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In three-dimensional (3D) Wireless Sensor Networks (WSNs), the localization suffers from localization accuracy and computation
efficiency problem due to added dimension compared with 2D WSNs. Aiming at localizing WSNs in 3D way, we propose a
distributed cooperative localization method with optimized constraints. The optimized constraints effectively limit the potential
range where the unknown nodes are limited. By analyzing the positions of anchors which are within the communication
radius of unknown node, the initial positions of unknown nodes are geometrically estimated in several situations. They link
with each other and form a 3D cooperative network. Based on message passing (MP) theory, we extend the 2D cooperative
localization to 3D distributed cooperative localization. In this process, optimized constraints derived from hop information and
RSSI avoid the gross error and large deviation in the localization. Simulation results in various scenarios show the
improvement of accuracy and efficiency compared with traditional methods.

1. Introduction

Wireless Sensor Networks (WSNs) are an emerging technol-
ogy that have numerous potential applications including
many areas of personal and ubiquitous computing. They
cover body area networks, smart homes, and a variety of
environmental and military applications [1, 2]. WSNs are
formed by small autonomous nodes that contain a CPU,
memory, battery, a wireless transceiver, and some sensors
that measure physical attributes, e.g., temperature, velocity,
light etc. Their information only makes sense when their
locations are obtained [4]. Since WSNs face more change-
able and complex environment, the localization of 3D distri-
bution presents a great challenge of effective and robust
algorithm for 3D WSNs [5, 6].

Many localization algorithms have been proposed to
locate nodes in 2D WSNs [7, 8]. These algorithms include
range-based localization and range-free localization. Some

range-based localization methods include received signal
strength indicator (RSSI) [9], time of arrival (ToA) [10],
angle of arrival (AoA) [11], and time difference on arrival
(TDoA) [12]. Some range-free localization methods include
APIT [13], centroid, and DV-HOP [14]. These methods have
been widely used in 2DWSNs and obtain good performance.
When the dimension is added to 3D WSNs, some research
simply extend 2D localization to 3D localization, e.g., 3D-
DV-HOP, 3D-centriod, etc. Although the extended methods
can locate the sensor nodes, their accuracy is largely affected
by the added dimension.

For localization of 3D WSNs, some researches explore
geometric modeling by analyzing the node organization.
Fan et al. [15] define a dissimilarity matrix representing
the distance of each node to every other node in the 3D net-
work. This definition combines with multidimensional scal-
ing and Helmet Transformation to convert the local
coordinates of the node into a global coordinate system.
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Shan and Sun [16] propose landscape-3D algorithm by tak-
ing it as a functional dual of target tracking. The location
assistant periodically broadcasts its position and measures
the distance by RSSI. This information contributes to node
state prediction and updates iteration of Unscented Karman
Filter so that 3D localization is realized. Zhou et al. [17] pro-
pose 3D node localization algorithms using the particle
swarm optimization framework. The methods include pre-
processing factors for manipulating RSS and follow a
sphere-based deployment region, which overcomes the dis-
junctive between RSS and distance estimation. Bayrakdal
and Cao et al. [18, 19] extend the 3D localization method
based on the flying anchors. In the scheme, each anchor is
equipped with a GPS receiver and broadcasts its location
information as it flies through the sensing space. Each sensor
node in the sensing area then estimates its own location by
applying basic geometry principles to the location informa-
tion it receives from the flying anchors. We should notice
that large-scale sensor network is limited by node densities
and computation complexity. Because network topologies
and path planning of anchors increase extra computation.
Most of the researches above are still not applicable in com-
plex sensing environment.

In 3D WSNs, low accuracy and high computation com-
plexity are key problems of localization. To overcome the
problems caused by added dimension, distributed coopera-
tive system shows feasibility and applicability, which is
widely used in 2D localization. Yuan et al. [20] explore local-
ization technology of WSNs with the convex hull constraint.
Neighborhood collaboration happens inside the convex hull
of its neighbors. Iterative self-positioning algorithms imple-
ment on all individual sensors in a distributed and coopera-
tive way. Papaioannou et al. [21] propose a probabilistic
framework through strengths of collaboration platforms.
The collaboration is from peripolar geometry and interrobot
localization measurements and mediates weaknesses of
unmanned aerial and ground vehicles. Zou and Liu and
Singh et al. [22, 23] initialize the localization by convex esti-
mator then model the localization problem as convex maxi-
mum likelihood estimator. This process is based on the RSS
signal analysis. Wu et al., Liang and Meyer, Nitithumbundit
and chan, Liu et al., and Wang et al. [24–28] investigate the
cooperative localization based on empirical ranging data. To
reduce communication and computational cost, an asym-
metric double exponential ranging error model combines
passing approximate beliefs in a way of Gaussian distribu-
tions and analytical approximation of peer-to-peer mes-
sages. As the 3D localization requires high accuracy and
low computation complexity, the distributed cooperative
strategy can be extended to 3D WSNs aiming at eliminating
the uncertainty and complexity of 3D localization.

To solve the problems in 3D localization, we propose a
distributed cooperative localization scheme based on mes-
sage passing of optimized constraints. The contributions of
this paper can be summarized as follows.

(1) The scheme firstly builds the posteriori marginal
PDF model. It also depicts the possible distributed

area of unknown node and forms the optimized con-
straints for further localization

(2) By geometric analysis, the initial position of
unknown node is estimated. It starts the distributed
cooperative algorithm through MP which updates
the estimated position to approach the ground truth

(3) While the variational message passing (VMP) is
regarded as the updated rule, the updated process
is calibrated by optimized constraints so that net-
work localization breakdown is avoided

2. Materials and Methods

We consider a 3D WSN consisting of two types of sensor
nodes: unknown nodes and anchors. Anchors, which have
known positions (for example, through GPS or system
design), provide reference for localization. Unknown nodes,
i.e., sensor nodes to be located, have unknown positions and
attempt to infer their positions based on range measure-
ments to the anchors. These sensor nodes are located at xi,
i ∈G≔ f1,⋯,Ng, and xi is a 3D random variable represent-
ing the position of sensor node i. Among sensor nodes,
unknown node set U is not aware of its positions, and
anchors are aware of their positions at μi, i ∈ A≔ f1,⋯Mg.
Thus, all sensor node set are denoted by G = A ∪U . We
assume that sensor node i acquires a noisy measurement
dij, which is the measured distance to sensor node j (j can
be either an unknown node or an anchor). It can also be esti-
mated when the coordinates of two nodes are known. Then,
we have the estimated distance

d̂ij = xi − x j
�� �� + eij, ð1Þ

where k·k denotes the Euclidean norm, and eij is the
measurement noise, which may obey log-normal, Gaussian,
or any other appropriate distribution measured in various
deployment districts. Without loss of generality, we assume
that measurement noise obeys Gaussian distribution, so eij
∼Nðeij ; 0, σ2ijÞ. σij is the standard deviation (SD). The prob-
ability density function of node distance is as

p dij xi, x j
��� �

= 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π σij
� �2q exp −

dij − xi − x j
�� ��� �2
2 σij
� �2

( )
: ð2Þ

The probability density function of node distance can be
simply denoted by f ij ≜ pðdijjxi, x jÞ. We assume that the rel-
ative positions are conditionally independent and they only
depend on the two nodes involved.

p Z Xjð Þ =
Y
i∈G

Y
j∈Gi

p dij xi, xj
��� �

, ð3Þ

where X are defined as the position set X ≜ fxi : i ∈Gg of all
sensor nodes, and Z are defined as the distance set Z ≜ fdij
: i ∈ G, j ∈Gig of all sensor nodes. The marginal probability
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density function (PDF) of positions for all unknown nodes
can be characterized.

P X Zjð Þ =
Y
i∈G

Y
j∈Gi

p dij xi, xj
��� �Y

i∈G

p xið Þ, ð4Þ

where the priori probability pðxiÞ are simply denoted by f i
≜ pðxiÞ. Our objective is to compute (or approximate) the
a posteriori marginal PDF for each unknown node.

3. Distributed Cooperative Localization Scheme

In this section, we present a distributed cooperative localiza-
tion scheme aiming at improving localization accuracy with
low communication overhead and computation complexity.
In the localization process, the optimized constraints for
unknown node should be firstly built to represent possible
distributed area. By transforming the optimized constraints,
the positions of unknown nodes are initialized. These posi-
tions are updated in a distributed cooperative way to
improve the localization accuracy.

3.1. Optimized Constraints. In 3D WSNs, the localization
accuracy is low only using the Received Signal Strength Indi-
cation (RSSI) and hop information. Due to the measurement
deviation, localization of unknown node always has gross
error. For most existing localization methods, gross error
affects the localization accuracy, or even leads to localization
failure. Although the insufficient information cannot esti-
mate the accurate position, it can provide the possible dis-
tributed area of unknown node. By the possible node
distributed area, the estimated position of unknown node
is calibrated and large deviation is avoided. Thus, we explore
to narrow down the area and define optimized constraints to
denote the possible distribution area of unknown node so
that a more accurate position is estimated.

To build the possible node distributed area, the position
relationship among sensor nodes within one-hop and two-
hop range is analyzed. If the anchor can communicate with
the unknown node directly, it means the anchor is within
the one-hop range of unknown node and this anchor
belongs to the one-hop anchor set denoted by A onehop. If
the anchor can only communicate with the unknown node
through another one node, it means the anchor is within
the two-hop range of the known node and this anchor
belongs to the two-hop anchor set denoted by A twohop.
One-hop anchor set and two-hop anchor set can locate basic
possible distributed space of unknown node.

For one-hop anchor set, distance between each anchor
and unknown node is less than communication radius R. It
is denoted as

di,A onehop < R, ð5Þ

where i ∈U is the unknown node. The distance between
unknown node i and every anchor in set A onehop is less
than R. The position relationship above is shown in
Figure 1 when the element amount of set A onehop is three.

The shadow is the possible distributed space of the unknown
node.

For two-hop anchor set, distance between each anchor
and unknown node is more than communication radius R
and less than 2R. It is denoted as

R < di,A twohop < 2R, ð6Þ

where i ∈U , and the distance between unknown node i and
each anchor in set A twohop is more than R and less than 2R
. The position relationship above is shown in Figure 2 when
the element amount of set A onehop is two and the element
amount of set A twohop is one. The shadow is the possible
distributed space of unknown node.

As Figures 1 and 2 show, the possible distributed space
of unknown node is too large to limit the estimated position.
To overcome the problem, RSSI is introduced. For simplic-
ity, we assume that the sensor nodes are equipped with
omnidirectional antennas. The two-ray ground reflection
model of RSSI is as

Pr dð Þ = PtGtGrh
2
t h

2
r

d4L
, ð7Þ

where PrðdÞis the received signal power corresponding to d.
Pt is the transmitting signal power. Gt and Gr represent
antenna gain of transmitter and receiver. ht and hr are the
height of transmitter and receiver. LðL ≥ 1Þ is the system
loss. Empirical studies have shown that the model works
quite well in long-distance transmission environments. The
measured distance between two nodes is shown as

d =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PtGtGrh

2
t h

2
r

PrL
4

s
: ð8Þ

Considering the environmental inference, measured dis-
tance is not quite accurate. The maxnoise of estimated dis-
tance is regarded as the threshold to denote the maximum

U

R A3

A2

A1

Figure 1: Position relationship of the unknown node and one-hop
anchor set.
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deviation of real distance. The relationship between mea-
sured RSSI and estimated RSSI is shown as

Pi,A onehop −MaxNoise < P̂i,A onehop d̂i,A onehop

� �
< Pi,A onehop +MaxNoise:

ð9Þ

Pi,A onehop is the measured RSSI. P̂i,A onehopðd̂i,A onehopÞ is
the estimated RSSI calculated by estimated position of
unknown node according to equation (7). d̂i,A onehop is the
estimated distance between estimated position of node i
and node within one-hop communication range. Maxnoise
is the maximum deviation of distance measurement. The
constraints combining (5), (6), and (9) are shown in

d̂i,A onehop < R,

R < d̂i,A twohop < 2R,

Pi,A onehop −MaxNoise < P̂i,A onehop d̂i,A onehop

� �
< Pi,A onehop +MaxNoise:

8>>>><>>>>:
ð10Þ

The optimized constraints in situation of Figures 1 and 2
can be shown in Figures 3 and 4. In the figures, we should
note RSSImin = Pi,A onehop −MaxNoise and RSSImax =
Pi,A onehop +MaxNoise.

3.2. Initial Positions of Unknown Node. The possible distrib-
uted space of unknown node is derived by one-hop and two-
hop information and RSSI, but it is an irregular polyhedron
for 3D WSN. It is difficult to denote the boundary of irregu-
lar polyhedron in mathematical form, so the exact position
of unknown node cannot be obtained in this condition. To
locate unknown node, we firstly design the geometric
method to estimate the initial position. On the basis, the
position of unknown node is continuously updated using
Massage Passing (MP), a distributed cooperative method,
until the estimated position approaches the real value infi-
nitely. This process requires the method is simple and feasi-

ble. To avoid large computation overhead, geometric
method is designed to initialize the position of unknown
node.

According to the difference of RSSIs, we discuss the posi-
tion initialization in the following situations. As this process
depends on the anchors within the communication radius of
unknown node, the number of selected anchors is equal or
less than three so that the initialization process is simplified.
Note that the selection is random. In the communication
among sensor nodes, RSSI is affected by the complex envi-
ronment, so 2MaxNoise is defined to indicate the proximity
of RSSIs.

When RSSIs between selected anchors and unknown
node are proximate, the measured distance comparison cal-
culated by measured RSSIs is shown as

dij − dik
�� �� ≤ 2MaxNoise, ð11Þ

where i ∈U is the unknown node and k, j ∈ A onehop is the
node within one-hop range. If selected anchors all meet the
condition in (11), it indicates that the distance to all selected
anchors is almost same. This situation is shown in Figure 5.
The initial position of the unknown node is the centroid of
selected anchors as

x1Ini =
1
p

〠
j∈A onehop′

μ1j,

x2Ini =
1
p

〠
j∈A onehop′

μ2j,

x3Ini =
1
p

〠
j∈A onehop′

μ3j,

ð12Þ

where xIni = ½x1Ini, x2Ini, x3Ini�T is the initial position of the
unknown node and μj = ½μ1j, μ2j, μ3j�T is the position of the

RR

U

A3

A2

A1

Figure 2: Position relationship of the unknown node, one-hop
anchor set, and two-hop anchor set.

R

U
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RSSImax
RSSImin

Figure 3: Position relationship with optimized constrains in
Figure 1.
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selected anchors in one-hop anchor set. A onehop′ denotes
the one_hop set which only consists of selected anchors. p
is the number of selected anchors as it may be one, two, or
three.

In Figure 5, the shadow is the possible distributed space
of the unknown node. The white dot U is the position of the
unknown node. The black dot C is the initial position of the
unknown node. The black dots A1, A2, A3 are the selected
anchors.

If measured distance between unknown node and any
selected anchor meets the inequality (13), it indicates that
the unknown node is closer to the anchor with larger RSSI.

dij − dik
�� �� > 2MaxNoise: ð13Þ

When the number of anchor in one-hop anchor set is
two, the position relationship of these sensor nodes is shown
in Figure 6.

In Figure 6, the white dot U is the position of the
unknown node and the white dot C is the midpoint of A1
and A2. Because the unknown node is closer to anchor A1,

the shadow representing the possible distributed area is the
left half of intersecting space. The line A2C has an intersec-
tion with spherical shell. The midpoint UIni of point C and
intersection is regarded as the initial position of unknown
node as

x1Ini =
2R + dA1A2

4dA1A2

μ11 +
3dA1A2

− 2R
4dA1A2

μ12,

x2Ini =
2R + dA1A2

4dA1A2

μ21 +
3dA1A2

− 2R
4dA1A2

μ22,

x3Ini =
2R + dA1A2

4dA1A2

μ31 +
3dA1A2

− 2R
4dA1A2

μ32,

ð14Þ

where dA1A2
is the measured distance between A1 and A2.

μ1 = ½μ11, μ21, μ31�T is the coordinate of anchor A1. μ2 =
½μ12, μ22, μ32�T is the coordinate of anchor A2.

When the number of selected anchors in one-hop
anchor set is three and at least one measured distance is
far more than other measured distance, it is a different situ-
ation compared with Figure 5. Assumed that the RSSIs of
selected anchors meet the inequality (15), then distances of
these anchors meet the inequality (16) accordingly.

PiA1
< PiA2

< PiA3
, A1, A2, A3 ∈ A onehop, ð15Þ

diA1
< diA2

< diA3
, A1, A2, A3 ∈ A onehop: ð16Þ

The subsituation is further defined based on inequality
(16) when anchor A1, A2 meets inequality (11) and A1, A3
and A2, A3 meet inequality (13). It indicates that the
unknown node is closer to anchor A1, A2 and farther than
A3 as shown in Figure 7. The white dot is the centroid of
anchor A1, A2,A3. The line A3C has an intersection with
spherical shell. As the inequality (16) tells us, the unknown
node is in the shadow area. In this situation, midpoint UIni
of point C and intersection is regarded as the initial position
of the unknown node.

RR

U
A1

A3

A2

RSSImax
RSSImin

Figure 4: Position relationship with optimized constrains in
Figure 2.

A2

A3U
R

A1 C

Figure 5: Initial position of the unknown node for proximate RSSI
in (11).

A2R
A1

U

CCCCCC

UIni

Figure 6: Initial position of the unknown node for different RSSIs
in (13).
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By geometric analysis, the coordinate of initial position is
as shown in

x1Ini =
R + dCA3

2dCA3

x1c +
R − dCA3

2dCA3

μ13,

x2Ini =
R + dCA3

2dCA3

x2c +
R − dCA3

2dCA3

μ23,

x3Ini =
R + dCA3

2dCA3

x3c +
R − dCA3

2dCA3

μ33,

ð17Þ

where xc = ½x1c, x2c, x3c�T is the coordinate of centroid C
which is obtained from equation (12). dCA3

is the estimated

distance between centroid C and anchor A3. μ3 =
½μ13, μ23, μ33�T is the coordinate of anchor A3.

For the rest subsituations, the unknown node is closer to
anchor A1 as shown in Figure 8. These subsituations are
A2, A3 meet inequality (11), and A1, A2, A3 do not meet
inequality (11). The initial position of the unknown node
should be in the area which is close to anchor A1. From
Figure 8, the centroid of A1, A2, A3 can be regarded as the
initial position.

3.3. Cooperative Localization Method. The initial positions in
the above situations are usually the center of possible distrib-
uted space. Actually, they still deviate from the real position
of the unknown node. To approach the real position, MP, a
cooperative localization method, is introduced as since out-
performs in 2D localization technology. It fuses position
information and distance information of the whole network
in a cooperative way so that localization accuracy is
improved. In this process, MP only needs to send and
receive the position message and RSSI message once while
sensor node linearly estimates its position by itself. It largely
reduces the communication overhead and computation
complexity. For 3D WSN, the added dimension leads to

the increasing computation complexity and localization
error. It urgently requires localization method to eliminate
the effect of added dimension. As a distributed cooperative
method, MP has advantages of flexible message exchange
and fast calculation which could promote 3D localization
technology.

To locate unknown node i, messages from anchor a and
unknown node l should be considered where a, l ∈ A onehop
. Anchor a and unknown node l should cover all the sensor
nodes within the communication radius of unknown node i.
As the distance-measurement model is nonlinear, varia-
tional message passing is introduced to calculate the cooper-
ative message shown in equations (18) and (19). To avoid
the large deviation, we design the judgement factor and pen-
alty function for anchor messages and unknown node mes-
sages, respectively.

mf ia⟶xi
xið Þ = Pf ia⟶xi

xið Þ exp
ð
θ Jað Þb xað Þ ln p dia xi, xajð Þdxa

	 

,

ð18Þ

mf il⟶xi xið Þ = Pf il⟶xi xið Þ exp
ð
θ Jlð Þb xlð Þ ln p dil xi, xljð Þdxl

	 

,

ð19Þ
where mf ia⟶xi

ðxiÞ,mf il⟶xiðxiÞ are the messages from
anchor factor f ia and unknown anchor factor f il. bðxaÞ, bð
xlÞ are the confidence from last iteration. θðJaÞ and θðJ lÞ
are the judgement factor of anchor and unknown node.
They are designed to judge if the updated position meets
the constraints in (10). If the updated position meets the
constraints, θðJÞ = 1. Otherwise, θðJÞ = 0.

In equations (18) and (19), Pf ia⟶xi
ðxiÞ, Pf il⟶xiðxiÞ are

the penalty functions. It is calculated by equation (19).

P xið Þ = exp δvi xð Þð Þ, ð20Þ

where viðxÞ is the amount change of sensor nodes which
meets the constraints (10). If the amount is increased or
unchanged after update, viðxÞ = 1. Otherwise, viðxÞ = p/q

A3

A2
R A1

C

UIni

Figure 7: Initial position of the unknown node for different RSSIs
in (15).

A1

A2A3R
CC

Figure 8: Initial position of the unknown node for different RSSIs
for rest subsituation.
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where p is the node amount which meets the constraints
after update. q is the node amount which meets the con-
straints before update. δ is the float constant which denotes
the effect of constraints.

The unknown node receives the messages from anchor
and other unknown nodes, and it fuses the cooperative mes-
sages to update the position of unknown node. The confi-
dence is shown in

b xið Þ ≜ 1
Z

Y
a∈A onehop

mf ia⟶xi
xið Þ

Y
l∈U onehop

mf il⟶xi
xið Þ, ð21Þ

where Z is the confidence constant and U onehop is other
unknown node set in which unknown nodes are within the
communication radius of target unknown node.

After putting equations (18) and (19) into (21), the equa-
tion (21) is transformed into

b xið Þ∝ exp δVa xð Þ 〠
a∈A onehop

θ Jað Þgia xið Þ
(

+δ′Vl xð Þ 〠
l∈U onehop

θ Jlð Þgil xið Þ
)
,

ð22Þ

where VaðxÞ is the global variable of node amount change
which is extended from viðxÞ. giaðxiÞ, gilðxiÞ are calculated
by

gia xið Þ ≜ dia
σiað Þ2 μa − xik k − 1

2 σiað Þ2 μa − xik k2, ð23Þ

gil xið Þ ≜
ð
b̂ xlð Þ dil

σilð Þ2 xl − xik k − 1
2 σilð Þ2 xl − xik k2

 !
:

ð24Þ

Because computation complexity needs to be limited in
3D WSNs, we simplify the nonlinear distance formula by
Taylor Expansion into linear distance formula. In equations
(23) and (24), FiaðxiÞ ≜ kμa − xik and Filðxi, xlÞ = kxl − xik
are, respectively, expanded around x̂∗i and ðx̂∗i , x̂∗mÞwith
second-order Taylor Expansion. Then, the confidence is lin-
earized as

b̂ xið Þ∝ exp −
1
2 xið ÞT V̂i

� �−1xi + xið ÞT V̂i

� �−1bμ i

� �
: ð25Þ

The variance value of node position is as

V̂ i = δVa xð Þ 〠
a∈A onehopi

θ Jað Þ 1
σiað Þ2 I −

dia
σiað Þ2 ∇

2
Fia

 !(

+δVl xð Þ 〠
l∈U onehop

θ Jlð Þ 1
σilð Þ2 I −

dil
σilð Þ2 HFil

 !)−1

:

ð26Þ

The mean value of node position is as

bμ i = V̂ i δVa xð Þ 〠
a∈A onehop

θ Jað Þ 1
σiað Þ2 μa +

dia
σiað Þ2 ∇Fia

− ∇2
Fia
~μi

� � ! 

+δVl xð Þ 〠
l∈U onehop

θ J lð Þ 1
σilð Þ2

~μl +
dil
σilð Þ2 ∇Fil

−HFil
~μi

� � !!
,

ð27Þ

where ∇Fia
, ∇2

Fia
is the first-order and second-order gradient

of FiaðxiÞ at x̂∗i . ∇Fil
,HFil

is the first-order partial derivative
and Hessian matrix.

In 3D WSN localization, the added dimension also
increases the dimension of parameters above. Parameters
∇Fia

, ∇Fil
, ∇2

Fia
,HFil

need to be deduced again as shown in
equations

∇Fia
= x∗1i − μ1a

d̂ia

x∗2i − μ2a
d̂ia

x∗3i − μ3a
d̂ia

" #
, ð28Þ

∇Fil
= x∗1i − x∗1l

d̂il

x∗2i − x∗2l
d̂il

x∗3i − x∗3l
d̂il

" #
, ð29Þ

∇2
Fia

=

1
d̂ia

−
x∗1i − μ1a

d̂
3
ia

−
x∗1i − μ1að Þ x∗2i − μ2að Þ

d̂
3
ia

−
x∗1i − μ1að Þ x∗3i − μ3að Þ

d̂
3
ia

−
x∗1i − μ1að Þ x∗2i − μ2að Þ
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−
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:

ð31Þ
The distributed cooperative localization is conducted in

the situation of known initial position which is adjusted by
the variance and mean. For each round of iteration, the
updated position should be compared with the optimized
constraints in (10). If the updated position meets the opti-
mized constraints, the updated position would be put into
the next iteration. If not, the updated position of last round
remains unchanged and would be put into the next iteration.
Until the iteration counts reach the setting, the localization
process ends.

4. Simulation

In this section, simulations are conducted to show the per-
formance of the proposed method in 3D environments.
The simulations are designed to locate unknown node in
space. All the sensor nodes including anchors and unknown
nodes are randomly and uniformly distributed. Figure 9
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gives an example to show the node distribution in the simu-
lation. The black dots represent the unknown nodes and red
dots represent the anchors. Each of them has the same com-
munication radius. In this localization process, the results
are based on the average value of repeated simulations. Thus,
average localization error (ALE) and cumulative distribution
functions (CDFs) are introduced to denote the localization
accuracy. On the basis, the simulations are designed to
explore the effect of algorithm parameters and the perfor-
mance compared with other 3D localization methods.

4.1. Algorithm Parameters. In simulation, parameter config-
uration of proposed algorithm has influence on the localiza-
tion performance. To explore the localization performance
under multiparameter configuration, the simulations are
conducted with different parameters. These parameters con-
sist of maxnoise-SD ratio (MSDR), SD of anchor distance
(SDA), SD of unknown node distance (SDU), and iteration
count. The appropriate selection of algorithm parameters
was aimed at improving the localization accuracy and opti-
mizing the localization model.

All the simulations in this section have the same simula-
tion environment with forty anchors and one hundred and
sixty unknown nodes. The communication radius of all the
sensor nodes is 30m. We assume that the localization envi-
ronment is in a low level of inference. The parameters of sig-
nal are set as Gt =Gr = 1, L = 1, ht = hr = 1. The exhibited
results in the paper are all the average value of twenty
repeated experiments.

We firstly explore the effect of maxnoise-SD ratio. For
the optimized constraints and initial position, the maxnoise
describes the maximal deviation of measured distance which
divides the space of possible distribution. It usually depends
on the SD from statistical data of measured distance. In the-
ory, maxnoise is usually triple SD of measure distance. Actu-
ally, it is affected by the experiment environment, algorithm
process, and definition of initial position. In outdoor local-
ization, the SD of measure distance is about 2m, so we set
the SD = 2m in the simulation. The MSDR is set as 2.5,
3.0, 3.5, and 4 while the maxnoise is 5, 6, 7, and 8m. Other
algorithm parameters are constants. In the simulation, SDA
is 2 and SDU is 2. The iteration count is set as 15. In this
condition, the simulation results are shown in Figure 10.

From Figure 10, the CDFs are higher when MSDRs are 3
and 3.5. It indicates that the localization outperforms in
these conditions. The simulation results are basically consis-
tent with theoretical analysis. However, Figure 10 shows that
the localization results when MSDR is 3.5 are better than
that when MSDR is 3. Because maxnoise can distinguish
the distance size, a larger value than theoretical result can
find a more accurate distributed area. It defines the node
neighbor in a longer way, but oversize of MSDR would lead
to the deviation. When MSDR is 4 or 5, the accuracy
decreases largely.

SDA and SDU are the posteriori SD of distance between
unknown node and other nodes. It affects the localization
result through equation (26) and (27). Because the measured
position of anchors and estimated position have different
accuracy, the localization results vary with the value of

SDA and SDU. To explore the effect, simulations are con-
ducted as the SDAs are 1, 2, 4, and 6 and SDUs are 2, 5, 8,
and 12. For other algorithm parameters, MSDR is 3 and iter-
ation count is set as 15. The simulation results are shown in
Figures 11 and 12.

Figure 11 shows the CDFs of different SDAs. SDA
describes the SD of distance measurement under the condi-
tion of measured position of anchor. As the measured posi-
tion of anchor is accurate through GPS or other devices, its
measurement deviation is small compared with estimated
position of unknown node. It indicates SDA depends more
on measured distance. Figure 11 shows localization results
under the simulation environment are better when SDA is
2m. On contrary, SDU is much larger if better localization
results are expected. Figure 12 shows localization results
are better when SDU is 5m or 8m. The reason is SDU not
only depends on the measured distance but also is affected
by the estimated position of unknown node. Obviously, the
estimated position of unknown node has lower accuracy
compared with measured position of anchor. Therefore,
SDA should be smaller than SDU when the localization
method is applied in practice and the values of SDA and
SDU should be adjusted according to sensor-located com-
munication environment.

Iteration count and convergence is important to evaluate
the performance of the proposed algorithm. Their effects are
explored in this section so that optimal iteration count is
selected. The optimal selection not only improves the local-
ization accuracy but also avoids redundant computation.
The simulations are conducted when MSDR is 3, SDA is 2,
and SDU is 2. The simulation results are shown in Figure 13.

In Figure 13, the ALE decreases when the count of itera-
tion increases. From the first iteration to fifth iteration, the
decreasing speed is fast. After that, the decreasing speed
slows down. The phenomenon indicates that cooperative
algorithm constantly adjusts the estimated position of
unknown node to approach the ground truth as soon as pos-
sible. When the count of iteration reaches 10, the ALE is
convergent. To avoid the redundant computation, the count
of iteration is usually set as 10.

4.2. Method Comparison. The proposed method (PM) is
tested with several algorithm parameters, and its optimal
parameters are selected in different scenarios. Meanwhile,
the method comparison should be designed to explore its
improvement of performance compared with existing
methods. In 3D localization, 3D-DV-HOP, Ou-3D in paper
[19], and 3D-MDS in paper [15] are widely used and outper-
forms well, so they are selected to compare with proposed
algorithm. These simulations are conducted simultaneously
in the various scenarios with different communication
radius and node density. The cross-over simulations help
find the advantages and better application background of
the listed methods. For the proposed method, the algorithm
parameters are set as MSDR is 3, SDA is 2, SDU is 2, and
iteration count is 15. We assume that the localization envi-
ronment is in a low level of inference. The proportion of
anchor is 20%, and the exhibited results in the paper are
the average value of twenty repeated experiments.
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To explore the performance of the four methods, the
communication radius is set as 20m, 30m, 40m, and 50m
while the total number of nodes is 200. In this condition,
the comparison results are shown in Figure 14.

From Figure 14, the accuracy of all methods increases
with communication radius increases. It indicates that local-
ization results of these methods all depend on the communi-
cation radius. When the communication radius increases,
the neighboring nodes of unknown nodes are more so that
they can provide more reference for localization process.
However, the changes and trends of these methods are dif-

ferent. The proposed method in the paper, 3D-DV-HOP
and 3D-MDS change less compared with Ou-3D, so Ou-
3D is more sensitive to communication radius. Although
the localization accuracy of Ou-3D is highest when the com-
munication radius is long, it would not apply for the special
condition with short communication radius.

Among four localization methods, the proposed method
and Ou-3D have higher accuracy. They can improve the
accuracy by 20% to 50%. The proposed method has close
accuracy compared with Ou-3D. When the communication
is less than 30m, the proposed method is better. When the
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Figure 9: The distributed nodes in 3D space.
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Figure 10: The CDFs with different MSDRs.
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communication is more than 30m, Ou-3D is better. For
localization accuracy from Figure 15, the proposed method
has good performance and is acceptable.

To explore the performance about the effect of node
density, the total number of nodes is set as 100, 200, 300,
and 400 while the communication radius is all 30m. In this
condition, the comparison results are shown in Figure 15.

Figure 15 shows the accuracy of four methods as the
node density changes. Among four methods, 3D-MDS is
the method which is most sensitive to the node density while

Ou-3D is not affected by node density. It is due to localiza-
tion of Ou-3D only through flying anchor and no interac-
tion existed among unknown nodes. The accuracy of
proposed method and 3D-DV-HOP improves as the node
density increases, but they are less sensitive to the node
density.

From Figure 15, 3D-DV-HOP has the lowest localization
accuracy while PM and Ou-3D are close in the accuracy.
When the total number of nodes is 400, the 3D-MDS is
the most accurate method. However, it depends on the node
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Figure 11: The CDFs with respect to different SDAs.
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density too much. Considering the localization accuracy and
the effect from node density, the proposed method and Ou-
3D perform best.

4.3. Algorithm Efficiency. To evaluate the algorithm perfor-
mance, localization accuracy is not the only benchmark.
Especially for localization technology in large-scale WSNs,
the method is expected to be highly efficient. Application
requires the localization algorithm with low communication
overhead and computation complexity. In this section, the
proposed method is compared with 3D-DV-HOP, Ou-3D,
and 3D-MDS in terms of communication overhead and
computation complexity.

The communication overhead is firstly analyzed. We list
the communication overhead of four methods in Table 1.

Table 1 shows the approximate packages in the localiza-
tion where U denotes the number of the unknown nodes.
Among four methods, 3D-MDS is the concentrated method
which has the heaviest communication load. Other three
methods have close communication load, but they are differ-
ent when the total number of nodes is large. For PM, P
denotes the number of nodes within the communication
radius. In most cases, its value is small, so it would not over-
load the network. Ou-3D has the same order of magnitude
with PM. Here, Q denotes the number of anchors which
build communication with the unknown node. In fact, this
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Figure 13: The ALEs change with iterations.
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process requires that the anchor be always in the status of
communication and the unknown node be waiting for com-
munication. Once the movement trajectory of flying anchor
is not reasonable, the communication would increase a lot.
Compared with these methods, 3D-DV-HOP has the lowest
communication load as the simplest method. Because heavy
communication load leads to energy consumption, it hin-
ders the application of large scale WSN in complex outdoor
environment. We select the communication overhead to
evaluate the communication load and energy consumption
which was aimed at improving the efficiency and effectivity
of the method. The analysis of Table 1 indicates that the
communication overhead of PM and 3D-DV-HOP is
acceptable.

In the localization of WSNs, the hardware of sensors
always limits the computation complexity and the large
amount of computation would add energy consumption.

These situations require low computation complexity of
localization method, so we compare the computation com-
plexity as shown in Table 2.

Among four methods, 3D-DV-HOP performs best in
computation complexity compared with other three
methods. PM and Ou-3D have the same order of magnitude.
For PM, M denotes the distributed cooperative computation
and its value is not large due to the limited counts of itera-
tion. For Ou-3D, N is the geometric computation and A is
the computation of flying anchor’s path plan. The geometric
computation N is comparable with distributed cooperative
computation M, but the computation of path plan A is large
and affects the performance a lot.

Finally, we evaluate the localization methods considering
both accuracy and efficiency. 3D-DV-HOP is the most effi-
cient method, but its accuracy is not acceptable. 3D-MDS
outperforms in the condition of high node density, but it
costs more communication overhead and computation com-
plexity. PM and Ou-3D have similar performance in accu-
racy, but the efficiency of Ou-3D is more uncertain due to
the flying anchor. Although localization process of Ou-3D
does not add extra communication overhead and complexity
computation, it is affected by the flying anchor which needs
to plan its flying path and sends signal to other nodes all the
time. In the fixed or simple distributed space of node, the fly-
ing anchor is feasible. When the localization faces a more
complex environment, the Ou-3D is affected. Meanwhile,
Ou-3D has to complete the whole path to locate all the sen-
sor nodes and this process cannot be simultaneous. It limits
the application of Ou-3D compared with other methods. To
compromise the accuracy and efficiency, the proposed
method outperforms. It improves the localization accuracy
as the communication overhead and computation complex-
ity are reduced as much as possible. Especially for large scale
and complex WSNs, the proposed method can balance the
localization accuracy and efficiency.
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Table 1: Communication overhead comparison.

Algorithm Package

PM O(PU)

3D-DV-HOP O(U)

Ou-3D O(QU)

3D-MDS O(U2)

Table 2: Computation complexity comparison.

Algorithm Complexity

PM O(UM)

3D-DV-HOP O(U)

Ou-3D O(UN+A)

3D-MDS O(U2)
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5. Conclusion

In this paper, we developed a cooperative localization model
for 3D WSN. Based on the model, we established optimized
constraints which initialized the position of unknown node
and calibrated cooperative process. The distributed coopera-
tive method was designed to approach the ground truth
through VMP update rule of MP. The simulation results
showed that proposed method outperformed in accuracy
and the distributed design improved the efficiency. The out-
come of this paper provides a guideline for the localization
of 3D WSN, enabling robust and energy-efficient localiza-
tion networks.
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