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Crowdsourcing is an effective tool to allocate tasks among workers to obtain a cumulative outcome. Algorithmic game theory is
widely used as a powerful tool to ensure the service quality of a crowdsourcing campaign. By this paper, we consider a more
general optimization objective for the budget-free crowdsourcer, profit maximization, where profit is defined as the difference
between the benefit obtained by crowdsourcer and payments to workers. Based on the framework of random sampling and
profit extraction, we proposed a strategy-proof profit-oriented mechanism for our problem, which also satisfies computational
tractability and individual rationality and has a performance guarantee. We also extend the profit extract algorithm to the
online case through a two-stage sampling. Also, we study the setting in which workers are not trusted, and untrustworthy
workers would infer others’ true type. For untrustworthy workers, we introduce a differentially private mechanism, which also
has desired properties. Finally, we will conduct numerical simulations to show the effectiveness of our proposed profit
maximization mechanisms. By this work, we enrich the class of competitive auctions by considering a more general
optimization objective and a more general demand valuation function.

1. Introduction

With the rapid development of the Internet and communica-
tion technology in recent decades, the Internet has become an
important market for labor hirings, such as Amazon MTurk
and Meituan. Compared to traditional labor markets, such
online platforms are known as crowdsourcing markets, in
which the service subscriber could divide microtasks to the
geographically distributed workers. There are various applica-
tions of crowdsourcing or crowdsensing in practice, such as
healthcare [1], smart city [2], and localization [3].

In order to incentivize workers’ participation, the plat-
form needs to pay compensations to the worker for the com-
pletion of tasks. The strategic behavior of online workers is a
reasonable assumption, since all workers are rational indi-
viduals, who will seek to increase their utility by misreport-
ing. Thus, we must design mechanisms to tackle the
strategic workers. Algorithmic mechanism design is a
branch of economic theory and game theory, which allows

the designer to achieve desired objectives with strategic par-
ticipants. Algorithmic mechanism design is also known as
reverse game theory, which has been widely applied in our
daily life, such as markets, sponsored search auctions, and
voting procedures.

In reality, a data broker may hire online workers to label
data and build through a crowdsourcing campaign. The data
broker is aimed to reselling the dataset to earn profits.
Instead of finishing a specific set of tasks, the service sub-
scriber is budget-free, whose target is profit-oriented, where
profit is defined as the difference between payments to
workers and the revenue. In this paper, we introduce a
mechanism for profit-oriented crowdsourcer. Without loss
of generality, we assume the crowdsourcer’s revenue func-
tion is symmetric submodular, which means the marginal
revenue will decrease, as more data are sold. We design a
strategy-proof mechanism based on random sampling,
which also satisfies all desirable properties. Meanwhile, we
extend the mechanism to the online setting. For the
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untrustworthy worker, we design a differentially private
mechanism, which also has desired properties. Finally, we
conduct numerical experiments to demonstrate the effective-
ness of our proposed profit maximization mechanisms.

Remark 1. Compared to our earlier version [4], we simplify
the competitive ratio from α − 1/4α to 1/4 with the same
allocation and payment function and different method of
analysis. Also, we get a new competitive ratio for the online
auction. Furthermore, we propose a profit-maximized differ-
entially private mechanism for privacy-aware workers. Sim-
ulations are based on a real-world dataset instead of
following some distributions.

The contributions of this work are summarized as
follows:

(i) Compared to the existing work on profit-oriented
auction design, we study mechanisms for the buyer
with a more generalized utility function, which is
symmetric submodular

(ii) Drawing from the idea behind the online learning,
we introduce a novel multistage sampling frame-
work for online profit maximized auctions

(iii) We also study the mechanism for untrustworthy
sellers. The proposed differentially private mecha-
nism has good properties of individual rationality
and approximate truthfulness and has a perfor-
mance guarantee.

2. Related Work

Algorithmic game theory has become a useful method to
build incentive auctions in the crowdsourcing system due
to the strategic behavior of workers. Yaron [5] is the first
person who studied the budget-constraint mechanism
design which then became the major category of auctions
for crowdsourcing auction design, i.e., [6–17]. In particular,
Yaron proposed a method for provable guarantee auctions
in crowdsourcing markets with fixed budget [7]. Biswas
et al. proposed a multiarmed bandit setting under a budget
constraint, in which the background that every task is with
an invariable duration and unknown user abilities and due
to the fixed budget, cost, and quality should be balanced
when assigning tasks to workers [8]. Eric and Jason studied
the budget constraint crowdsourcing auction with a Bayes-
ian environment, who also proposed a posted price mecha-
nism for their problem [10].

This paper involves the study of revenue maximization,
which was broadly studied by the community of economists,
and the satisfactory solution is known in the Bayesian condi-
tion with a single-dimensional type of sellers [18].

In recent time, one branch of research for the area of
mechanism design suggests that even in the worst condition,
in which the buyer has nothing about the knowledge of
seller’s valuation, it is likely to maximize the buyer’s profit
with a performance lower bound. A representative example
of this area is a competitive digital auction, which is by get-

ting certain knowledge from the sellers through bootstrap-
ping, proposing the method of set partition and profit-
extract, where its utility is measured by omniscient cases
[19–21]. Several researchers have improved on the frame-
work of competitive auctions; for example, Carry et al. intro-
duced an extended competitive auction, which is adapted to
auctions with structured goods [22]; Ray et al. considered
how to maximize the profit of prior-free procurement auc-
tion when the auctioneer wants to purchase multiple homo-
geneous goods [23]; Zoe et al. found that according to the
competitive mechanism, the multiunit budget-constrained
auction problem proposed by Christien et al. [24] can be
solved, where the quantity of the identical commodity is lim-
ited and each bidder’s private type is her cost and her budget
constraint to maximize the sale revenue. Christien et al. built
conditions that characterizes lower bound for all monotonic
measurements [24]. Meanwhile, the methods used in this
paper are built by random sampling and profit-extract
framework introduced and lack full stop [19]. The differ-
ences on our proposal are major three points as follows:
(a) the buyer’s revenue function; (b) the final objective;
and (c) the number of units that every worker could provide.

3. Preliminaries

In our setting, there is a crowdsourcer C and a group of n
workers who participate in the crowdsourcing auction. The
crowdsourcer is the buyer in the market, who hires workers
to build datasets and aims to sell data to earn profit. Workers
are sellers in the market, who provide service to the buyer
and get a return for their participation. The crowdsourcer’s
target is profit maximization, where the profit is defined as
the difference between the revenue of data and compensa-
tions to workers.

Since the crowdsourcer will allocate tasks to the worker
through an auction, every worker will submit a bid bi = ðmi
, ciÞ to the buyer. The bids of workers are bidimensional,
where mi ∈ℕ means the maximum number of tasks that
the worker i could finish and ci denotes his unit private cost.
If the quantity of tasks that are assigned to worker i is larger
than mi, it will make the cost of worker i to +∞. Let b = ð
b1, b2,⋯, bnÞ index the bidding profile of all workers. Based
on the reported bidding profile of workers, the decision
made by the buyer consists of two schemes:

(i) An allocation scheme xi : b1 ×⋯ × bn ⟶ℕ

(ii) A payment scheme pi : b1 ×⋯ × bn ⟶ℝ+

Herein, piðbÞ is the compensation to the worker i and
xiðbÞ denotes the task number which is needed to be per-
formed by worker i.

Meanwhile, letm and c index the capacity vector and cost
vector, respectively. In the end, the winners in the auction
will perform tasks, and the crowdsourcer will pay them
compensations.

We denote S as the quota of purchased unit service, and
all purchased service is homogeneous. The revenue of the
crowdsourcer is a function of S , which is only related the
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cardinality of S , i.e., jSj. In each round i, the revenue of the
crowdsourcer increases by an incremental value ri when
adding a new item i. ri denotes the marginal contribution
for i-th unit, when i − 1 units have been added. Meanwhile,
we have r1 > r2 > , rn. Formally, the revenue function of the
crowdsourcer is a symmetric submodular function. The reve-
nue function is as follows:

vr jð Þ = 〠
j

i=1
ri,  Sj j = j j ∈ℕð Þ, ð1Þ

in which r = hr1,⋯, rNi is a list of sorted nonnegative num-
bers. N is an extremely large number. The assumption of the
symmetric submodularity of the revenue function is reason-
able, due to the demand curve in economic theory.

For an auction ðx, pÞ, with a bidding profile b, the profit
obtained by the crowdsourcer is calculated by the difference
between revenue achieved and the compensation to workers:

π bð Þ = vr 〠
n

j=1
xj bð Þ

 !
− 〠

n

j=1
pj bð Þ = 〠

〠n

j=1x j bð Þ

i=1
ri − 〠

n

j=1
pj bð Þ:

ð2Þ

Also, we index πðbÞ as πðbÞ.
Let uiðbÞ index the utility got by worker i. Formally, ui

ðbÞ is defined as

ui bð Þ =
pi bð Þ − ci · xi bð Þ, if xi bð Þ ≤mi,
−∞, otherwise:

(
ð3Þ

Next, we will present several properties which are often
desired by the designer.

(i) Truthful: given any worker i, his utility is never
increased by lying.

(ii) Individual rationality: given any worker i, his utility
is never negative by participating the auction.

(iii) Computational tractability: all outcomes of the
mechanism are computed in a polynomial time.

(iv) Competitive profit: when compared with the omni-
scient mechanism OPT that could get a best result
PðbÞ, the auction could get an unchanged part of
PðbÞ. If ∀b : E½πðbÞ� ≥ 1/γPðbÞ, in which γ repre-
sents an unchanged number, we will regard this
mechanism achieves γ-competitive to OPT .

4. Performance Benchmark

In the rest of the paper, the optimal omniscient auction
would be used as the benchmark and compared with our
designed auction. In the optimal omniscient auction, the
buyer has the full knowledge of the real information of all
workers. There will be a clear price or purchasing price in
such auctions. Purchasing price for the whole workers is

the same numbers; then, it is named the optimal single-
price omniscient mechanism, or it is named the optimal
multiple price omniscient mechanism.

For omniscient auctions, the buyer has the knowledge of
workers’ capacity and cost. With a revenue function vrð·Þ,
the crowdsourcer will procure the labor service with the
price of worker’s cost greedily in the optimal multiple price
omniscient mechanism, until the marginal revenue is lower
than next worker’s cost. Thus, the profit achieved in such
auctions is

OPT m bð Þ =maxj 〠
j

i=1
ri − qið Þ = 〠

km

i=1
ri − qið Þ: ð4Þ

Next, we would like to introduce the optimal single-price
omniscient mechanism OPT sðbÞ, in which only one clear
price will be adopted for all winners. Note the threshold pay-
ment adopted by OPT sðbÞ is the highest cost of the whole
winners in this auction. Such utility achieved through OP

T sðbÞ could be written as

OPT s =max j 〠
j

i=1
ri − qj
� �

= 〠
ks

i=1
ri − qksð Þ: ð5Þ

For OPT mðbÞ and OPT sðbÞ, we have the result as
follows:

Theorem 1. OPT sðbÞ ≥ ð1/ðlnkm + Oð1ÞÞÞOPT mðbÞ.

Proof. Since OPT sðbÞ is the optimal result, we obtain that

∀j : 〠
ks

i=1
ri − qksð Þ ≥ 〠

j

i=1
ri − qj
� �

≥ 〠
j

i=1
rj − qj
� �

= j r j − qj
� �

: ð6Þ

Also, we have

∀j : rj − qj
� �

≤
1
j
〠
ks

i=1
ri − qksð Þ: ð7Þ

☐

In the end, we get

OPT m bð Þ ≤ 〠
km

i=1

1
j
〠
ks

i=1
ri − qksð Þ ≤ lnkm + O 1ð Þ½ � · OPT s bð Þ:

ð8Þ

5. A Mechanism with Competitive Profit

When workers are strategic, the information of workers is
unknown. The challenge is whether we can and how to reli-
ably obtain a profit that is competitive to the profit of omni-
scient auctions, despite the challenge posed by information
incompleteness and rational behavior of the users. Without
prior knowledge of workers, a profit competitive auction
seems a natural fit. The main idea behind our designed
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auction is to measure the optimal result through a sampling
set of workers, and a profit-extract algorithm extracts the
expected profit. This method is based on the framework of
random sampling and profit extractor [22].

5.1. The Profit Extractor. At first, the profit extraction algo-
rithm for a buyer, who has the revenue function vr and
expected profit R, is presented in the following algorithm
ProfitExtractðr,RÞ that will use workers’ reported bidding pro-
file ðbm, bcÞ as inputs and ðx, pÞ as outputs.

The workflow of the above algorithm is as follows and
presented in Algorithm 1: we make the workers into a sorted
list according to one’s reported unit cost firstly. Then, let qi
be the cost of i-th service in the sorted list. After this, we
set a clear price in the interval ½rk+1, rk� in k-th unit service
to procure all units of f1,⋯, kg. Then, the expected profit
R is achieved. Obviously, k is the maximum number to pur-
chase. After this, ifR is liked to be achieved, we need to find
the last unit service k∗, and his cost is used as the clear price.
k∗ service is named as stopping unit, and the worker who
provides k∗ is named stopping worker. If we find k∗, the pur-
chasing quota will be X with the clear price P . Else, X and
P will both be zero. In the end, P is the clear price to buyX
units from workers. The worker interacts with the buyer in a
random order, and the mechanism stops when P is larger
than the reported cost.

Through the above algorithm, every worker i provides xi
units with the payment pi =P · xi, in which xi is random,
due to the fact that the X units are chosen randomly from
workers. The expected benefit of worker i could be calculated:

E ui½ � =
P − cið Þ · E xi½ �, if Pr xi ≤mi½ � = 1,
−∞, otherwise:

(
ð9Þ

Every worker i will not provide more than his capacity;
otherwise, he would get the −∞ benefit.

Lemma 1. For the auction Profit Extractðr,RÞ, there is no
worker could increase his utility by misreporting his capacity.

Proof. Obviously, every worker reporting a lower amount
would neither change the procurement number nor change
the purchasing price; thus, misreporting would not increase
his utility. When it came to higher bid, we use X as the cur-
rent quota and P as the clear price. Given a worker j whose
capacity is mj, if he reports his capacity mj′>mj, and his xj′
units will be provided and get a higher benefit E½uj′�. We

use X ′ and P ′ to index the procured amount and the clear
price separately. Then, we have that 1 of the below equations
will be true: (1) P ′ >P and (2) E½xj′� > E½xj�. P ′ >P repre-

sents X ′ =∑k
i=1b

m
i >X and 1 ≤ j ≤ k; i.e., the capacity bid of

worker i will be the sum of X ′, thus, X ′ >mj′>mj, and it

implies E½uj′� = −∞, and we have a contradiction; E½xj′� > E½
xj� implies X ′ >X or cj ≤P ′ <P . We have already pre-

sented X ′ >X would reach a contradiction. Meanwhile, it
is obviously that cj ≤P ′ <P would not happen.☐

Furthermore, we could show no worker could increase
his utility by lying about his unit cost.

Theorem 2. Profit − Extractðr,RÞ is truthful.

Proof. According to Lemma 1, it only needs to prove the
whole workers would bid his unit cost truthfully. Given a
worker i, there will be 2 cases to discuss:

1) i ≤ i∗. This seller i is the stopping worker or a seller in
front of the stopping worker. It is easy to see that every
worker would get a utility at least zero by reporting one’s
true cost. If a worker increases his reported cost which is
lower than the clear price, then the clear price and procuring
quota will not change. Thus, worker i’s utility is invariable. If
a worker increases his reported cost which is more than the
purchasing price, there will be two cases: (1) a worker j

1: Input: Reported capacity bm and reported cost bc;
2: Sort the workers according to his cost, and initiate the vector ðxi, piÞ to every worker i as ð0, 0Þ;
3: Find out the unit k so that

∑k
i=1ðri − rkÞ <R and ∑k

i=1ðri − rk+1Þ ≥R;

4: Find out the ending items k∗ ∈ f1,⋯, kg satisfying ∑k∗

i=1ri − qk∗ · k∗ ≥R;
5: ifk∗ exists then

6: X ⟵ k∗; P ⟵∑k∗

i=1ri − R/k∗;
7: else X ⟵ 0,P ⟵ 0;
8: W ⟵ f1, 2,⋯, ng;
9: while W ≠∅ and X ≠ 0 do
10: Select a worker i from W randomly;
11: W ⟵W \ fig;
12: if bci ≤P then
13: ðxi, piÞ⟵ ðmin fX , bmi g,P · xiÞ; X ⟵X − xi;
14: end while
15: Output: ðx, pÞ

Algorithm 1: ProfitExtractðr,RÞ.
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(j < i∗) would be the new stopping worker; thus, the pur-
chasing price and the procuring amount would decrease,
and the worker would lose in the game, whose utility will
be zero. (2) The mechanism is a failure, and no task is allo-
cated to the workers, and all workers would achieve a zero
benefit. For the aforementioned two possibilities, worker i’s
benefit will decrease,i > i∗. Worker i is after the stopping
worker. If worker i increases his bidding, PX , and his utility
will be the same. If his bidding cost decreases, there will be
two cases: (1) X and P would not change; and (2) the
worker i will provide some service at a price which is lower
than his true cost. Then, his utility will not be positive. In
the above two cases, the worker’s benefit will not increase.☐

Combining the above two cases, the lemma holds.

Theorem 3. Profit Extractðr,RÞ is individually rational.

Proof. Given a worker i, he reports ðbmi , bci Þ. The purchasing
price would satisfy P ≤ bci . Therefore, b

m
i of his units would

be sold with P . Based on Theorem 2, each worker’s benefit
would report his true type; thus, each worker is larger than
zero.☐

Next, we will show that, for an arbitrary group of
workers, the designed algorithm could achieve any target
profit R.

Lemma 2. Algorithm Profit Extractðr,RÞ achieves benefit R if
OPT sðbÞ >R and gets 0 otherwise.

Proof. According to Lemma 1, any worker’ biding informa-
tion will be his true cost. OPT sðbÞ > R implies that ∑ks

i=1ðri
− qksÞ >R through equation (4). It would be 2 possibilities:

(1) ks ≤ k: if we assume that X = ks and set the clear
price as P = ð∑ks

i=1ri −RÞ/ks, we obtain P > qks .
The cost of every first ks service is lower than P .
Therefore, we could use the above P and X to
achieve a predetermined profit R.

(2) ks > k: if we assume that X = k and set P = ð∑k
i=1ri

− RÞ/k, which implies P ≥ ðð∑k
i=1ri −∑k

i=1ðri − rk+1Þ
Þ/kÞ = rk+1 ≥ rks . Meanwhile, because rks ≥ qks could

be get by the concept of OPT sðbÞ, P ≥ rk+1 ≥ rks ,
and qks > qk, which implies P > qk. Therefore, we
could use the above P and X to achieve a predeter-
mined profit R.

☐

Also, if OPT sðbÞ <R, then nothing would be bought
from workers and the profit is zero.

5.2. The Profit Competitive Auction. Until now, a profit-
extract algorithm has been introduced. Through this algo-
rithm, we could obtain Algorithm 2.

This algorithm is based on random sampling and pre-
sented in Algorithm 2, where workers are partitioned into
2 groups. Next, OPT s of every group is calculated. In the
end, the extractor algorithm will be applied to one of two
groups to get the OPT s profit which is calculated by the
other group. In our method, at least one of the two partitions
will achieve profits.

Theorem 4. Profit − PAr finishes in polynomial time.

Proof. In the complexity ofOPT s, the profit extractor algo-
rithm isOðnÞ. The algorithm contains a dividing process and
two times of calculating OPT s and one time of profit-
extractor algorithm. Thus, the mechanism could be calcu-
lated in polynomial time.☐

Theorem 5. Profit − PAr is truthful.

Proof. Given a set of workers ΣA, whose bidding types are
ðbmA , bcAÞ, the allocation and compensation vectors are calcu-
lated via performing Profit Extractðr,RBÞðbmA , bcAÞ, in which r
and RB have nothing related to ðbmA , bcAÞ. Thus, based on
Lemma 2, for every worker in ΣA, reporting his true type is
the best strategy. Drawing from ΣA, we also have the conclu-
sion in ΣB.☐

As for the performance of our designed algorithm, we
could have the result as follows.

Lemma 3. With an arbitrary bidding profile ðbÞ, the algo-
rithm Profit − PAr gets a profit min fOPT sðbAÞ, OPT sð
bBÞg.

1: Input: capacity bid bm and unit cost bid bc;
2: Partition bids, Σ = ðbÞ u.a.r. into two sets ΣA = ðbAÞ and ΣB = ðbBÞ with equal probabilities;
3: RA ⟵ OPT sðbAÞ;
RB ⟵ OPT sðbBÞ;

4: Choose a set Σx from fΣA, ΣBg randomly;
ðx, pÞ⟵ Profit Extractðr,R�xÞðbmx , bcxÞ
if fail ðx, pÞ then
ðx, pÞ⟵ Profit Extractðr,RxÞðbm�x , bc�xÞ

Algorithm 2: Profit − PAr.
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Proof. Assume RA > RB in the algorithm, and according to
Lemma 2, RB will be achieved in line 3. Meanwhile, with
RA < RB, the achieved value is RA. In the end, with RA = RB,
the profit could also be achieved.☐

Theorem 6. Profit − PAr achieves 4-competitive to OPT s.

Proof. Let m̂i index the i-th worker’s sold service for ks. We use
Σs = fa1,⋯, ajg to index the j workers who sold services to O

PT sðbÞ, Ps indexes the used purchasing price. We use Σs
A

and Σs
B to denote the sellers from Σs, and be divided to sub-

groups A and B separately. Thus, ks =∑j
i=1m̂i. It implies ksA =

∑i∈Σs
A
m̂i, k

s
B =∑i∈Σs

B
m̂i and ksA + ksB = ks. Meanwhile, we get

OPT s bAð Þ ≥ 〠
ksA

i=1
ri −P sð Þ, ð10Þ

due to the fact that we could achieve a benefit by procuring
ksA units with Ps. Also,

OPT s bBð Þ ≥ 〠
ksB

i=1
ri −P sð Þ: ð11Þ

☐

Based on Lemma 3, Profit − PAr achieves a benefit of

π bð Þ =min OPT s bAð Þ, OPT s bBð Þf g

≥min 〠
ksA

i=1
ri −P sð Þ, 〠

ksB

i=1
ri −P sð Þ

( )

≥
min ksA, ksBf g

ks
· 〠

ks

i=1
ri −P sð Þ:

ð12Þ

Because A, B are two partitions of all workers,

min ksA, ksBf g
ks

= 1
ks

〠
ks−1

i=1
min i, ks − ið Þ

ks

i

 !
2−ks

= 1
2 − 2−ks

ks − 1
ks

2

� �
0
B@

1
CA:

ð13Þ

The value of above equation reaches the minimum 1/4
with ks = 2, 3. As ks increases, the value would approach 1/2.

In the end, we have

E π bð Þ½ � ≥ E min ksA, ksBf g½ �
ks

· OPT s bð Þ ≥ 1
4OPT s bð Þ:

ð14Þ

6. Online Profit-Maximizing Mechanism

Until now, we have introduced an offline mechanism; the
buyer and worker will interact through a sealed bid auction.
But it is hard to gather all workers in a time in practice; it moti-
vates us to design an online profit-oriented auction. The
parameters and settings of online auctions are similar to the
one of offline auction, but there will be a time duration T

between the starting time and ending time. All workers will
arrive and participate in the auction. The arrival time of each
worker is i.i.d. and followed some unknown distributions.

When we design the auction of the online setting, it is
necessary to consider the following challenges: (1) the auc-
tion needs to incentivize the seller to report his true type;
(2) the auction needs to decide the purchasing quota before
all workers’ arrival; and (3) the auction needs to handle the
online arrival of workers. To handle the hurdle, we proposed
a two-stage sampling, enlightened by the online learning.
The auction will partition the time into two substages. The
first stage will be used for learning, and the other is for earn-
ing profit. The first substage will be terminated by T /2; the
next substage will start at T /2 and end at T . The workers
in the first substage will be rejected automatically, which will
be used to learn the information for making decision in the
substage. While the first substage is terminated, we will use
workers, who arrived in this substage, to build a sample S ′
to calculate P and R. With P and R, we could extract
profit from workers in the second substage.

The auction does not terminate until R is obtained.
Intuitively, the stop criterion is to guarantee that our
obtained profit is not a negative value number, because the
utility function of the crowdsourcer is monotone decreasing
with r. The crowdsourcer procures too many units from
workers, which might result in a loss. Since the online
profit-oriented auction is extended by the offline profit-
extract, it will share some properties.

Lemma 4. The online profit-oriented auction is computed in
polynomial time computationally tractable

Proof. The mechanism has an online decision operation, one
time of calculating optimal profit ðOðnÞÞ, and single time of
running Profit extracts ðOðnÞÞ in Algorithm 3, which all will
be finished in a polynomial time, since Algorithm 3 will run
few times of profit extraction algorithms.☐

Lemma 5. The online profit oriented auction is individually
rational.

Proof. It is trivial, since our proposed mechanism is a
posted-price mechanism. Therefore, we have the
lemma.☐
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Lemma 6. The online profit oriented auction is truthful.

Proof. It is trivial, since our proposed mechanism is a
posted-price mechanism. Thus, the lemma holds.☐

Let N 1 and N 2 index the subsets of N that appears in
the first and second halves of the input workers, separately.
Because the types of all workers are i.i.d., they could be cho-
sen in the set N under the same probability. The sampling
set S ′ is a randomized subset of N since all users arrives
in a random order. Thus, the number of workers inN inS ′
would follow a hypergeometric distributionHðn/2,∣N ∣,nÞ.
We index the total services of the workers whose cost is

lower than P ′ as kZ1
P ′ in the subsetZ1 and kZ2

P ′ in the subset
Z2, in which Z1 and Z2 are two random partitions.
Because the types of all workers are i.i.d. and the two subsets
are generated from a hypergeometric distribution, let us
assume kZ1

P ′ has an invariant ratio to kZ2
P ′ , which bounded

by 1 − δ for any given clear price P ′, in which δ is a small

invariant value between (0,1) if kZ1
P ′ ≥ kZ2

P ′ . Then, we could

obtain kN 2
P ′ /k

N 1
P ′ ≥ ð1 − δÞ. Then, we get the lemma as follows.

Lemma 7. The online profit oriented auction is ð1 − δÞ4
-competitive to OPT s.

Proof. We index the profit for the optimal omniscient auc-
tions for the first sub-stage as OPT ðS ′Þ. According to The-
orem 10, it implies that OPT ðS ′Þ ≥ 1/4-competitive to
OPT s. Thus, we only need to prove the ratio of OPT ð
N 2Þ to OPT ðS ′Þ. There will be 2 possibilities:

(i) The auction gets the target profit R by the second
substage. Therefore, it implies R ≥ 1/4OPT s ≥ ð1
− δÞ1/4OPT s

(ii) The auction is failed to get R while the mechanism

ends. It is easy to see kS′P ≥ kN 2
P . The obtained R′ is

formulated by

R′ =R − R − π bWð Þð Þ

=R − R − 〠
kN 2
P

i=1
rið Þ − kN 2

P ×P

0
@

1
A

0
@

1
A

=R − 〠
kN 1
P

i=1
rið Þ − kN 1

P ×P

0
@

1
A − 〠

kN 2
P

i=1
rið Þ − kN 2

P ×P

0
@

1
A

0
@

1
A

0
@

1
A

=R − 〠
kN 1
P

i=1
rið Þ − 〠

kN 2
P

i=1
rið Þ

0
@

1
A − kN 1

P − kN 2
P

� �
×P

� �0
@

1
A

≥R − 〠
kN 1
P

−kN 2
P

i=1
rið Þ − kN 1

P − kN 2
P

� �
×P

� �0
@

1
A

0
@

≥R − 〠
kN 1
P

− 1−δð ÞkN 1
P

i=1
rið Þ − kN 1

P − 1 − δð ÞkN 1
P

� �
×P

� �0
@

1
A

0
@

=R − δ 〠
kN 1
P

i=1
rið Þ − kN 1

P

� �
×P

0
@

1
A

= 1 − δð ÞR ≥ 1 − δð Þ 14OPT s

ð15Þ

☐

Thus, combining two possibilities, the lemma holds.
By the aforementioned lemmas, we can get the theorem

as follows.

Theorem 7. The online profit oriented auction is the compu-
tational efficiency, individual rationality, and truthfulness
and has ð1 − δÞ4 -competitive to OPT s.

7. Differentially Private Mechanism

In this part, we will study privacy-preserving mechanisms
for the profit-oriented crowdsourcing, in which there will
be workers acting as attackers who snoop on other workers’
private information [25]. The differentially private algorithm
ensures the distribution of results does not change signifi-
cantly while one item changes her input. Formally, the defi-
nition of the differentially private algorithm is

Definition 1 (differential privacy). A randomized algorithm
A is ϵ -differentially private if for an arbitrary input vector
D1 andD2, whose difference is only one worker, and the fol-
lowing formula holds for any payment vector x:

Pr A D1ð Þ ∈ x½ � ≤ exp ϵð Þ Pr A D2ð Þ ∈ x½ �: ð16Þ

The above definition ensures that any alternation in an
arbitrary worker’s reported information will not result in a
significant change in the outcome of the payment profile,
which makes it hard for an attacker to obtain the private
types of other workers in the mechanism. Note, unlike the
trustworthy case, we wish our mechanism satisfies the fol-
lowing property.

1: Set ðt,T ′, S ′,P ,W Þ⟵ ð1,T ,∅,0,∅Þ;
2: while t <T ′/2 do
3: if there is a worker i arriving at t then
4: S ′ ⟵ S ′ ∪ fig;
5: end while
6: R⟵ OPT sðbS′Þ and P ⟵P s′;
7: while T ′/2 < t <T ′ do
8: if there is a worker i arriving at t then
9: if ci ≤P and OPT sðbW Þ <R then
10: pi ⟵P and W ⟵W ∪ fig;
11: else pi ⟵ 0;
12: end while
13: Output: W and p;

Algorithm 3: Online profit-oriented auction.
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Definition 2 (approximate truthfulness). We say a mecha-
nism approximate truthful, if it satisfies the following equa-
tion:

∀bi′E ui bi, b−ið Þ½ � ≥ E ui bi′, b−i
� �h i

− γ, ð17Þ

in which γ is a small positive number.

Next, we will design a profit-oriented differentially pri-
vate auction through the exponential mechanism. The expo-
nential mechanism computes the result over arbitrary
domains and ranges instead of a specific value [26]. The def-
inition of the exponential mechanism is as follows:

Definition 3 (exponential mechanism). The exponential
mechanisms M randomly assign the input set D to the out-
come r ∈ R. In particular, the exponential mechanism
decides the outcome r based on the equation as follows:

Pr M Dð Þ = r½ �∝ exp ϵq D, rð Þð Þ, ð18Þ

in which qðD, rÞ is a query function mapping a pair of
input data set D and the candidate result r to a real value.

Algorithm 4 is our proposed exponential mechanism for
a profit-oriented auction. We denote P as all possible clear-
ing price, which can be get from the cost profile of sellers.
Firstly, for each possible purchasing price P , sifts out the
sellers whose private cost is not higher than P and make
them a new group ΦðP Þ. Then, we can compute the maxi-
mum amount of service that can be purchased, denoted as
ΨðP Þ, Finally, work out the profit obtained through the
workers in ΦðP Þ, which is indexed by Uðb,P Þ. We will
choose the clearing price according to the probability which
is proportional to the exp ðϵUðb, xÞ/2U∗ðb,P ∗ÞÞ, where
U∗ðb,P ∗Þ is the optimal outcome of the auction.

7.1. Mechanism Analysis

Theorem 8. Differential privacy mechanism is individually
rational.

Proof.When the unit service cost of sellers i is more than the
clearing price P , i.e., ciP , the auctioneer will not purchase
services from them; in this case, the utility of sellersiis to
equal 0. In contrast, when the unit service cost of sellers i
is no greater than the clearing price P , i.e., ci ≤P , the auc-
tion possibly purchases services from them; in this case,
the utility of sellers i is ðci −P Þxi ≥ 0.☐

In summary, the utility of sellers i is no lesser than 0.

Theorem 9. Differential privacy mechanism satisfies ε-dif-
ferentially private.

Proof. We denote b and b′ as two input sets with only one
different element. With a fixed price P , the maximum dif-
ference of profit obtained from the two bidding sets is

ΔU Pð Þ =max
b,b′

U b,Pð Þ −U b′,P
� ���� ���: ð19Þ

☐

We use ΔU to denote the maximum ΔUðP Þ over all
clear prices P . Obviously we know that

ΔU =max
P ∈P

ΔU Pð Þ ≤U∗ b,Pð Þ: ð20Þ

∀x ∈ P, we have

Thus, we have

Pr M bð Þ = x½ � ≤ exp ϵð Þ Pr M b′
� �

= x
h i

, ∀x ∈ P: ð22Þ

Therefore, the theorem holds.

Theorem 10. Differential privacy mechanism is approxi-
mately truthful.

Proof. With the bid vector b, the expected utility of seller i is
as follows:

EP ~M bð Þ ui bi, b−i,Pð Þ½ � = 〠
P ∈P

E ui bi, b−i,Pð �½ Þ Pr M bð Þ =P½ �: ð23Þ

Pr M bð Þ = x½ �
Pr M b′

� �
= x

h i = exp ϵU b, xð Þ/2U∗ b,P ∗ð Þð Þ
∑y∈P exp ϵU b, yð Þ/2U∗ b,P ∗ð Þð Þ

∑y∈P exp ϵU b′, y
� �

/2U∗ b,P ∗ð Þ
� �

exp ϵU b′, x
� �

/2U∗ b,P ∗ð Þ
� �

≤ exp ϵΔU xð Þ
2U∗ b,P ∗ð Þ
� �∑y∈P exp ϵU b, yð Þ + ΔU yð Þð Þ/2U∗ b,P ∗ð Þð Þ

∑y∈P exp ϵU b, yð Þ/2U∗ b,P ∗ð Þð Þ

≤ exp ϵΔU

2U∗ b,P ∗ð Þ
� �

exp ϵΔU

2U∗ b,P ∗ð Þ
� �

≤ exp ϵ

2
� �

exp ϵ

2
� �

= exp ϵð Þ:

ð21Þ
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According to Theorem 8, we know

Pr M b′
� �

= x
h i

≤ exp ϵð Þ Pr M bð Þ = x½ �, ∀x ∈ P, ð24Þ

so

〠
P ∈P

E ui bi, b−i,Pð Þ½ � Pr M bð Þ =P½ �

≥ 〠
P ∈P

E ui bi, b−i,Pð Þ½ � exp −ϵð Þ Pr M b′
� �

=P
h i

:
ð25Þ

We can prove that the expected utility will not increase
when the seller i lies about his type.

(1) When ci′< ci, if ci >P , this is discussed in two cases.
If ci′>P , then the auctioneer will not purchase ser-
vices from the mobile user i; if ci′≤P , then the auc-
tioneer may purchase the service from the data
contributor i And then his utility is ðP − ciÞxi, which
has a negative value. If ci ≤P , then the expected util-
ity is unchanged

(2) When ci′> ci, if ci >P , the expected utility is
unchanged. If ci ≤P , this is discussed in two cases.
If ci′>P , the auctioneer will not purchase from the
seller i, so the utility is reduced; if ci′≤P , obviously,
the expected utility is unchanged

(3) Whenmi′>mi, because the cost of the service beyond
the capacity of sellers, so his utility is +∞, when mi′
<mi, it is easy to know that the expected utility will
not increase

☐

In summary, there is E½uiðbi, b−i,P �Þ ≥ E½uiðbj′, b−i,P �Þ;
thus, we have

〠
P ∈P

E ui bi, b−i,Pð Þ½ � Pr M bð Þ =P½ �

≥ 〠
P ∈P

E ui bi, b−i,Pð Þ½ � exp −ϵð Þ Pr M b′
� �

=P
h i

≥ 〠
P ∈P

E ui bi′, b−i,P
� �h i

exp −ϵð Þ Pr M b′
� �

=P
h i

= exp −ϵð ÞEP ~M b′ð Þ ui bi′, b−i,P
� �h i

≥ 1 − ϵð ÞEP ~M b′ð Þ ui bi′, b−i,P
� �h i

= EP ~M b′ð Þ ui bi′, b−i,P
� �h i

− ϵEP ~M b′ð Þ ui bi′, b−i,P
� �h i

:

ð26Þ

1: for P ∈ P do
2: ΦðP Þ⟵ fi ∈ Jm : ci ≤P g
3: ΨðP Þ⟵∑i∈ΦðP Þmi

4: Uðb,P Þ⟵maxj≤ΨðP Þ∑
j
i=1ðri −P Þ

5: U∗ðb,P ∗Þ =maxPUðb,P Þ
6: end for
7: choose a clearing price P with the probability distributions:
8: Pr ½P = x� = exp ðϵUðb, xÞ/2U∗ðb,P ∗ÞÞ/∑y∈P exp ðϵUðb, yÞ/2U∗ðb,P ∗ÞÞ, ∀x ∈ P
9: k⟵ arg maxj≤ΨðP Þ∑

j
i=1ðri −P Þ

10: while ΦðP Þ ≠∅ and k ≠ 0 do
11: Randomly select a bidder i from ΦðP Þ
12: ΦðP Þ⟵ΦðP Þ \ fig
13: ðxi, piÞ⟵ ðmin fk,mig,P · xiÞ
14: k⟵ k − xi
15: end while
16: Output: the combined allocation and payment ðx, pÞ

Algorithm 4: Differential privacy mechanism.
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Figure 1: Costs versus numbers of friends.
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We uses mmax to index the maximum amount of services
that the sellers can provide, so we get

EP ~M b′ð Þ ui bi′, b−i,P
� �h i

≤max
P ∈P

ui bi′, b−i,P
� �

≤ P max − cið Þ ·mi ≤P maxmmax:

ð27Þ

Combined with the previous formula, we can get

EP ~M bð Þ ui bi, b−i,Pð Þ½ � ≥ EP ~M b′ð Þ ui bi′, b−i,P
� �h i

− ϵP maxmmax:

ð28Þ

According to Definition 2, the theorem is proved.

Theorem 11. Differential privacy mechanism to obtain a
profit of not less than maxPUðb,P Þ − OðlnnÞ with a proba-
bility of at least 1 − 1/nOð1Þ.

Proof. From [27], we have the following formula:

Pr U b,M bð Þð Þ <maxPU b,Pð Þ − ln Pj j/ POPTj jð Þ
ϵ

−
κ

ϵ

	 

≤ exp −κð Þ:

ð29Þ

☐

Due to the fact that jPj and jPOPT j are constants, if we set
κ = Oðln nÞ in the above equation, then, we obtain

Pr U b,M bð Þð Þ ≥maxPU b,Pð Þ − O ln nð Þ½ � ≥ 1 − 1
nO 1ð Þ : ð30Þ

So, the theorem is proved.

8. Simulation Study

8.1. Experiment Settings. We conducted two sets of experi-
ments as follows:

(1) Firstly, we mainly verify the performance of the
Profit − PAr algorithm, i.e., the competitive ratio to
the single-price omniscient optimal auction

(2) Secondly, we demonstrate the performance of the
proposed differential privacy mechanism. Also, we
also study the sensitivity of parameters and settings
to the performance of the mechanism. In addition,
the performances of privacy protection are illus-
trated by analyzing the probability distribution of
the results

8.1.1. Profit-PA. Numerical experiments are conducted to
illustrate the effectiveness of our designed profit-oriented
mechanism. Cost information is hard to obtain from the
worker directly; thus, we estimated the cost information
according to the historical bidding data. In Weiboyi, a user
will provide bidding for recommending a product to her
friends and a number of friends that the user has. In Wei-
boyi, bidding contains both price and the number of friends.
Thus, we use them to approximately estimate the cost infor-
mation and capacity of a worker. We obtained over 10000
bidders in Weiboyi. The information of a selected user is
shown in Figure 1. The cost of a seller is from 0 to 5 ∗ 104
and the number of friends is from 0 to 2 ∗ 106. We normal-
ize the cost into ½0, 5� and the number of friends into ½0, 2�.
When we select a seller from Weiboyi dataset, we will use
the cost and the friends’ number of the seller in Weiboyi
to simulate the cost and the friends’ number of a worker in
our crowdsourcing platform. We use the following submod-
ular function to measure the buyer’s revenue:

π xð Þ = 〠
x

i=1

4000 − i
1000 : ð31Þ

8.1.2. Differential Privacy Mechanism. The private informa-
tion of service providers is generated by a uniform distribu-
tion with intervals of [1, 10] and [0.2, 2]. Here, the minimum
cost per unit of service is 0.2, which is a fixed overhead that
is inevitably consumed by providing unit services. For the
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Figure 2: Profit − PAr. (a) Competitive auction profit. (b) Winner ratio.
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settings of competitive auctions, the cost is from uniform
distribution that is known in advance.

In the differential privacy mechanism, ϵ is an adjustable
variable. The scope of ε is limited to [0, 1], and experiments
are running with values of 0.05, 0.5, and 1, respectively. We
will use the method of analyzing the quantity of disclosed
privacy proposed in [28].

Definition 4 (privacy leakage). For an arbitrary mechanism
M, let R index the result of M. b and b′ have only one dif-
ferent input data. π and π′ are the outcome of probability

distributions of MðbÞ and Mðb′Þ, separately. The privacy
leakage of M is the maximum of absolute differences
between logarithmic probabilities of the π and π′ for any b
and b′:

maxr∈R lnπr − lnπr′
�� ��: ð32Þ

Theoretically, the parameter of differential privacy
mechanism ε is the upper bound of the privacy leakage.
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Figure 3: Differential privacy mechanism. (a) Differential privacy mechanism profit, (b) impact of different ϵ on profit, and (c) impact of
different ϵ on privacy leakage.
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8.2. Experiment Results and Analysis. In Experiment 1, we
verify the performance of competitive auctions. For this case,
we assume that the cost of the service is from Weiboyi data-
set. As can be seen from Figure 2(a), as the number of sellers
increases, the profit of both optimal omniscient auction and
competitive auction will show an upward trend. In other
words, as the market competition increases, the buyer can
achieve greater profits.

Similarly, as can be seen from Figure 2(b), the change in
the number of sellers has an impact on the winner ratio. This
shows that the competitive auction mechanism is robust. As
can be seen from Figure 2(b), as the number of workers
increases, the winner ratio of both optimal omniscient auc-
tion and competitive auction will show a downward trend.
In other words, as the number of sellers increases, the win-
ner ratio will be less.

In the second experiment, we mainly verified the perfor-
mance of the proposed differential privacy mechanism. The
costs of the worker are followed by a discrete distribution over
the interval [0.2, 2]. From Figure 3(a) as the number of workers
increases, the profits show an upward trend, but it is slowly
compared with Experiment 1, since the cost of workers is dis-
crete. It can also be seen from Figure 3(a) that the profit of dif-
ferential privacy mechanism is much lower than the
competitive auction, since it is the cost of the privacy
protection.

In Figure 3(b), as the parameter ϵ changes, the profit of
differential privacy mechanism also changes. Although the
number of sellers is fixed, this change is not obvious due to
the randomness of the differential privacy mechanism. How-
ever, when the number of sellers increases and the value of ϵ
is larger, the profit increases. This is because, with ϵ increases,
the differential privacy can choose the higher clearing price
with a greater probability; that is, it can achieve greater profit.

As we can be seen from Figure 3(c), when the parameter ϵ is
larger, the privacy leakage will be larger, regardless of the number
of sellers. From Figure 3(b), as the value of ϵ increases, the profit
of differential privacy mechanism will increase; also the privacy
leakage will increase. Therefore, the mechanism designer must
make trade-offs between profit and privacy leakage.

9. Conclusion

We introduce a profit-oriented mechanism for the crowd-
sourcing, which is prior-free. Our designed mechanism
adopts the framework of profit-extract and random sam-
pling. We show the designed profit-oriented mechanism sat-
isfies the properties of truthfulness, individual rationality,
and computation tractability and has a performance lower
bound. Through a two-substage sampling, we extended the
offline algorithm to the online setting. And we also study
the mechanism for our setting with privacy-aware sellers.
Simulations are conducted to illustrate the effectiveness of
the proposed profit-oriented algorithm.
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