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The resource-constrained nature of wireless sensor networks engenders the development of energy-efficient network operations.
To mitigate the prime concern of developing an energy-efficient network, clustering of the nodes has emerged as a very effective
tool. If executed intelligently, clustering can not only help in obtaining even load distribution among the network nodes but also
help in having the enhanced network lifetime and scalability. In this work, a Metaheuristic Load-Balancing-Based Clustering
Technique (MLBCT) in wireless sensor networks has been proposed which formulates the energy-balanced clusters based on
the differential evolution technique to improve the network lifetime. To ensure the formation of balanced clusters, several
metrics like nodes’ proximity, nodes’ distribution, and energy distribution across the sensing field have been considered.
Moreover, to facilitate the even load distribution among the cluster members, a randomized rotation of cluster head is
implemented. The supremacy of the proposed scheme is confirmed through an extensive set of simulations against the state-
of-art schemes. Simulation results reflect an average gain of 51.85% in network lifetime under the variable network
configurations in an ideal environment. Moreover, a thorough statistical analysis is performed to prove the efficacy of the
proposed fitness function by obtaining confidence intervals under two different network scenarios with variable node counts.

1. Introduction

A wireless sensor network (WSN) comprises a large number
of tiny devices capable of sensing the surrounding, process-
ing the collected data as per the application, and communi-
cating the processed field information to the centralized base
station (BS) [1]. However, the sensor nodes deployed (either
randomly or deterministically) in the sensing field suffer
from several constraints. They are limited in processing abil-
ities, storage abilities, power, and other allied restrictions [2].
Among all these restrictions, limited power is the most

severe one as the node drained of all the energy and frequent
recharging and replacement cannot be facilitated, especially
in remote applications of WSN like habitat monitoring,
environmental monitoring, industrial monitoring, and mili-
tary surveillance systems [3, 4].

Typically, transmission and route allocation consume
most of the nodes’ energy and are very much responsible
for the power drainage of the sensor nodes. Thus, to solve
this issue, energy-efficient network layer operations have
been targeted by researchers for many years. Routing is the
main functionality of the network layer, and hence,
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designing an energy-efficient routing protocol is consistently
captivating the attention of the community. To the afore-
mentioned, clustering has evolved as a very significant tool
that not only eases the task of routing and distributes the
load evenly within a cluster but also, through the use of data
aggregation, results in substantial saving of nodes’ energy to
be consumed in other significant network operations.

Clustering has been defined as the grouping of nodes
based on some common attributes. In a clustering-based
architecture, the network nodes are partitioned into some
groups termed clusters. Within the cluster, a node is desig-
nated as cluster head (CH) which carries out more energy
heavy tasks such as data aggregation and long-distance com-
munication to the sink on behalf of the entire cluster. The
rest of the nodes, called cluster members, perform the basic
task of sensing and short-distance communication to the CH
[5]. To effectively improve the WSN performance, balancing
the clusters is a prerequisite. Thus, the formation of clusters
in the WSN can be seen as an optimization problem involv-
ing multiple variables to be brought into consideration like
nodes’ proximity, nodes’ residual energy, and size of the ten-
tative clusters. The optimization problems can be classified
into two major categories—heuristic and metaheuristic.

The primary motivation behind this work is to pursue the
problem of clustering through metaheuristic algorithms. As
mentioned above, since the formation of balanced clusters
leading to the energy-efficient network operation requires
the adequate consideration of various parameters such as
nodes’ proximity and cluster size, optimization techniques
can help a lot in having a suitable solution. With the obtain-
ment of balanced clusters and rotation of cluster head’s role
among the nodes over the network rounds, the foremost goal
of network lifetime improvement can be achieved effectively.
In this paper, a novel energy-efficient clustering protocol,
Metaheuristic Load-Balancing-Based Clustering Technique
(MLBCT), is proposed for the wireless sensor networks based
on the idea of differential evolution, a metaheuristic technique.
The proposed scheme defines a suitable fitness function to for-
mulate the balanced network partitioning. Once the clusters
are finalized, the scheme freezes those and enables the CH-
role rotation among the cluster members. To prove the
scheme’s efficacy, an extensive set of simulations demonstrate
the showcasing of the improved network lifetime and network
energy consumption.

1.1. Major Contributions and Organization of the Paper. The
major contributions of the proposed MLBCT are as follows:

(i) Design of an appropriate fitness function leading to

(a) balanced cluster formation

(b) reduced intracluster communication cost

(ii) Development of a differential evolution-based
energy-efficient clustering scheme on the basis of
the devised fitness function

(iii) Performance analysis of the proposed scheme,
MLBCT

(a) under varying network configurations to show-
case its adaptability and scalability

(b) with comparison to the state-of-art schemes in
terms of network performance

(c) with statistically justified results

The rest of the paper is organized into five descriptive sec-
tions. Section 2 outlines the literature review of the existing
works in the same context to identify the technical gaps. Sec-
tion 3 presents the adopted network model, an introductory
discussion on differential evolution, and the terminology to
be used throughout the work. Section 4 describes the proposed
scheme detailing each of its constituent phases. Section 5 dis-
cusses the performance in detail to confirm the supremacy and
efficacy of the MLBCT, and finally, Section 6 concludes the
work by mentioning the future scope for the same.

2. Literature Review

Asmentioned in Section 1, the optimization techniques can be
majorly categorized as heuristic and metaheuristic schemes.
Heuristic techniques utilize the complete set of particulars of
a given problem and, being greedy in nature, generate solu-
tions that might get trapped into local maxima/minima
instead of producing the global maxima/minima.

On the other hand, metaheuristic techniques, also
termed guided random search algorithms, are problem-
independent, providing the optimal solution without getting
stuck into the local maxima/minima. Metaheuristic algo-
rithms compute the optimal solution by thoroughly explor-
ing and exploiting the available search space in multiple
iterations. The general working of the metaheuristic tech-
niques is summarized in Figure 1.

The metaheuristic scheme starts working with a ran-
domly selected set of solution vectors that improve over
the iteration. Once the application-specific parameters such
as scaling factor and crossover rate are defined, the fitness
of the current solution set is evaluated through a carefully
designed fitness function. Then, the counter which keeps
track of the iterations is initialized. Afterward, a selection
from the population chosen is made, and the selected vectors
undergo a variation phase (mutation/crossover). Thus,
updated vectors are again evaluated for their current fitness,
and through a survivor function, a greedy selection strategy,
the population for the next generation is finalized. The pro-
cess of updating the set of solutions is repeated for a prede-
fined number of iteration, and at last, the most recent
population is selected as the final solution. An intelligently
and carefully designed fitness function plays the most signif-
icant role in obtaining further improved offspring in meta-
heuristic techniques.

Here, we present a brief review of such schemes based on
the approaches known as heuristic and metaheuristic.

2.1. Heuristic Schemes. In one work [6], the authors pro-
posed the most popular clustering-based routing protocol,
Low-Energy Adaptive Clustering Hierarchy (LEACH), for
the wireless sensor networks, which features a probabilistic
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selection of cluster heads. It implements the localized coor-
dination for various network operations and randomized
rotation of the role of the cluster heads for load balancing
among the nodes. However, since the selection of cluster
heads does not count the residual energy of the nodes, nodes
with low residual energy might suffer from early death if fre-
quently selected as cluster heads.

In another work [7], the authors of the LEACH pro-
posed an extension of the [6] requiring the nodes to send
their location and energy status to the base station for the
selection of cluster heads in a centralized manner and the
formation of appropriate clusters via the application of sim-
ulated annealing algorithm.

The authors proposed a chain-based scheme in which,
instead of forming multiple clusters [8], the nodes were pro-
visioned to develop chains in a way that each sensor could
exchange data with the neighbor nodes. At last, the chain
leader concludes the entire data flow and forwards it to the
base station. However, the scheme proved to be more
energy-efficient than LEACH, but the significant delay in
the delivery and dynamic topological adjustments appeared
as the major issues of the scheme.

In [9], the authors proposed a static clustering scheme that
eradicated the energy costing of the dynamic cluster formation
in every round of the network operation as in LEACH, etc. In
this scheme, distance-based clustering is executed via the base
station. Once the clusters are decided, two important parame-
ters—residual energy of the nodes and the nodes’ spatial distri-
bution—are considered to select cluster heads. However, the
scheme only targeted energy consumption minimization.

In one scheme [10], the authors proposed a centralized
scheme that treated coverage in the sensing field as equally
important as the energy efficiency. The scheme starts with
the distance-based clustering as in the [9]. It selects the clus-
ter heads based on the weighted mean of the contribution
factor of the nodes, where the contribution factor is defined
as the ratio of the node’s residual energy to that of the native
grid in the sensing field. The main objective of the scheme is
to assure network-wide coverage for the maximum network
operation time.

In [11], the authors proposed a LEACH-based clustering
protocol that mainly targets the energy efficiency and the
fault tolerance in the network. To improve the network life-
time, the network nodes are provisioned to send their data to
their respective cluster heads only when the current data is
distinct from the previous data. At the end of every network
round, noncluster head nodes forward their current energy
status to the respective cluster heads to get classified as faulty
(nodes with lower residual energy level) and live nodes
(nodes with sufficient residual energy). The identification
of faulty nodes facilitates the fault tolerance in the network.

In [12], the authors proposed a Fault-Tolerant
Clustering-based Multipath algorithm (FTCM) to address
the problems of energy efficiency and fault tolerance in the
wireless sensor networks. The scheme calls the hybrid
energy-efficient distributed clustering (HEED) [13] scheme
to partition the network into an appropriate number of clus-
ters. It also appoints a backup CH (BCH) for a cluster head
to improve the fault tolerance. The BCH consistently moni-
tors the performance of CH and keeps a copy of CH’s data
until delivered to the base station. In case of any mishap at
the CH end, the BCH can instantly transmit data to the base
station without asking the member nodes to send their data
again. In addition to the regular responsibilities of CH, the
CH is also responsible for the removal of the majority of
faulty nodes via hypothesis testing and majority voting.
The proposed scheme enables three paths to transfer data
from the source node to the base station based on the para-
meters—residual energy of the nodes, number of hops,
propagation speed, and path reliability.

In [14], the authors proposed a clustering-based Hierar-
chical Fault-Management Framework (HFMF) to address
energy management and fault management jointly. For the
minimization of energy consumption, the sleep/active
method is used. For the management of faults, that is, faults’
detection and recovery, backup CH (BCH) is appointed
along with every CH to take care of acting CH in the event
of its malfunctioning or failure. Later by measuring the data
correlation among the cluster members, nodes are grouped
virtually to further achieve the energy and fault
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Figure 1: General scheme of metaheuristic techniques.
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management. The authors have successfully demonstrated
that the proposed scheme not only manages the transient
faults, intermittent faults, and permanent hardware faults
but also the link faults are detected.

2.2. Metaheuristic Schemes. A wide variety of metaheuristic
techniques such as genetic algorithm (GA), genetic pro-
gramming (GP), evolutionary programming (EP), evolution
strategies (ES), differential evolution (DE), particle swarm
optimization (PSO), ant colony optimization (ACO), and
teaching-learning-based optimization (TLBO) exist in the
literature. Such metaheuristic techniques with the virtue of
being problem-independent have already imparted a lot in
almost every field of engineering like [15]. In the context
of wireless sensor networks, some contributions are noticed
especially for the selection of cluster heads and the effective
formulation of the clusters like in [16–25].

Due to its simplicity, robustness, and fast convergence,
differential evolution has proved its worth over the algo-
rithms like GA and PSO [26]. Several contributions have
already been proposed based on this outstanding differential
evolution technique in search of suitable clusters of the
nodes in WSN. This subsection discusses some of the prime
contributions in this regard as follows:

In one work [27], a differential evolution-based routing
scheme, DE-LEACH, is proposed for environmental moni-
toring wireless sensor networks. DE-LEACH applies the fast
and straightforward converging search technique of differ-
ential evolution to produce the clusters by considering the
nodes’ residual energy status and spatial distribution. The
scheme consists of four phases: partitioning initial clusters,
collecting status information of the nodes within the clusters
through the auxiliary cluster heads, determining optimized
cluster heads with differential evolution, and forming opti-
mized clusters. The phases are to be executed in every round
of the network operation. The scheme outperforms the tra-
ditional LEACH, and LEACH-C [7]. However, the nodes
are burdened with heavy computational responsibilities.

In another work [28], a differential evolution-based clus-
tering algorithm (DECA) is proposed, which provisions spe-
cialized nodes enriched with the additional amount of initial
energy to act as cluster heads. These specialized nodes are
called relay nodes or gateways. In DECA, besides providing
a suitable fitness function (to measure the health of the ten-
tative clusters), a new local improvement phase has also
been proposed that carefully prevents early death of the gate-
ways. DECA utilizes the DE/best/1/bin scheme for the differ-
ential evolution. In addition to a novel scheme for the vector
representation, a fitness function is designed by considering
the standard deviation of the lifetime of gateways and aver-
age cluster distance. The scheme outperforms the [29–31]
traditional differential evolution and genetic algorithm-
based scheme in terms of network lifetime; however, the
scheme gives only a little attention to the cluster balancing
via its local improvement phase.

A hybrid differential evolution and simulated annealing
(DESA) scheme for the improvement of network lifetime
in wireless sensor networks is proposed in [32]. The scheme
utilizes a hybrid of differential evolution and simulated

annealing for local and global optimal solutions, respec-
tively. There are four phases in the scheme—population vec-
tor initialization, mutation, crossover, and selection as in the
traditional differential evolution. However, instead of using a
random selection of population vectors, a more effective,
“opposite point method” [33] technique is used for the ini-
tialization of population vectors. The mutation scheme is
decided randomly at run time based on a chosen threshold
value (here, it is 0.5) in such a way that a random number
belonging to (0, 1) is observed, and if it is below the thresh-
old, the mutation scheme is DE/rand/1; otherwise, it is DE/
target − to − best/1. The fitness function is designed by con-
sidering the ratio of nodes’ energy to that of the respective
clusters. And for crossover, a blending rate based on Gauss-
ian distribution is used. The scheme outperforms the tradi-
tional differential evolution scheme in terms of network
lifetime, energy consumption, throughput, etc.; however, it
converges slowly.

In [34], the authors proposed Multiobjective Load-
Balancing Clustering (MLBC) which is a multiobjective opti-
mization technique that addresses two significant problems
in WSN—energy efficiency and reliability. It utilizes the
Multiobjective Particle Swarm Optimization (MOPSO).
MLBC targets energy efficiency by appropriately considering
the average residual energy of the cluster heads and reliabil-
ity by reducing the intercluster communication cost among
the nodes in a cluster. It also provisions the load balancing
via shuffling the roles of the next-hop node and CH in every
iteration. However, it considers only the average residual
energy of cluster heads in formulating the objective function
for energy efficiency.

In a scheme [35], efficient energy consumption in wire-
less sensor networks using an improved differential evolu-
tion algorithm is highlighted. The scheme is an
improvement of [28], in which the mutation strategy has
been updated to accommodate the target vector along with
the prior best and two random population vectors. Also,
the fitness function has been upgraded to accommodate
the total energy of the gateways and nodes in addition to
the existing network lifetime standard deviation component.
However, nothing has been mentioned concerning the load
balancing among the clusters.

In one work [36], the authors proposed a hybrid meta-
heuristic clustering algorithm that exploits the best of Artifi-
cial Bee Colony and differential evolution optimization
techniques. In their proposed Artificial Bee Colony (ABC)
with differential evolution (DE) scheme, known as ABC-
DE-based clustering scheme, the objective function is
designed by taking into account the three network parame-
ters—average intracluster distance, average energy of cluster
heads, and data transmission delay to ensure the load-
balanced cluster heads. In addition to this, an ABC-based
metaheuristic algorithm has also been proposed to facilitate
the dynamic repositioning of the mobile sink within the
cluster-based network to achieve further energy efficiency.

In [37], the authors have addressed the problem of
energy optimization in an Internet-of-Thing-based WSN
(IoT-based WSN). In pursuance of the problem, as men-
tioned earlier, a hybrid of the Whale Optimization
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Algorithm (WOA) and simulated annealing (SA) metaheur-
istic algorithms have been employed to select the most suit-
able cluster heads in their respective clusters. For choosing
the most appropriate cluster heads, the fitness function of
the proposed scheme considers a set of five node-specific
parameters: residual energy, load, delay, distance, and tem-
perature. The fitness function ensures that the node with
the highest residual energy but the least load, delay, distance,
and temperature is selected as the cluster heads in every net-
work round.

In one work [38], the authors proposed an Artificial
Intelligence- (AI-) based quorum system to address the issue
of energy conservation in the wireless sensor networks. The
primary motivation behind the proposed AI-based was to
fasten the neighbor discovery process in order to minimize
the network latency. Moreover, the scheme facilitates a
quorum-based grid system that allows a substantial increase
in the number of nodes in the quorum without mandating
the increase in the number of quorums to reduce the effec-
tive network delay. In addition to the aforesaid, the feature
of weighted load balancing reduces the network energy con-
sumption to improve the network lifetime. Through the var-
ious experimentation, the authors have established the
outperformance of their proposed scheme over the state-
of-the-art quorum algorithms in terms of latency, improved
coverage, energy efficiency, and network lifetime.

In [39], the authors proposed a genetic algorithm- (GA-)
inspired clustering-based approach to address the problem
of node’s localization in wireless sensor networks. To find
the accurate position of unknown nodes with respect to
the anchors or known nodes, the authors used the Euclidean
distance objective function in their proposed scheme.
Through various simulation results, the supremacy of the
GA-based localization scheme with an extended clustering
approach has been established over the state-of-the-art
schemes like Centroid and Distance Vector-Hop (DV-
Hop) in terms of improved location accuracy.

In a scheme [40], the author proposed a genetic
algorithm-based energy-efficient clustering scheme which
addressed the localization problems in wireless sensor net-
works. The authors utilized parameters like node’s residual
energy, distance estimation, and coverage connection in
the formulation of fitness function for their proposed
scheme, Energy-Efficient Clustering in Genetic Algorithm
Localization (EECGL). Through various experimentation,
the authors have shown that EECGL approximates the
unknown node’s location with the least localization error
and extends the effective network lifetime by minimizing
the overall network energy consumption.

In a work [41], the authors proposed a metaheuristic
energy-efficient clustering technique which is inspired by
the Brain Storm Optimization (BSO). The BSO is a swarm-
based metaheuristic technique exploiting the human brain-
storming process in search of the best possible solutions.
In their proposed scheme, Energy-Efficient Clustering-
Brain Storm Optimization (EEC-BSO), the authors have
focused on deciding energy-efficient clusters in a way that
nonparticipating nodes in the information transmission pro-
cess are sent to sleep mode minimizing the overall network

consumption. In the formulation of such clusters, the fitness
function is designed by considering the parameters like
node’s residual energy, coverage, and packet data rate. More-
over, the outperformance of EEC-BSO has been established
over the state-of-the-art schemes such as LEACH, LEACH-
Centralized, Energy-Efficient Clustering Scheme (EECS),
and LEACH-BSO in terms of reduced energy consumption,
improved coverage, and data packet rate.

In a proposed scheme [42], a differential evolution-based
clustering routing protocol (DEBCRP) for wireless sensor
networks. DEBCRP is a base station-dependent scheme that
applies DE/best/1/bin scheme for the network partitioning
into some clusters. The fitness function devised by the
authors considers the nodes’ residual energies with respect
to the probable cluster heads and the distance between the
nodes and the cluster heads for the formulation of clusters.
At last, to communicate the data from the sensing field to
the base station, a PEGASIS [8] like a chain of the cluster
heads is formed. The scheme DEBCRP is reported to outper-
form the S-DE [43] in terms of network lifetime. However,
no adequate consideration is given for the formulation of
load-balanced clusters, which is the most prime key to net-
work lifetime improvement. Also, PEGASIS like chain of
the cluster heads suffers from similar problems as in [8],
for example, delayed communication, and since data from
one CH is to be aggregated with that of the others in the
direction to the sink, there might be introduced some inac-
curacy in the information being sent to the base station.

From the aforementioned analysis, it can be easily con-
cluded that despite being the most important factor for the
formulation of clusters in the network, cluster balancing
has been addressed the least. Thus, the work being presented
here serves the following objectives:

(i) Balanced cluster formulation to contribute effec-
tively towards the enhancement of network lifetime

(ii) Adaptable clustering solution to perform consis-
tently well in any network configuration

3. Preliminaries

This section describes the network model for the scheme. In
addition to this, it also discusses the basics of the differential
evolution metaheuristic technique and the entire set of nota-
tions used throughout the work.

3.1. Network Model. MLBCT assumes the wireless sensor
network with the following characteristics:

(1) All the sensor nodes are deployed randomly across
the sensing field and are static. More illustratively,
nodes once deployed cannot change their location

(2) The sensor nodes are homogeneous and equipped
with a definite amount of initial energy

(3) The sensor nodes are facilitated with the power con-
trol features to introduce variations in the transmis-
sion power as and when needed
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(4) The base station is also static and can be placed at
any point in the network accordingly

(5) The continuous data flow model is used here to
define the working mode of the sensor nodes

3.2. Differential Evolution: An Overview. The differential
evolution has evolved as a prevalent stochastic metaheuristic
multimodal optimization technique over the continuous
search space. Similar to the general scheme of metaheuristic
techniques as discussed in Section 1, it starts with the defini-
tion of the initial parameters where the values of scaling fac-
tor and crossover rate are defined along with the
randomized set of initial solutions (initial population) and
the number of iterations. Here, each solution vector (equiv-
alently known as chromosome or genome) termed as a tar-
get vector undergoes the mutation phase followed by the
recombination. This mutation followed by the recombina-
tion is nothing but the variation phase of Figure 1. As
depicted in Figure 2, the target vector, once it passes through
the mutation phase, becomes the donor/mutant vector. After
the recombination or crossover phase, the donor vector is
known as the trial vector.

In the differential evolution scheme, obtainment of the
next-generation solutions is performed only after the gener-
ation of all trail vectors when compared to particle swarm
optimization, and teaching-learning-based optimization
[44, 45]. In other words, the greedy selection towards the
next-generation solution is performed between the pair of
target and trial vectors once all the target vectors have been
converted into trial vectors. A variety of mutation strategies
exist, such as random, best, and target-to-best, along with
the two types of crossover techniques—binomial and expo-
nential crossovers. The binomial and exponential crossover
can be defined as follows:

3.2.1. Binomial Crossover.

uj =
vj if r ≤ CP OR j = δ,
xj if r > CP AND j ≠ δ,

(
ð1Þ

where CP is the crossover probability, δ is the randomly
selected variable location from the set f1, 2, 3,⋯,∣decision
variable ∣ g, r is the random number between 0 and 1, uj

refers to the jth variable of the trial vector, vj refers to the

jth variable of donor/mutant vector, and xj refers to the jth

variable of the target vector.

3.2.2. Exponential Crossover. In the exponential crossover, at
very first, the nth variable from the donor vector is copied
into the trial vector. Afterward, every subsequent variable
from the donor vector is copied into the trial vector as long
as the r ≤ CP. Once r > CP, variables from the target vector
are copied into the trial vector.

Based on the adapted mutation strategy and crossover
type, various schemes have been proposed for differential evo-
lution, and to discriminate among them, a standard notation,
DE/x/y/z, is used. Here,DE refers to the differential evolution,

x denotes the mutation strategy, y denotes the number of dif-
ference vectors to be used in the mutation operation, and z
refers to the crossover scheme selected. Some of the variants
of the DE schemes are listed here in Table 1.

Here, in Table 1, V is the donor vector, F is the scaling
factor such that F ∈ ð0, 2Þ, Xbest is the target vector with best
fitness value, Xi is the i

th target vector, and Xrj
is the jth tar-

get vector chosen randomly where j ∈ ½1,N�, N being the
number of target vectors in the population. Once the trail
vectors are generated for all the target vectors of current gen-
eration, say G, offsprings are chosen based on the fitness
value of the corresponding pairs of target and trial vectors,
i.e., <Xi,G,Ui,G > for i ∈ ½1,N� as follows:

Xi,G+1 =
Ui if fitness Ui,Gð Þ ≥ fitness Xi,Gð Þ,
Xi otherwise:

(
ð2Þ

3.3. Terminology. The notations used throughout the work
have been listed as follows:

(i) S denotes the set of sensor nodes such that S = f
s1, s2, s3,⋯, sNg where N is the number of nodes
deployed in the sensing field

(ii) Θ denotes the set of cluster heads such that Θ = f
CH1, CH2, CH3,⋯, CHkg where k is the number
of cluster heads

(iii) REi denotes the residual energy of the ith node in
the network

(iv) ClusteriRE denotes the residual energy of the ith

cluster such that ClusteriRE =∑m
j=1REj where m

refers to the cluster size

(v) CSi denotes the cluster size of the ith cluster

(vi) AvgCS refers to the average cluster size, i.e., aver-
age number of nodes in a cluster

(vii) ACE refers to the average cluster energy such that
ACE =∑N

i=1REi/k
(viii) dði, jÞ denotes the Euclidean distance between the

ith and jth nodes in the network

(ix) distmði, jÞ denotes the Euclidean distance between
the ith and jth members of the mth cluster. This
parameter is basically used to measure the nodes’
proximity

(x) RC denotes the communication range of the nodes

(xi) ComCHðsiÞ refers to the set of cluster heads within
the communication range of the node si, i.e.,
ComCHðsiÞ = fCHj ∣ dðsi, CHjÞ ≤ RCg

Target vector Mutation Donor vector
/ Mutant vector

Crossover Trial vector

Figure 2: Vector transformation in differential evolution.
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The main objective of the present work is to formulate
the balanced clusters within the network for the even distri-
bution of load among the nodes. To ensure this, it is
attempted that the clusters are equipped with an almost sim-
ilar count of member nodes situated close to one another.
Also, the clusters are left with an approximately equal
amount of residual energy at the end of every network
round.

4. Proposed Scheme: Metaheuristic Load-
Balancing-Based Clustering
Technique (MLBCT)

This section describes the proposed scheme, Metaheuristic
Load-Balancing-Based Clustering Technique (MLBCT) in
wireless sensor network. The MLBCT is a base station-
(BS-) assisted scheme which calls the BS for the differential
evolution-based cluster formation. Once the optimized and
balanced clusters come into existence, it hands over the
responsibility of further network operations to the network
nodes.

The scheme starts with a bootstrapping phase in which
all the nodes are assigned unique IDs, which in turn com-
municate their IDs and location information to the BS.
The BS then applies the differential evolution with a well-
established fitness function (detailed below) and formulates
the balanced clusters. The selected cluster heads are then
informed of their specific roles and their members’ informa-
tion by the base station. Thus, selected cluster heads then
provide their IDs to the respective members along with the
TDMA schedules. Afterward, the overall network operation
is divided into rounds where each round consists of the
steady-state phase and the responsible node selection phase.
In the steady-state phase, cluster members send their data to
their respective cluster heads, which aggregate the received
data and forward it to the base station. In the responsible
node selection phase, the current cluster head in a cluster,
select a node randomly to act as head for the next round
and broadcast into the concerned cluster. The entire work-
flow is summarized in Figure 3 and has been detailed into
the subsequent subsections and algorithm as follows:

4.1. Bootstrapping. In bootstrapping, differential evolution is
applied by the base station to divide the entire network into
k number of balanced clusters where k is a user-defined

parameter. It starts with the sharing of node-specific infor-
mation such as identity, residual energy, and location infor-
mation to the base station by the nodes deployed. Based on
the information received, BS performs the following to
determine the required partitioning.

4.1.1. Generation of the Random Population. The population
vectors are generated as per the [28]. Each population vector
is chosen in such a way that it indicates the assignment of
every network node to one of the cluster heads. The notation
adopted to represent the ith population vector of the Gth gen-
eration is as follows:

X
!
i,G = x1,i,G, x2,i,G, x3,i,G,⋯, xN ,i,G½ �, ð3Þ

where x1,i,G, x2,i,G, x3,i,G,⋯, xN ,i,G are the random numbers
between 0 and 1. xj,i,G denotes the assignment of the node
sj to one of cluster heads, say k, as follows:

l = ceiling xj,i,G ∗ ComCH sj
� ��� ��� �

, ð4Þ

CHk = index ComCH sj
� �

, l
� �

: ð5Þ
Here, the length of the population vectors is definite and

determined by the number of nodes deployed in the field.
Thus, corresponding to every population vector, say

X
!

i,G = ½x1,i,G, x2,i,G, x3,i,G,⋯, xN ,i,G�, we have another vector,

say Y
!
i,G = ½y1,i,G, y2,i,G, y3,i,G,⋯, yN ,i,G� such that

f xj,i,G
� �

= yk,i,G, ð6Þ

where yk ∈Θ is assigned to the node xj in the ith vector of

Gth generation as per equations (4) and (5).

4.1.2. Fitness Function. It can be easily intuited that if the
clusters are balanced in the clustered network architecture,
they might have an almost similar level of residual energy
and a similar count of member nodes. With this conception,
to meet our primary objective of network partitioning into
some balanced clusters, nodes’ residual energy and cluster
size have been taken as the decision parameters. In addition
to this, nodes’ proximity has also been taken into account,
ensuring the reduced energy consumption in intracluster
communication.

Table 1: Differential evolution schemes.

DE scheme Mutation strategy Mutation expression Crossover type

DE/rand/1/bin Random V = Xr1
+ F Xr2

− Xr3

� �
Binomial

DE/rand/2/exp Random V = Xr1
+ F Xr2

− Xr3

� �
+ F Xr4

− Xr5

� �
Exponential

DE/best/1/bin Best V = Xbest + F Xr1
− Xr2

� �
Binomial

DE/best/2/bin Best V = Xbest + F Xr1
− Xr2

� �
+ F Xr3

− Xr4

� �
Binomial

DE/target-to-best/1/exp Target-to-best V = Xi + F Xbest − Xið Þ + F Xr1
− Xr2

� �
Exponential

DE/target-to-best/2/exp Target-to-best V = Xi + F Xbest − Xið Þ + F Xr1
− Xr2

� �
+ F Xr3

− Xr4

� �
Exponential
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A suitable fitness function always contributes the most to
the differential evolution to converge. Thus, the fitness func-
tion has been derived in such a way that it characterizes all
the aforementioned requirements as follows:

(i) Standard deviation of average cluster energy

If the clusters have been formed in an optimized way,
ensuring the entire network energy is distributed evenly
across the clusters formed in the network, each cluster is
supposed to have an almost similar level of residual energy.
In other words, it can be said that in terms of average cluster
energy (ACE), each cluster should have the approximately
same amount of energy, and hence, the standard deviation
accords to the following:

σCE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
k
∗ 〠

k

i=1
ACE − ClusteriRE
� �2,

vuut ð7Þ

where k is the number of clusters. It is quite obvious that the
lower the value of σCE, the higher the value of fitness, i.e.,

Fitness Value∝ 1
σCE

: ð8Þ

(ii) Standard deviation of average cluster size

The balanced clusters must have an approximately equal
number of members. In other words, it can be said that the
average cluster size (AvgCS) of each cluster should have
the almost same count of cluster members.

With this, the standard deviation and the fitness value
accord to equations (9) and (10), respectively.

σCS =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
k
∗ 〠

k

i=1
AvgCS − CSið Þ2

vuut , ð9Þ

where k is the number of clusters. It can be intuited again
that the lower the value of σCS, the higher the value of fit-
ness, i.e.,

Fitness Value∝ 1
σCS

: ð10Þ

(iii) Nodes’ proximity within the cluster

This is the metric that ensures that when there comes to
decide on the nodes to be a part of a cluster, the one who is
located at a shorter distance from the other members gets prior-
ity. The central idea behind having this metric is to reduce the
cost of communication within the cluster. The lower the value
of this metric, the higher the value of fitness. More illustratively,

Fitness Value∝ 1
∑k

m=1distm i, jð Þ
: ð11Þ

From equations (8), (10), and (11), we can have the follow-
ing:

Fitness Value∝ 1
σCE

∗
1
σCS

∗
1

∑k
m=1distm i, jð Þ

, ð12Þ

i.e.,

Random population generation

Data transmission

Next round CH-selection
Till nodes
are alive

Mutation - DE / best / 1

Crossover - Binomial

Selection - Greedy based

(b)

(a) (c)

T- Iteration

< ID, (xy) >

Sensor node

Base station (BS)

Figure 3: MLBCT: operation.
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Fitness Value = K

σCE ∗ σCS ∗∑k
m=1distm i, jð Þ

, ð13Þ where “K” is proportionality constant which can be set as K = 1
without loss of generality.

And, hence,

or

4.1.3. Mutation Strategy. Like in [28, 42], DE/best/1/bin
scheme is adapted here in this work which refers to the
application of the DE/best/1 mutation strategy. As depicted
in Figure 2, each target vector of the population (say, of the
size P) will go through this scheme to get transformed into a
donor vector. From Table 1, the mutation expression for the
selected strategy is

V
!

i,G = X
!
best,G + F X

!
r1,G − X

!
r2,G

� �
, ð16Þ

where X
!
best,G and X

!
r1,G, X

!
r2,G refer to the best vector, and any

two randomly selected vectors from the Gth generation of
the population such that i, r1, and r2 are the three random
integers ∈½1, P� and i ≠ r1 ≠ r2, respectively. F is the scaling
factor that may have any value between ð0, 2Þ.

From equation (3), it is quite obvious that the compo-

nents of the vectors in equation (16)—X
!

best,G, X
!
r1,G, and

X
!

r2,G—are the random values ∈ð0, 1Þ. In order to ensure that

the components of the vector V
!

i,G are also the values ∈ð0, 1Þ,
a few amendments are being introduced as in [28].

Let

D
!

i,G = X
!

r1,G − X
!

r2,G, ð17Þ

then,

dj,i,G =
1 + xj,r1,G

�
− xj,r2,G, if  xj,r1,G − xj,r2,G

� �
≤ 0,

xj,r1,G − xj,r2,G
� �

, otherwise:

(

ð18Þ

Also, for the computation of vj,i,G contributing to V
!

i,G,
the following can be referred to

vj,i,G =
xj,best,G + F ∗ dj,i,G
� �

− 1, if  xj,best,G + F ∗ dj,i,G
� �

> 1,
xj,best,G + F ∗ dj,i,G, otherwise:

(

ð19Þ

4.1.4. Crossover Scheme. The crossover schemes in terms of
the binomial and exponential crossover are already
described in Section 3. A binomial crossover scheme is used
in this work to convert the donor vector into the trial vector.

4.1.5. Selection or Offspring Generation. Once all the trial
vectors are generated following the above-mentioned steps,
the next generation can be obtained on basis of the compar-
ison of fitness values of the corresponding pair of target and
trial vectors as given in

X
!

i,G+1 =
U
!

i,G if fitness U
!

i,G
� �

≥ fitness X
!

i,G
� �

,

X
!

i,G, otherwise:

8><
>:

ð20Þ

4.1.6. Complexity Analysis. Throughout the proposed
scheme, fitness function would be evaluated for NP +NP ∗
T times where NP refers to the size of population and T
refers to the number of iterations known a priori.

Moreover, exploiting solution space in search of the
most optimal solution is a continuous process in the meta-
heuristic scheme. For this reason, even in the best case, the
complexity of the fitness function will be Oðn2Þ as each
newly generated solution has to be compared with its prede-
cessor in terms of its fitness value. Similarly, complexity of
the fitness function in the worst case will be Oðn2Þ due to
successive fitness value computation and comparison. Thus,
the average-case complexity for the fitness function can be
concluded as Oðn2Þ.

As explained at the beginning of this section, once the
clusters are formed, and members are notified of their
respective initial heads, further network operations can be

Fitness Value = 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/k ∗∑k

i=1 ACE − ClusteriRE
� �2q

∗
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/k ∗ ∑k

i=1 AvgCS − CSið Þ2
q

∗∑k
m=1distm i, jð Þ

ð14Þ

Fitness Value = kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑k

i=1 ACE − ClusteriRE
� �2q

∗
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑k

i=1 AvgCS − CSið Þ2
q

∗∑k
m=1distm i, jð Þ

: ð15Þ
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divided into two rounds—the steady-state phase and the
responsible node selection phase.

4.2. Steady-State Phase. This phase refers to the data trans-
mission in which cluster members send their data to their
respective cluster heads in the designated time slots. After
receiving the data from its members, cluster heads aggregate
the collected data and forward it to the base station on behalf
of their entire cluster.

4.3. Responsible Node Selection Phase. After executing the
steady-state phase, a cluster head in its respective cluster
selects a node randomly as the head for the next round
and communicates the same to its members. The members
note the same and communicate their data to that newly
selected cluster head in the upcoming round accordingly.
The process is carried out in each of the clusters in the
network.

5. Performance Analysis

This section deals with the various experimental processes
conducted throughout the work and analyses the obtained
results thoroughly.

5.1. Experimental Environment. In conducting the experi-
ments, different network configurations with varying node
densities have been examined. More illustratively, experi-
ments have been performed with the different number of
nodes, say 50, 100, 150, and 200 in an area of 100 × 100m2

with two different sink placements—one at the center of
the sensing field (50m, 50m) and another beyond the net-
work precisely at (50m, 150m). An instance of clustering
with 50 nodes and 5 and 10 cluster heads, respectively, is
demonstrated in Figure 4. The base station is situated at
(50m, 150m) in this exemplary instance.

An extensive set of experiments have been performed for
the proposed scheme using MATLAB.

Mainly, the experiments have been performed to

(1) Prove the efficacy of the proposed fitness function

In this set of experiments, the proposed fitness function
as in equation (15) has been tested for the quality of clusters
being produced. It has been verified that the proposed fitness
function yields balanced clusters in terms of cluster size. The
clusters generated as per equation (15) have been compared
with the clusters produced by the fitness function given in
[42] under two different clustering scenarios. The network
is divided into 5 clusters and 10 clusters, respectively.

(2) Prove the supremacy of the proposed scheme,
MLBCT in terms of network lifetime and network
stability

In the second set of experiments, the performance of
MLBCT is compared to that of DEBCRP [42] and improved
differential evolution-LEACH (ImDE-LEACH) [46], majorly
in terms of network lifetime and network stability with respect
to the number of alive nodes in the network, network energy

consumption, average residual energy per network nodes over
the network rounds, and data packets delivered to the base sta-
tion under the variable network configurations. Moreover, for
the sake of experimentation, the performance of the LEACH
[6] has also been recorded into the same context as that of
MLBCT, DEBCRP, and ImDE-LEACH.

5.2. Simulation Parameters. To compare the performance of
the proposed scheme, MLBCT, with that of DEBCRP and
ImDE-LEACH, simulation parameters have been adopted
here as listed in Table 2. However, to prove the scalability
and adaptability of the proposed scheme, the performance
has also been tested under variable network configurations.

In addition to the parameters listed in Table 2, the fol-
lowing performance criteria have been used for the evalua-
tion of schemes:

(i) Network lifetime: the network lifetime is generally
measured as the time when the first node dies, or
when the last node dies in the network [28–31, 42].
In this work, both definitions have been considered
to demonstrate the supremacy of the MLBCT over
DEBCRP, and ImDE-LEACH

(ii) Network stability: network stability refers to how
smoothly the network operations are going on. It
can be measured in terms of the rate of the network
energy consumption and the average residual energy
per network node. The lower the rate of energy con-
sumption, the more stable the network is, resulting
in improved network lifetime. Similarly, the higher
the value of average residual energy per network
node, the more stable and durable the network is

To further compare the performance of the sche-
mes—MLBCT, DEBCRP, and ImDE-LEACH, packet deliv-
ery at the base station can also be considered as a criterion.

The success in this regard can be judged by the higher
number of successfully delivered packets to the base station.

To find the energy consumption by the nodes in the net-
work operation, the widely adopted first-order radio model
[13, 28, 42, 46–52] has been used here in this work.

5.3. Results and Discussion. As stated in point 1 of Section
5.1, the suitability of the proposed fitness function equation
(15) is manifested in the first set of experiments. Since the
scheme is a metaheuristic one, a suitable fitness function
might contribute a lot to decide the best possible clusters.
The main objective of this work is to formulate the clusters
which are balanced in the sense that the clusters are having
an almost similar count of member nodes and the member
nodes are located close to one another to have minimized
intracluster communication.

In this experimentation, variable node counts as in
Table 2 have been considered for two instances of clustering
such as 5 clusters and 10 clusters as shown in Figure 5.

The success of the fitness proposal mentioned above is
evident in Figure 5. When implemented in the scheme
DEBCRP, the proposed fitness function has been found
more effective in having more balanced clusters. In other
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words, clusters are obtained with an approximately similar
count of member nodes, leading to the even distribution of
load throughout the network nodes. In Figure 5(a), the effi-
cacy of the proposed scheme is demonstrated with five clus-

ters being formed in the network, whereas Figure 5(b)
presents the same while partitioning the network into 10
clusters. It can be easily observed from the figure that the
members recorded in the clusters do not vary to the extent

Input:
∗ N: No. of randomly deployed sensor nodes.
∗f f nðÞ: Fitness function.
∗ F: Mutation/Scaling factor.
∗ T: No. of iteration
∗ k: No. of user-specified clusters
∗Cr : Crossover rate
◊ BEGIN

%% BOOTSTRAPPING PHASE %%.
◊ for i ⟵1: N
◊ Status Transmission(Nodei ⟶ BS)
◊ end for
◊ Random population generation (P) where each vector (Xi) refers to the complete assignment of all the nodes to the k cluster heads
◊ for i ⟵1: size(P)
◊ f f nðXiÞ
◊ end for
◊ for i ⟵1: T
◊ for j ⟵1: size(P)
◊ V j = Xbest + FðXr1

− Xr2
Þ

%% V j is the jth donor vector

◊ U j = ½ulj� where ulj is the lth component of Uj defined as follows:

ulj =
vlj if r ≤ Cr OR l = δ

xlj if r > Cr AND l ≠ δ

8<
:

%% U j is the jth trial vector
◊ end for (inner loop)
◊ for j ⟵1: size(P)
◊ f f nðUjÞ

%% i.e. fitness function evaluation of the jth trial vector
◊ if (f f nðU jÞ > f f nðXjÞ)
◊ Update P

%% Greedy approach for the update of population vector
◊ end if
◊ end for (inner loop)
◊ end for (outer loop)

%% STEADY STATE PHASE %%
◊ while(nodes are alive)
◊ for i ⟵1:

%% i.e. for every cluster
◊ for j ⟵1:

%% m ⟶ no. of members in the ith cluster
◊ DataTransmission(Nodeij ⟶ CHi)
◊ end for (inner loop)
◊ DataTransmission(CHi ⟶ BS)

%% here, aggregated data by the CHi to the base station
◊ end for (outer loop)

%% RESPONSIBLE NODE SELECTION PHASE %%
◊ for i ⟵1: k
◊ Random selection of CHi

next from within the ith cluster by CHi:

◊ New CH’s Information dissemination by the CHi

◊ end for
◊ end while
◊ END

Algorithm 1: MLBCT.
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as it is there in DEBCRP over the network rounds. Also, it
has been verified that the scheme for the fitness evaluation
of the clusters works invariably well irrespective of node
density present in the network.

5.3.1. Statistical Analysis. Statistical analysis is performed to
further explain the efficacy of the proposed fitness function
(MLBCT-fitness) as in equation (15) in producing the bal-
anced clusters. This is done by finding out the standard devi-
ation of average cluster size, σCS following equation (9)
along with the confidence interval. Standard deviation is
defined as the measurement of how the clusters being pro-
duced deviate from the ideal distribution of the nodes
among the specified number of clusters. The ideal distribu-
tion refers to the clusters with ðN/kÞ nodes if N nodes are
to be distributed among k clusters.

For this very purpose, as explained above, the proposed
fitness function is fitted into the scheme of DEBCRP, and
the performance of such a modified scheme is compared
with that of DEBCRP with respect to the formation of clus-
ters. This is achieved by recording the clusters’ length in
both cases until the first node dies. Afterward, standard devi-
ations of the average cluster size are measured in both of the
cases—with its own fitness function (σD−Fitness) and MLBCT-
fitness function (σM−Fitness).

Figures 6(a) and 6(b) demonstrate the standard devia-
tions of the average cluster size for the different network
deployments with 50, 100, 150, and 200 nodes with the
requirements mentioned above of having 5 clusters and 10
clusters, respectively. It can be explicitly observed that the
standard deviations and the MLBCT-fitness function are
quite low compared to the standard deviations obtained via
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(a) Clustering instance with 5 clusters
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(b) Clustering instance with 10 clusters

Figure 4: Simulation interface for network operation.

Table 2: Parameters used in the simulation.

Parameter Parameter’s value

Network area 100 × 100m2

Base station’s position 50m, 50mð Þ, 50m, 150mð Þf g
Node deployment strategy Random deployment

Number of nodes deployed in the network 50,100,150,200f g
Initial energy of the normal nodes 0.1 J

Size of data packet 4000 bits

Size of data packet header 200 bits

Energy consumed in data aggregation εdað Þ 5 nJ/bits/signal

Energy consumed in the transceivers’ circuitry Eelecð Þ 50 nJ/bit

Amplification factor in free space model εfsð Þ 10 pJ/bit/m2

Amplification factor in multipath fading model εmp
� �

0:0013 pJ/bit/m4

Population size 10
Mutation factor 0:5
Crossover rate 0:7
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the application of the DEBCRP-fitness function for all the
node deployments under both the specified requirements
of 5 clusters and 10 clusters. This also justifies the efficacy
of the scheme.

Another statistical analysis known as confidence interval
justifies the probability of the deployment of the nodes
within a range of the values of the cluster. In this case, the
confidence intervals with the confidence levels 95% and
99%, respectively, are measured for both cases of the cluster-
ing scenarios with variable node counts. Table 3 clearly
explains the efficacy of the MLBCT-fitness function over
the fitness function used in DEBCRP in every possible net-
work configuration. For example, when 100 nodes are
deployed to be distributed among 5 clusters, ideally, each
cluster should have 20 nodes. Here, the proposed fitness
function ensures that each cluster has a node count in the
range [18.8245, 21.1755] with 95% confidence and in the
range [18.4526, 21.5474] with 99% confidence, whereas the
fitness function of DEBCRP finds the same as in the ranges
[15.2210, 24.7790] and [13.7093, 26.2907] with 95% and

99% confidences, respectively. It can be easily intuited that
the node count in each cluster is much closer to the ideal
node count (20 here) with the MLBCT-fitness function
when compared to that with the DEBCRP-fitness function.
The consistency of the MLBCT-fitness function in terms of
balanced clusters’ formation can be seen in Table 3.

5.3.2. Experimental Analysis. In this second set of experi-
ments, as stated in point 2 of Section 5.1, MLBCT is com-
pared to DEBCRP, ImDE-LEACH, and LEACH
concerning the metrics—network lifetime, network energy
consumption rate, and average residual energy per network
node under two different network configurations, say
WSN#1 and WSN#2. In WSN#1, the sink has been placed
at the center of the 100 × 100m2 sensing field, precisely at
(50m, 50m) whereas, in WSN#2, the sink is located outside
the sensing field at (50m, 150m). Moreover, to validate the
adaptability of the scheme, simulations have been conducted
with variable node deployments, say with 50 nodes, 100
nodes, 150 nodes, and 200 nodes.
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Figure 5: Efficacy of the proposed fitness function.
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(1) Network Lifetime. As mentioned earlier in this section
that the network lifetime can be defined as the time when
the first node dies in the network or the time when the last
node dies in the network. In Figures 7 and 8, both strategies
have been followed separately.

Figures 7(a) and 7(b) describe the death of the first node
that is FND (first node death) in the schemes MLBCT,

DEBCRP, ImDE-LEACH, and LEACH under the network
scenarios WSN#1 and WSN#2.

In WSN#1 (Figure 7(a)), when the number of nodes
deployed are 50, 100, 150, and 200, the events of the first
node’s death (FND) occur at the round no. 115, 106, 99,
and 82 in the proposed scheme; at 84, 72, 63, and 49 in
DEBCRP; at 76, 75, 68, and 58 in ImDE-LEACH; and 33,
36, 35, and 33 in LEACH, respectively. Similarly, in
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Figure 6: Standard deviation of average cluster size for the clusters formed over the network rounds.

Table 3: Mean of standard deviations and confidence intervals for the clusters generated.

Clustering scenario #nodes MeanσD−Fitness MeanσM−Fitness

Interval estimate with 95%
confidence

Interval estimate with 99%
confidence

With D-fitness With M-fitness With D-fitness With M-fitness

Scenario#1 (with 5
clusters)

50 18.9254 4.4628 [4.7541, 15.2459]
[8.7630,
11.2370]

[3.0947,
16.9053]

[8.3717,
11.6283]

100 24.3826 5.9975
[15.2210,
24.7790]

[18.8245,
21.1755]

[13.7093,
26.2907]

[18.4526,
21.5474]

150 27.1672 6.9578 [25.6523,34.3477]
[28.8865,
31.1135]

[24.2771,
35.7229]

[28.5343,
31.4657]

200 25.9534 5.7280
[36.4030,
43.5970]

[39.2061,
40.79939]

[35.2652,
44.7348]

[38.9550,
41.0450]

50 11.6163 6.3429 [1.7801, 8.2199] [3.2419, 6.7581]
[0.7616,
9.2384]

[2.6857,
7.3143]

Scenario#2 (with 10
clusters)

100 15.8541 8.4076 [6.8926, 13.1074]
[8.3521,
11.6479]

[5.9096,
14.0904]

[7.8308,
12.1692]

150 21.6239 9.5944
[11.5395,
18.4605]

[13.4646,
16.5354]

[10.4448,
19.5552]

[12.9789,
17.0211]

200 21.7987 10.7536
[16.9789,
23.0211]

[18.5096,
21.4904]

[16.0232,
23.9768]

[18.0382,
21.9618]
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WSN#2 (Figure 7(b)), FNDs occur at round no. 96, 91, 77,
and 83 in MLBCT; at 62, 55, 53, and 59 in DEBCRP; at 52,
44, 53, and 44 in ImDE-LEACH; and at 33, 36, 14, and 36
in LEACH, respectively, for the aforementioned nodes’
count.

On the other hand, if the network lifetime is taken as
the time when the last node dies that is LND (last node
death) in the network, Figures 7(a) and 7(b) describe the
outcomes of experiments conducted in this regard with
the variable number of nodes as above, say 50, 100, 150,
and 200, respectively.

In WSN#1 (Figure 8(a)), the last node’s death events
occur at round no. 194, 202, 246, and 216 in the MLBCT;
at 161, 152, 138, and 141 in DEBCRP; at 111, 131, 131,

and 130 in ImDE-LEACH; and at 102, 114, 129, and 119
in LEACH, respectively. Likewise, in WSN#2 (Figure 8(b)),
LNDs occur at round no. 178, 187, 193, and 203 in MLBCT;
at 150, 151, 126, and 138 in DEBCRP; at 98, 113, 119, and
118; and at 93, 99, 108, and 103 in LEACH, respectively,
for the aforementioned nodes’ count. The appreciable results
due to FND and LND calculation state the supremacy of
using the proposed MLBCT over other schemes.

Moreover, the comparative performance of the schemes
MLBCT, DEBCRP, ImDE-LEACH, and LEACH with
respect to the nodes’ death rate can also be observed from
Figure 9.

Figure 9(a) describes the performance of the MLBCT
against that of DEBCRP, ImDE-LEACH, and LEACH in
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Figure 7: Network lifetime comparison in terms of FND.
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variable node population under the first network scenario
WSN#1. Similarly, Figure 9(b) describes the same but for
WSN#2. It is evident from Figure 9 that irrespective of
the network configuration and nodes’ population in the
sensing field, MLBCT performs consistently well as the
nodes’ death rate is low in MLBCT, and hence, the num-
ber of alive nodes is high at any point of network oper-
ation in MLBCT when compared to DEBCRP, ImDE-
LEACH, and LEACH. Thus, it can be concluded here

that the MLBCT outperforms DEBCRP, ImDE-LEACH,
and LEACH in terms of the first performance criter-
ion—network lifetime.

(2) Network Energy Consumption. From Figure 10, it can be
concluded that at any point of the network operation, the
energy consumption in MLBCT is less than that in
DEBCRP, ImDE-LEACH, and LEACH in both of the sce-
narios implemented that is in WSN#1 (Figure 10(a)) and
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WSN#2 (Figure 10(b)). Moreover, to demonstrate the con-
sistency in the performance, variable counts of sensor nodes
have been deployed here too.

(3) Average Residual Energy/Node. In this next set of exper-
iments, the performance of MLBCT is measured in terms of
the average residual energy that a network node has at any
point in the network operation for the schemes DEBCRP,

ImDE-LEACH, and LEACH. It can be explicitly observed
that the nodes are always equipped with a larger amount
of residual energy if being operated with MLBCT in compar-
ison to DEBCRP, ImDE-LEACH, and LEACH (Figure 11).
It is noticed not only in WSN#1 (Figure 11(a)) but also in
WSN#2 (Figure 11(b)); average residual energy for a net-
work node is higher at any point in network operation if
implemented with MLBCT.
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This depicts that a network utilizing MLBCT saves
energy and keeps its resource intact for future usage, which
is the desired criteria for sensor networks.

(4) Data Packet Delivery at Base Station. In the final set of
experiments, the performance of MLBCT against the
DEBCRP, ImDE-LEACH, and LEACH with respect to the
number of data packets delivered to the base station is com-

pared. The predominance of the proposed scheme, MLBCT,
can be read for both the network scenarios WSN#1 and
WSN#2 in Figures 12(a) and 12(b), respectively. For the
50, 100, 150, and 200 nodes, MLBCT enriches the base sta-
tion with 915, 969, 1221, and 1054 data packets, respectively.
However, DEBCRP results into 800, 755, 685, and 700 data
packets, ImDE-LEACH results into 550, 650, 650, and 645
data packets, and LEACH results into 416, 477, 533, and
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401 data packets, respectively, for the aforesaid network
nodes into WSN#1. Similarly, for the WSN#2, in compari-
son to 745, 750, 625, and 685 data packets due to DEBCRP,
98, 113, 119, and 118 data packets through ImDE-LEACH,
and 382, 360, 388, and 372 data packets via LEACH,
MLBCT results into 838, 903, 950, and 983 data packets at
the base station, respectively, for the node deployment men-
tioned above. This suggests that MLBCT successfully trans-
mits more packets depicting its dominance in terms of
successful transmission.

Based on the outcomes of the various simulations con-
ducted so far, it can be concluded that the MLBCT outper-
forms the DEBCRP, ImDE-LEACH, and LEACH in terms
of the chosen criteria of network lifetime, network stability,
average residual energy, and data packet delivery.

6. Conclusion and Future Works

In this work, a Metaheuristic Load-Balancing-Based Cluster-
ing Technique has been proposed for wireless sensor net-
works. To achieve the prime objective of load-balanced
clusters, a fitness function has been proposed that offers bal-
anced clusters in terms of their size and energy and ensures
the members to be in close proximity to one another reduc-
ing the cost of intracluster communication. Through an
extensive set of simulations and experimentation, the
supremacy of the proposed scheme MLBCT has been proved
over the existing ones DEBCRP, and ImDE-LEACH in
terms of improved network lifetime and network stability,
average residual energy, and data packet delivery.

Statistical analysis also justifies and supports the feasibil-
ity of the scheme. Moreover, the scheme’s adaptability and
scalability have also been established by varying the network
configuration with the different number of nodes and differ-
ent placement of the base station.

As a future extension of this work, a heterogeneous wire-
less sensor network (HWSN) would be investigated to device

a clustering-based scheme induced by metaheuristic tech-
niques to consistently contribute to the network operations
without being affected by the heterogeneity present in the
network.
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