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The stochastic control of Markov switching systems with time-delay feedback neural networks under the interference of external
environment is studied in this paper. By designing a memoryless state feedback controller, a set of sufficient conditions for the
stochastic stability of the switching system and the disturbance attenuation are obtained by using the stochastic assessment
method and the linear matrix inequality, and the key H∞ control of this problem is realized.

1. Introduction

Artificial neural network is a developed and mature high
technology in recent decades. The research of the neural net-
work has achieved great success. The network has been
widely used in the fields of image and television signal pro-
cessing, robot and biological vision, advanced brain func-
tion, and so on. In fact, as the most basic structural and
functional unit of the nervous system, the neurons have
the function of connecting and integrating input informa-
tion and transmitting information. The signal transmission
in the neurons is not simple and mechanical reception and
transmission, but it needs the signal to reach a threshold
before generating the output signal, that is, the neurons
receive the signal, and then, the signal is processed and
transmitted to the next neuron. In practical application,
the information transmission between the interacting neu-
rons takes a certain time, so the phenomenon with the time
delay is inevitable [1–4]. The existence of the time delay
tends to cause the network oscillation, bifurcation, or chaos
and even cause the network instability. In the real nervous
system, the transmission of information between the neu-
rons is a complex process with the noise, because the trans-
mission medium and the signal itself will be affected by the
random fluctuation of the environment. Therefore, it is very

important to study the influence of random interference on
the stability of the neural networks [5–8].

In recent years, there have been a lot of research results
[9–12]. In reference [8], Cao used Young’s inequality tech-
nique to give the sufficient conditions for the exponential
stability of the equilibrium point of the delayed neural
network system and discussed the stability of the periodic
solution. Chen analyzed the exponential stability of the
time-delay neural network system without requiring the acti-
vation function to be bounded in reference [9]. In the real
nervous system, the transmission of information between
the synapses is a complex noisy process, because both the
transmission medium and the signal itself are affected by
the random fluctuations of the environment [13–16]. There
are also many achievements in the research of random neural
network, such as Wan and Sun [17–19]; Sun and Cao [20]
studied the mean square and p-order moment stability of
delay neural networks by using the method of variation coef-
ficient. Besides, Wang et al. derived the asymptotic stability
conditions of Cohen-Grossberg neural networks by using
the Lyapunov method [21].

However, there are many modes in the operation of
neural network, which can be switched according to the sit-
uation. Some studies have shown that this mode transforma-
tion of the neural network can be described by homogeneous
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Markov chain [22], so the neural network systems with Mar-
kov switching have become one of the focuses of the neural
network research. Markov switching system can be used to
describe the sudden transition of the system state, such as
the random failure and repair of the system components,
the change of the subsystem connection or interaction mode
of the complex system, and the change of environmental fac-
tors [23–28]. In this paper, we will study the problems of
stochastic robust stabilization and robust H∞ control for
switched time-delay feedback neural network systems that
are subject to external environmental disturbance inputs.
Considering the influence of disturbance input, when the
appropriate linear matrix inequality conditions are satisfied,
the system is robustly stable under feedback control and
achieves the given H∞ index. For delayed neural networks
with Markov jump parameters, a memoryless state feedback
controller is designed to achieve similar stabilization and
H∞ control objectives.

2. Problem Description

Let a Markov process defined on state space S = f1, 2,⋯,Ng
be fφðtÞ, t ≥ 0g, and the state transition-rate matrix is

P φij t + Δlð Þ = j ∣ φ tð Þ = i
� �

=
rijΔl + o Δlð Þ, i ≠ j,

1 + riiΔl + o Δlð Þ, i = j,

(
ð1Þ

where Δl is the uncertainty matrix of corresponding param-
eter t and φij ≥ 0ði ≠ jÞ is the transition rate from state i to j.

φii = −〠φij, i ≠ jð Þ, also Δl > 0, lim
Δl⟶0

o Δlð Þ
Δl

= 0: ð2Þ

Now, the following uncertain systems of delayed sto-
chastic neural network with Markov jump parameters are
given as follows:

where f : ðℝ+ ×ℝn ⟶ℝnÞ is the Borel measurable func-
tion, which is similar to ℝn expressed as n-dimensional
Euclidean space. xðtÞ = ðx1ðtÞ,⋯, xnðtÞÞT is N neuron state
vector, μðt, φðtÞÞ ∈ℝφ is control inputs, and υðtÞ ∈ℝp is
interference inputs, satisfying υðtÞ ∈ L2½0,∞Þ. yðtÞ ∈ℝq is
the control outputs, τ is a constant with time delay and
τ > 0, ωðtÞ is a one-dimensional Brownian motion satisfy-
ing E½dωðtÞ� = 0 and E½dωðtÞ�2 = dt, which is similar to E

ð:Þ, and it represents the mathematical expectation.
Besides, ϑðtÞ is the initial condition of the function space
defined on ½−τ, 0� and valued at ℝn. AðφðtÞÞ, A∂ðφðtÞÞ,
BμðφðtÞÞ, BυðφðtÞÞ, CðφðtÞÞ, EðφðtÞÞ, E∂ðφðtÞÞ, DðφðtÞÞ,
and Dμ ðφðtÞÞ are all constant matrices of appropriate
dimensions.

In addition, for the state φðtÞ = i of Markov chain, it
is abbreviated as Φi = Δl ΦðφðtÞ = iÞ, and Φ represents
the matrix in the system. Similar to reference [29], the
following assumptions for the activation function defined
to run on the neurons of the artificial neural network
can be given.

The activation function is bounded and must satisfy the
Lipschitz condition. That is, there is a constant matrix P ∈
Rn×n, which satisfies

f μð Þ − f υð Þj j ≤ P μ − υð Þj j, ∀μ, υ ∈ℝn, ð4Þ

where xðt ; ψÞ is the system state track starting from the
initial value xðsÞ = ψðsÞ, s ∈ ½−τ, 0�, and ψð:Þ belongs to
F0 measurable twice integrable Cð½−τ, 0� ;ℝnÞ random
process space. That is, L2F0

ð½−τ, 0� ;ℝnÞ. Obviously, for
the initial value ψ = 0, xðtÞ ≡ 0 is the trivial solution of
system (3).

Lemma 1 [30]. For any given matrix,

A =
A11 A12

AT
12 A22

 !
< 0, ð5Þ

where A11 = AT
11 and A22 = AT

22; it is equivalent to

A11 < 0, A22 − AT
12A

−1
11A12 < 0,

A22 < 0, A11 − AT
12A

−1
22A12 < 0:

ð6Þ

3. Main Results

Theorem 1. Considering system (3), for υðtÞ = 0, if there is
a constant ε > 0, the positive definite matrices Xi > 0 and
M > 0 constant matrix Ci and matrix Yi such that the
linear matrix inequality (LMI) g < 0 holds for all i ∈ S,

dx tð Þ = A φ tð Þð Þf x tð Þð Þ +A∂ φ tð Þð Þf x t − τð Þð Þ + Bμ φ tð Þð Þμ t, φ tð Þð Þ + Bυ φ tð Þð Þυ tð Þ − C φ tð Þð Þx tð Þ� �
dt + E φ tð Þð Þx tð Þ + E∂ φ tð Þð Þx t − τð Þ½ �dω tð Þ,

y tð Þ =D φ tð Þð Þx tð Þ +Dμ φ tð Þð Þμ t, φ tð Þð Þ,
x tð Þ = ϑ tð Þ, φ tð Þ = φ 0ð Þ, ∀t ∈ −τ, 0½ �, ϑ tð Þ ∈ C −τ, 0½ � ;ℝnð Þ,

8>><
>>:

ð3Þ
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then the system (3) is stochastic robust stabilization by
the feedback controller μðt, iÞ.

g =

Ri 0 εAi εA∂i XiE
T
i XiP

T Xi πi

0 −M 0 0 ME∂i
T 0 0 0

εAT
i 0 −εI 0 0 0 0 0

εAT
∂i 0 0 −εI 0 0 0 0

EiXi E∂iM 0 0 −Xi 0 0 0

PXi 0 0 0 0 −
1
2
εI 0 0

Xi 0 0 0 0 0 −M 0

πT
i 0 0 0 0 0 0 Ji

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

,

Ri = BμiYi + YT
i B

T
μi + φii − Cið ÞXi − XiCi,

 πi = Xi,⋯, Xi½ �n× N−1ð Þn,

Ji = diag π−1
i1 X1,⋯, π−1

ii−1Xi−1, π−1
ii+1Xi+1,⋯, π−1

iNXN

� �
,

 μ t, ið Þ = kix tð Þ, ki = YiX
−1
i :

ð7Þ

Proof. By using the feedback controller μðt, iÞ to the system (3)
with υðtÞ = 0, the following closed-loop system can be obtained.

dx tð Þ = Aif x tð Þð Þ + A∂i f x t − τð Þð Þ + Bμiki − Ci

� 	
x tð Þ� �

dt

+ Ei½ x tð Þ + E∂ix t − τð Þdω tð Þ:
ð8Þ

Now, the Lyapunov functional is selected as follows.

V tð Þ = xT tð ÞXi
−1x tð Þ +

ðt
t−τ

xT sð ÞM−1x sð Þds

+
ðt
t−τ

f T x sð Þð Þ ε−1I
� 	

f x sð Þð Þds:
ð9Þ

By using the Itô formula, it can be concluded

dV tð Þ =LV tð Þdt + 2xT tð ÞXi
−1 Eix tð Þ + E∂ix t − τð Þ½ �dω tð Þ,

ð10Þ

where

LV tð Þ = 2xT tð ÞXi
−1 Aif x tð Þð Þ + A∂i f x t − τð Þð Þ + Bμiki − Ci

� 	
x tð Þ� �

+ 〠
N

j=1
φijx

T tð ÞXj
−1x tð Þ + Eix tð Þ + E∂ix t − τð Þ½ �Xi

−1

� Eix tð Þ + E∂ix t − τð Þ½ � + xT tð ÞM−1x tð Þ − xT t − τð Þ
� ε−1I
� 	

x t − τð Þ + f T x tð Þð Þ ε−1I
� 	

f x tð Þð Þ − f T x t − τð Þð Þ
� ε−1I
� 	

f x t − τð Þð Þ:
ð11Þ

According to the assumption (4), it can be concluded

−2ε−1 f T xð tð Þf x tð Þð Þ − xT tð ÞPT x tð Þð ÞP x tð Þð Þ
h i

≥ 0: ð12Þ

Comprehensive (11) and (12), it can be concluded

LV tð Þ ≤ ϕT tð Þϒ iϕ tð Þ, ð13Þ

where

ϒ i =

−ϒ 1i 0 X−1
i Ai X−1

i A∂i

0 −M−1 0 0

AT
i X

−1
i 0 −ε−1I 0

AT
∂iX

−1
i 0 0 −ε−1I

0
BBBBB@

1
CCCCCA

+

ET
i

ET
∂i

0

0

2
666664

3
777775
X−1
i Ei E∂i 0 0½ �,

ϒ 1i = X−1
i Ci − Bμiki
� 	

− Ci − kTi B
T
μi

� �
X−1
i −M−1 − 〠

N

j=1
φijX

−1
j ,

ϕT tð Þ = xT tð ÞxT t − τð Þ x tð Þð Þf T x t − τð Þð Þ:
ð14Þ

Multiplying the both sides of item for inequality g < 0 by
diag fXi

−1,M−1, ε−1I, ε−1I, I, I, Ig, it can be concluded

Ri ′ 0 X−1
i Ai X−1

i A∂i ET
i PT I πi

0 −M 0 0 ET
∂i 0 0 0

AT
i X

−1
i 0 −M−1I 0 0 0 0 0

AT
∂iX

−1
i 0 0 −M−1I 0 0 0 0

Ei E∂i 0 0 −Xi 0 0 0

P 0 0 0 0 −
1
2
εI 0 0

I 0 0 0 0 0 −M 0

πT
i 0 0 0 0 0 0 Ji

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

< 0,

ð15Þ

where

Ri ′ = φii + kTi B
T
μi − Ci

� �
X−1
i + X−1

i Bμiki − Ci

� 	
,

πi = I,⋯I½ �n× N−1ð Þn:
ð16Þ

From Lemma 1, it can be seen that formula (15) holds
ϒ i < 0. According to equation (13), if ϕTðtÞ ≠ 0 holds,

LV tð Þ < 0: ð17Þ

Then, the trivial solution of closed-loop system (8) can be
derived from Lyapunov stability theory, which is asymptoti-
cally stable in the mean square sense. That is, the system (3)
is robust stabilization under μðt, iÞ = ki xðtÞ (where ki = Yi

X−1
i ) state feedback control.
Hence, the proof ends.

Next, a set of sufficient conditions forH∞ control of uncertain
systems (3) with time-delay stochastic neural networks with
Markov jump parameters are given in the form of theorems.
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Theorem 2. Considering the case of nonzero interference input
υðtÞ ∈ L2½0,∞Þ, for the system (3), if there are constant ε > 0,
given constant β, positive definite matrices Xi > 0 and M > 0,
constant matrix Ci and matrix Yi, such that the linear matrix
inequality (LMI) G < 0 holds for all i ∈ S, then the system (3) is
stochastic robust stabilization by the feedback controller μðt, iÞ.

G =

Ri 0 εAi εA∂i XiE
T
i XiP

T Xi πi Bυi Ωi

0 −M 0 0 MET
∂i 0 0 0 0 0

εAT
i 0 −εI 0 0 0 0 0 0 0

εAT
∂i 0 0 −εI 0 0 0 0 0 0

EiXi E∂iM 0 0 −Xi 0 0 0 0 0

PXi 0 0 0 0 −
1
2
εI 0 0 0 0

Xi 0 0 0 0 0 −M 0 0 0

πi
T 0 0 0 0 0 0 Ji 0 0

BT
υi 0 0 0 0 0 0 0 −β2I 0

ΩT
i 0 0 0 0 0 0 0 0 −I

0
BBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCA

,

Ri = BμiYi + YT
i B

T
μi + φii − Cið ÞXi − XiCi,

πi = X1,⋯, XN½ �n× N−1ð Þn,

Ji = diag π−1
i1 X1,⋯, π−1

ii−1Xi−1, π−1
ii+1Xi+1,⋯, π−1

iNXN

� �
,

Ωi = CiD
T
i + YT

i D
T
μi,

μ t, ið Þ = ki x tð Þ, ki = YiX
−1
i :

ð18Þ

Proof. By using the feedback controller μðt, iÞ to the system (3),
the following closed-loop system can be obtained

By using Lemma 1, the inequality g < 0 that can be
deduced by the inequality G < 0 is tenable, so when υ
ðtÞ = 0, the closed-loop system (8) is the stochastic
robust stabilization.

The following proves that when the nonzero interference
input υðtÞ ∈ L2½0,∞Þ, it is assumed that the system (3) sat-
isfies the following conditions:

y tð Þk kE2
< β υ tð Þk k2: ð20Þ

In order to prove that (20) is true, now it can be sup-
posed that xðtÞ = 0, ∀t ∈ ½−τ, 0� for the system (3) and also
select the following Lyapunov functional (9), which is
obtained from the Itô formula.

E V tð Þf g = E

ðt
0
LV sð Þds


 �
, ð21Þ

where

LV tð Þ ≤ ϕT tð Þϒ iϕ tð Þ + 2xT tð ÞX−1
i Bυiυ tð Þ: ð22Þ

ϕTðtÞ and ϒ i have the same meaning as (13).

Let ℚðtÞ = EfÐ t0½yTðsÞyðsÞ − β2υTðsÞυðsÞ�dsg and t > 0,
and it is easy to see from (21). The following inequality holds
for t > 0:

ℚ tð Þ ≤ E

ðt
0
yT sð Þy sð Þ − β2υT sð Þυ sð Þ + LV x sð Þ, s, φ sð Þð Þ� �

ds

 �

≤ E

ðt
0
ρT sð Þℵiρ sð Þds


 �
,

ð23Þ

where

ρT tð Þ = xT tð ÞxT t − τð Þf T x tð Þð Þf T x t − τð Þð ÞυT tð Þ,

ℵi =

−ℵ1i 0 X−1
i Ai X−1

i A∂i X−1
i Bυi

0 −M−1 0 0 0

AT
i X

−1
i 0 −ε−1I 0 0

AT
∂iX

−1
i 0 0 −ε−1I 0

BT
υiX

−1
i 0 0 0 −β2I

0
BBBBBBBBBB@

1
CCCCCCCCCCA

dx tð Þ = Aif x tð Þð Þ + A∂i f x t − τð Þð Þ + Bμiki − Ci

� 	
x tð Þ� �

dt + Eix tð Þ + E∂ix t − τð Þ½ �dω tð Þ,
y tð Þ = Di +Dμiki

� 	
x tð Þ:

(
ð19Þ
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+

ET
i

ET
∂i

0
0

0

2
66666664

3
77777775
X−1
i Ei E∂i 0 0 0½ �,

ℵ1i = X−1
i Ci − Bμiki
� 	

− Ci − kTi B
T
μi

� �
X−1
i −M−1 − 〠

N

j=1
φijX

−1
j

− Di +Dμiki
� 	T Di +Dμiki

� 	
:

ð24Þ

Referring to the proof of Theorem 1, it is multiplied to
the both sides of item for inequality G < 0 by diag fXi

−1,
M−1, ε−1I, ε−1I, I, I, I, I, Ig; it can be obtained

Ri′ 0 X−1
i Ai X−1

i A∂i ET
i PT I X−1

i πi X−1
i Bυi X−1

i Ωi

0 −M 0 0 ET
∂i 0 0 0 0 0

AT
i X

−1
i 0 −ε−1I 0 0 0 0 0 0 0

AT
∂iX

−1
i 0 0 −ε−1I 0 0 0 0 0 0

Ei E∂i 0 0 −Xi 0 0 0 0 0

P 0 0 0 0 −
1
2
εI 0 0 0 0

I 0 0 0 0 0 −M 0 0 0

πT
i X

−1
i 0 0 0 0 0 0 Ji 0 0

BT
υiX

−1
i 0 0 0 0 0 0 0 −β2I 0

ΩT
i X

−1
i 0 0 0 0 0 0 0 0 −I

0
BBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCA

< 0:

ð25Þ

It is worth noting that the definition of Ri is the same as
the definition of the inequality (15) in Theorem 1. By using
Lemma 1, it can be obtained

ℵ1 < 0, ∀i ∈ S: ð26Þ

Then, the following closed-loop system is obtained for
ρTðtÞ ≠ 0 from (23).

ℚ tð Þ ≤ E

ðt
0
ρT sð Þℵiρ sð Þds


 �
< 0: ð27Þ

Then, the following formula can be inferred

E

ðt
0
yT sð Þy sð Þds


 �
< E

ðt
0
β2υT sð Þυ sð Þds


 �
: ð28Þ

It is obvious that the equivalent is true.

y tð Þk kE2
< β υ tð Þk k2: ð29Þ

Therefore, the proof ends.

If the noise environment is not considered, that is, ran-
dom disturbances are removed from the system (3), the fol-
lowing Markov switched neural network system without
noise interference can be obtained.

For this system, it can be directly derived an inference
from Theorems 1 and 2.

Based on the above proof, the basic process of the time-
delay neural network system with Markov switching is to
design a memoryless state feedback control so that the system
can achieve stabilization and stochastic stability about distur-
bance attenuation when the system meets the appropriate
LMI conditions, so as to realize H∞ control of the problem.

Inference: for stochastic uncertain systems (30), if there
are constant ε > 0, given constant β, positive definite matri-
ces Xi > 0 andM > 0, constant matrix Ci and matrix Yi, such
that the linear matrix inequality (LMI) g″ < 0 holds for all
i ∈ S, then the system (30) is stochastic robust stabilization
by the feedback controller μðt, iÞ.

g″ =

Ri 0 εAi εA∂i XiP
T Xi πi Bυi Ωi 0

0 −M 0 0 0 0 0 0 0 0

εAT
i 0 −εI 0 0 0 0 0 0 0

εAT
∂i 0 0 −εI 0 0 0 0 0 0

PXi 0 0 0 −
1
2
εI 0 0 0 0 0

Xi 0 0 0 0 −M 0 0 0 0

πi
T 0 0 0 0 0 Ji 0 0 0

BT
υi 0 0 0 0 0 0 −β2I 0 0

ΩT
i 0 0 0 0 0 0 0 −I 0

0
BBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCA

,

ð31Þ

d′x tð Þ = A φ tð Þð Þf x tð Þð Þ + A∂ φ tð Þð Þf x t − τð Þð Þ + Bμ φ tð Þð Þμ t, φ tð Þð Þ + Bυ φ tð Þð Þυ tð Þ − C φ tð Þð Þx tð Þ,
y tð Þ =D φ tð Þð Þx tð Þ +Dμ φ tð Þð Þμ t, φ tð Þð Þ,
x tð Þ = ϑ tð Þ, φ tð Þ = φ 0ð Þ, ∀t ∈ −τ, 0½ �:

8>><
>>:

ð30Þ
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where Ri, πi, Ji,Ωi and μðt, iÞ are the same as the definition
in Theorem 2.

On the whole, through the above certification process of
two theorems and lemma, it is proved completely.
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