high accuracy ratings on both train and test data,
indicating that it is generalizable. We hope that the model’s
bias and variance are very low, but this is not always possi-
ble. We must weigh the benefits and drawbacks and strike
a balance. In practice, we use k = 3. The most significant
benefit of k-fold cross-validation is that all data is used in
training and prediction, thereby avoiding overfitting and
accurately reflecting the concept of crossover.

Because of the disparity in the number of photos of brain
tumors versus healthy brains in the dataset, if we use k-fold
on an unbalanced dataset, we may end up with no or very
few minority classes in our training data. We utilize stratified
k-fold to avoid this issue. Stratified k-fold is a k-fold variant
that produces hierarchical folds: each set has nearly the same
percentage of samples for each target class as the entire
set. If the dataset is divided into four categories and the
ratio is 2 : 3 : 3 : 2, the divided sample ratio is approximately
2 : 3 : 3 : 2.

2.5. Experiments. For the experiments, we use TensorFlow as
the backend Keras Python package on an Ubuntu 18.04
X86_64 server. One NVIDIA 2080ti GPU is used.

2.5.1. Data Preparation. Data preparation steps are included
deleting a third class, standardizing the data, and imple-
menting cross-validation [12], to shuffle the training data.
Because this is a small dataset, there were insufficient exam-
ples to train the neural network. In addition, data augmenta-
tion was useful in addressing the data imbalance issue.

The image is preprocessed before being processed into
the proposed structure. The original MR image is scaled to
225 × 2251 pixels in the first step. Image augmentation
techniques such as flipping, mirroring, and rotating are used
to generate redundant data for the network, which is fre-
quently used to avoid network overfitting and improve
system resilience.

ImageDataGenerator is a Keras class that describes the
image data preparation and augmentation setup. We can
rotate the image at any angle between 0 and 360 degrees
using the ImageDataGenerator class. For flipping along the
vertical or horizontal axis, the ImageDataGenerator class
has options for horizontal flip and vertical flip. The key
advantage of utilizing the Keras ImageDataGenerator class
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is that it is intended for real-time data enhancement. The
model generates augmented images on the fly while it is still
being trained.

2.5.2. Proposed Workflow. We build, evaluate, and train our
model to improve performance and use stratified k-fold
cross-validation in model training as depicted in Figure 6.

(i) We divided the data into training and testing
datasets at random and built the model using the
training set and estimated its accuracy using the test
set

(ii) Then, we acquire the best quality model by fine-
tuning the model via 3-fold cross-validation to
enhance the estimate’s accuracy

(iii) On the test set, evaluate the model’s expected
accuracy

(iv) Output evaluation statistics include precision, recall,
F1-score, and confusion matrix

2.5.3. Evaluation Method

(1) Confusion Matrix. A confusion matrix is a technique for
determining whether or not a classification method is effec-
tive. If your dataset has more than two classes or an uneven
number of observations in each, classification accuracy alone
can be deceiving.

In Table 2, we can clearly see the number of correct iden-
tifications and the number of incorrect identifications for
each category.

(2) Precision. The model properly predicted the percentage
of patients with 1p/19q codeletion based on the total
number of patients with 1p/19q codeletion referred to as
precision. It has the following formula:

Precision = TP
TP + FP

: ð9Þ

(3) Recall. The fraction of 1p/19q codeleted patients recog-
nized by the model is divided by the total number of 1p/

19q codeleted and 1p/19q nondeleted patients to compute
recall. It has the following formula:

Recall =
TP

TP + FN
: ð10Þ

(4) F1-Score. The purpose of the F1-score was to combine
precision and recall measurements into a single value. It is
an important metric for class imbalance problems; due to
an imbalance in the number of brain and nonbrain tumors
in this brain MRI dataset, the F1-score was created to oper-
ate effectively with data that is unbalanced. It has the follow-
ing formula:

F1‐score = 2 ∗
precision ∗ recall
precision + recall

: ð11Þ

3. Results

The harmonic mean of precision and recall is calculated
using the F1-score. In relation to all other classes, the scores
for each class indicate how accurate the classifier was in clas-
sifying the data points in that class. The number of samples
of the real answers that fall into that group is the support.

We train the model using stratified 3-fold cross-
validation. F1-score, precision, and recall are all factors that
must be considered. Table 3 demonstrates that the model
achieves good values.

In the test set, we employed 171 photos, 86 of which are
1p19q deleted and 85 of which are 1p19q not deleted; the
suggested architecture received an F1-score of 0.9650 in
Table 4.

Figure 7 shows the confusion matrix for the classification
of 1p19q status on the test set. We can be certain that all 125
1p19q deleted pictures were detected accurately.

We compare pretrained MobileNetV2 [13], Inception-
ResNetV2 [14], VGG16 [15], etc., which fine-tuned using
the transfer learning approach and other approaches.

Table 5 demonstrates that for classification on small
datasets, transfer learning is not superior to ordinary CNN.
This is due to the insufficient number of training samples
in small datasets to learn complex sets of deep feature sets.
With reasonable design, CNNs without transfer learning
can attain and surpass transfer learning. Our method yields
the best outcomes. Simultaneously, we examine the indica-
tors listed in the above table and discover that the deep
learning approach outperforms the machine learning SVM
method by a wide margin.

4. Discussion

We provide a reliable and noninvasive approach for predict-
ing 1p/19q chromosomal arm deletion in this work. Having
a sufficient amount of datasets is a significant difficulty when
applying deep learning approaches to medical imaging.
Despite the fact that the initial data amount was limited,
our data volume expanded as a result of data augmentation
approaches. With larger patient populations and more
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varied data, it is possible that additional performance gains
will be gained.

As large convolution kernels are inefficient in terms of
cost. We are reducing the number of irrelevant features con-
ceivable by restricting the number of parameters. This drives

the deep learning algorithm to learn traits that are common
to a variety of scenarios, allowing it to generalize more effec-
tively. Smaller odd-sized kernel filters would be preferable.
However, 1 × 1 is removed from the list of possible ideal
filter sizes since the features recovered would be fine-
grained and local, with no information from nearby pixels.
Furthermore, it does not extract any useful features.
Through experiments, we found that although VGG16 also
uses a 3 × 3 convolution kernel, it is prone to overfitting
due to the complexity of the network, and the dataset is
small. As a result, VGG16 categorization precision and recall
of 1p/19q chromosomal arm deletion are not very good.
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Figure 6: Proposed workflow.

Table 2: Confusion matrix.

1p19q deleted 1p19q not deleted

1p19q deleted TP FP

1p19q not deleted FN TN

TP = true positive; FN = false negative; FP = false positive; TN = true
negative.

Table 3: Classification performance.

Fold Train/test Precision Recall F1-score Support

Fold-1
Train 0.9850 0.9562 0.9704 274

Test 0.9517 0.9841 0.9598 477

Fold-2
Train 0.9881 0.9679 0.9241 274

Test 0.9851 0.9635 0.9742 477

Fold-3
Train 0.9886 0.9526 0.9703 274

Test 0.9517 0.9841 0.9598 477

Table 4: Statistics for test set.

Precision Recall F1-score Support

1p19q deleted 0.9761 0.9535 0.960 86

1p19q not deleted 0.9540 0.9764 0.970 85

Avg/total 0.9650 0.9649 0.9650 171

Normalized confusion matrix

1p19 deleted

1p19 deleted 1p19 not deleted

Tr
ue

 la
be

l

1p19 not deleted

Predicted label

0.9535

0.0235

0.0465

0.9765

Figure 7: Confusion matrix.
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Because of the deep architecture of current networks like
GoogleNet and ResNet, feature maps from these networks
frequently have a very large receptive field. However, studies
[20] reveal that the network gathers information from a
considerably narrower portion of the receptive field, which
is referred to as the valid receptive field in this research. In
this experiment, we found that the recall rate was not high
by using InceptionResNetV2 and VGG16. As a result, a large
receptive field does not increase the performance of medical
images on small datasets considerably.

We discovered that MobileNetV2 is significantly higher
than InceptionResNetV2 and VGG16 in the fields of preci-
sion. It employs depth-wise separable convolutions and
divides an ordinary 3 × 3 convolution into two convolutions,
which is the same as the 3 × 3 convolution we employ. It
makes use of ReLU6. ReLU6 is a standard ReLU with a
maximum output limit of 6, allowing for high numerical res-
olution even when the mobile device’s float16/int8 accuracy
is low. However, ReLU6 is not as accurate to the server as the
LeakyReLU we used.

The model’s capacity to learn mapping rules from the
input space can be increased by adding Gaussian noise
during training, as can the model’s generalization ability
and fault tolerance. Because the training samples change fre-
quently, adding noise to the network can lead it to lose track
of them, resulting in smaller network weights and a more
robust network while lowering the generalization error.
Since new samples are selected from the domain adjacent
to known samples, the structure of the input space is
smoothed. This smoothing may make the learning mapping
function easier for the network, leading to better and faster
learning. After adding Gaussian noise to our model training,
we can see significant improvement in performance.

Since medical imaging data is scarce, transfer learning
approaches are used to fine-tune medical imaging models
using popular public models (e.g., VGGNet and GoogleNet)
generated from large public ImageNet datasets. However,
these models create a large number of characteristics that
are unrelated to medical imaging, jeopardizing the accuracy
of medical diagnosis [21]. Our model does not involve
transfer learning, and the parameters it generates are specific
to the medical imaging dataset that was used. As a result, the

reliability of brain tumor diagnosis has substantially
improved. Simultaneously, we discover that our method
beats transfer learning on small datasets but that transfer
learning performs better on large datasets.

5. Conclusion

The results of our CNN approach for 1p/19q codeletion sta-
tus classification noninvasively are promising. We create a
brain tumor detection model that does not rely on transfer
learning. Our network structure employs a deep convolution
stack strategy when training with Gaussian noise, reducing
overfitting and improving performance. Compared to trans-
fer learning models, our model gives more accurate findings.
With basic, lightweight models equivalent to ImageNet
topology, we discovered that transfer learning offered no
performance benefit in small datasets. By properly designing
the network and optimizing the hyperparameters during
training, CNNs without transfer learning can reach and sur-
pass transfer learning.

Data Availability

This study makes use of datasets that are freely available
to the public. This dataset can be found at the following
link: https://www.kaggle.com/datasets/navoneel/brain-mri-
images-for-brain-tumor-detection.

Conflicts of Interest

There are no conflicts of interest declared by the authors.

Acknowledgments

The National Natural Science Foundation of China
(62176048), The National Natural Science Foundation of
China (41871348), Beijing Information Science & Technology
University (2020KYNH224), and Beijing Key Laboratory of
High Dynamic Navigation Technology (HDN2019002) all
contributed to this work.

Table 5: Performance comparison.

Model Precision Recall F1-score Accuracy

Ours 0.9650 0.9649 0.9650 0.9650

MobileNetV2 [14] 1.0 0.8709 0.9200 0.9200

InceptionV3 [15] 0.923076 1 0.9600 0.9428

InceptionResNetV2 [14] 0.90625 0.9354 0.9153 0.90

AlexNet [16] 0.93620 0.95650 0.9462 0.9483

VGG16 [16] 0.89660 0.9286 0.9123 0.9138

Shwetha and Madhavi [17] 0.89 0.92 0.90 0.88

DenseNet-169 [10] — — — 0.9412

DenseNet-SVM [10] — — — 0.9412

CNNs [18] — — — 0.9500

SVM [19] 0.70 0.71 0.70 0.71
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