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An IoT system often consists of many sensors to collect data in different aspects. Meanwhile, all these sensors describe the IoT
system’s functional status, to which it belongs. The correlations between subsystems are always emphasized for a complex
system that contains several IoT subsystems. At the same time, there are still no good ways to calculate these types of
correlations since that (1) multiple sensors describe an IoT system as a matrix while the correlation between matrices cannot
be calculated by the traditional methods (i.e., vector ways such as Pearson correlation coefficient) and (2) AI methods such as
neural networks were introduced to resolve this problem; however, these black-box approaches cannot explain the
mathematical mechanisms, and lots of memory or time are consumed. This paper proposed a novel approach named the
matrix-oriented correlation computing method (MOCC) to learn the correlations between IoT systems. The critical problem of
this proposed method is calculating the correlation between two curved surfaces, which are modeled as matrices, since an IoT
system often contains many sensors which characterize different aspects of this system and continuously generate data in time
series. By our MOCC method, the correlation or interaction between any two subsystems can be accurately measured, which
means that we can predict the state of a system by its most important related system. Missing data value prediction based on
our MOCC method is also presented in this paper. We verified the efficiency and effect of our proposed method via a satellite,
a typical IoT system consisting of massive sensors, and the experimental result was proved to outperform existing methods.

1. Introduction

A complex system often contains several IoT subsystems.
For example, a satellite platform consists of at least energy,
attitude, propulsion, thermal control, data transmission,
and payload six subsystems; and each subsystem is designed
as the integration of smaller subsystems. The correlation
between two subsystems is always an essential consideration
in the maintenance or analysis of a complex IoT system [1].
By the correlation analysis, we can determine the most rele-
vant factor of an IoT subsystem. For example, we can find
that a system’s data anomaly will affect other systems’ func-
tional status if there are high correlations between them [2];
or a system’s data missing can be predicted based on its high
relevant systems [3–7]. Generally, this type of correlation
can only be calculated by the sensor data of IoT systems
since the sensors are designed for monitoring data for all

different properties. If a subsystem consists of M sensors
that have collected data in a time series of length N , then
the data would be modeled as an M ×N matrix, and the
correlation between two systems is actually the correlation
between two matrices.

There are many existing correlation computing methods,
such as Pearson correlation coefficient (PCC) [8] and cosine
coefficient (COS) [9], and new correlation measuring
methods have been presented in recent years [10–12]. How-
ever, most of the existing methods can only measure the cor-
relation between one-dimensional vectors but not matrices.
Figure 1 compares the vector and matrix oriented similarity
measurement.

AI methods such as neural networks were introduced to
resolve this problem in recent years [13]; however, these
black-box approaches cannot explain the mathematical
mechanisms, and lots of memory or time are consumed.
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This paper proposed a novel approach named the matrix
oriented correlation computing method (MOCC) to learn
the correlations between IoT systems, and this method can
also be used for any multidimensional observation objects.
After the M sensors of an IoT system have produced data
in a time series of length N , we can get an M ×N matrix.
Since this matrix is constructed along with time, the MOCC
method should measure the correlation between two matri-
ces considering the time factor.

The rest of this paper is organized as follows. Section 2
presents our MOCC method. Section 3 describes a critical
application—missing data prediction of our MOCC method.
Section 4 describes our experiments. Section 5 concludes the
paper, and Section 6 shows related work.

2. Proposed MOCC Method

For ease of explanation, we use the following matrix shown
in Table 1 to describe the data produced by M sensors in a
length N time series.

This section will illustrate the mathematical steps of our
MOCC method to compute the correlation between any two
matrices of this type. MOCC is inspired by a significant and
novel math concept identified as distance correlation. The
concept of distance correlation extends the correlation cal-
culation from one-dimensional space to two-dimensional
space, but it does not consider the time factor. This section
presents the mathematical principles and advantages of dis-
tance correlation and then improves it by bringing the time
factor into it, which eventually resulted in our MOCC
method.

2.1. Distance Correlation

2.1.1. Mathematical Principles. We use the distance correla-
tion concept to measure correlation considering multiple
sensors of an IoT system integrally. Distance correlation—
a statistics and probability theory-based concept—was pro-
posed by Szekely et al. to measure the statistical dependence
between two random vectors of arbitrary, not necessarily

equal dimension [14, 15]. Therefore, distance correlation
can measure the correlation between any two matrices more
accurately and comprehensively. The distance correlation is
defined as follows.

Let X and Y denote two different IoT systems consisting
of p and q sensors, respectively. If these two systems contin-
uously produce data in a time series of length N , then, we
can get an observed random sample from the joint distribu-
tion of random vectors X in ℝp and Y in ℝq as follows:

X, Yð Þ = Xn, Ynð Þ: n = 1, 2,⋯,Nf g: ð1Þ

For example, if X is an IoT system shown in Table 1,
then Xn is the n-th column of Table 1.

From the definition of X and Y , we can get that two sys-
tems that need to measure correlation need not have the
same number of sensors but have to be observed in the same
time series.

And define:

akl = Xk − Xlk kp, ð2Þ
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Figure 1: (a) shows that the traditional method can only measure
the correlation between two vectors, meaning that each vector
consists of only one sensor’s data, while (b) shows two matrices,
each of them consisting of several sensors.

Table 1: Data of an IoT system.

T1 T2 … TN

Sensor1 v11 v12 … v1N
Sensor2 v21 v22 … v2N
… … … … …

SensorM vM1 vM2 … vMN
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Before giving the distance correlation between X and Y ,
their distance variance is defined as follows.

ν2 X, Yð Þ = 1
N2 〠

N

k,l=1
AklBkl: ð14Þ

Based on this, the distance correlation between X and Y
is defined as follows.

d X, Yð Þ =
v X, Yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v X, Xð Þv Y , Yð Þp if v X, Xð Þv Y , Yð Þ ≠ 0,

0 else:

8><
>:
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Then, the distance correlation between X and Y is mea-
sured as dðX, YÞ.

Some of the mathematical properties of distance correla-
tion are

(1) vðX, YÞ ≥ 0 ;

(2) 0 ≤ dðX, YÞ ≤ 1 ;

(3) dðX, YÞ = 0 if and only if X and Y are independent

(4) dðX, YÞ = 1 implies that X and Y have the equal
dimensionality and Y = A + bCX, wherein A is a vec-
tor, b is a real number, and C is an orthonormal
matrix

2.1.2. Advantages of Distance Correlation. First, from the
definition of distance correlation, we can get that its most
important advantage is that it can measure correlation
between multidimensional vectors.

Additionally, distance correlation can illustrate correla-
tion between vectors more accurately than most of existing
methods. We use an example shown in Figure 2 to compare
the correlation between X and Y got by distance correlation
method and the other two important methods—PCC and
COS, respectively. Figure 2 presents two vectors, X = fxn : n
= 1, 2,⋯,N g wherein xi =N/2 − i if i ≤N/2 else xi = i −N/2;
and Y = fyn : n = 1, 2,⋯,N g wherein yi = i −N. We get from
Figure 2 that the value of X allows for a nice estimation of the
value of Y , vice versa. In another words, X and Y are very rel-
evant to each other. However, the correlation between X and
Y is 0 measured by PCC and 0.75 by COS. As the comparison,
the correlation between X and Y is 1 measured by distance
correlation.

2.2. Enhance Distance Correlation by Time Factor. It is rea-
sonable to consider that time can affect the correlation
between two systems. It often means that the later the data
is obtained, the more significant the impact on the correla-
tion, vice versa. Therefore, this section combines time factor
and distance correlation to measure correlations more accu-
rately. The improved distance correlation is identified as
MOCC correlation.

If two systems were observed in the same time series of
length N , and let the 1st observation is the earliest, then,
the N-th observation should have the largest weight on their
correlation, and the ðN − 1Þ-th has the second largest.
Therefore, if we bring time factor into distance correlation,
equation (14) is revised as

ν2 X, Yð Þ = 1
N2 〠

N

k,l=1
k + lð ÞAklBkl, ð16Þ

wherein ðk + lÞ is the time factor. The bigger k or l indicates
the later time, therefore, has the bigger weight. Introduce
ν2ðX, YÞ of equation (16) into equation (15), the MOCC
correlation will be got.

3. Applications of MOCC Correlation

A significant application of MOCC correlation is missing
data prediction, which is also widely studied in the research
field of IoT systems. MOCC correlation is a transform of the
distance correlation. Although distance correlation is widely
adopted by many researchers, the missing value prediction
based on distance correlation has rarely been studied before.

An IoT system often consists of massive sensors, and
data missing is a common phenomenon for system running.
Data missing may be caused by network packet loss, or some
sensors’ transient exception. If it occurs, then some data in
Table 1 will be missing, the prediction of missing data for
an IoT system consists of the following two steps: (1) finding
its high correlated systems based on history data and (2) pre-
dicting missing value based on its high correlated systems.

3.1. High Correlated System Finding. For ease of presenta-
tion, denote the set of all the IoT systems as S = fS1, S1,⋯,
SNg, if one system has data missing, its high correlated sys-
tems have to be found for missing data prediction. Denote

x1 xN

y1

yN

Figure 2: Two vectors: X = fxn : n = 1, 2,⋯,N g, Y = fyn : n = 1, 2
,⋯,Ng.
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Sa is the system that needs missing data prediction, the set of
its all high correlated systems can be denoted as:

S′ = Sk : d Sa, Skð Þ ≥ THRESHOLD, Sk ∈ Sf g, ð17Þ

wherein dðSa, SkÞ is the MOCC correlation between system
Sa and Sk, THRESHOLD is a constant to indicate whether
these two systems are high correlated or not. In practice,
we let THRESHOLD = 0:8.

3.2. Missing Data Prediction. Before the missing data predic-
tion, we should determine another essential issue: how a
system is impacted by its high correlated systems. By exper-
iments, we found two phenomena:

(1) If two systems have a high MOCC correlation, then,
their MOCC correlation will hardly change with
their data amount growing with time

(2) On the contrary, if two systems have only a low
MOCC correlation, then, their MOCC correlation
would change notably with their data amount
growing

This experiment will be detailed and presented in Sec-
tion 4, and this section only use the corollary of this experi-
ment to predict missing data. From the above phenomena,
we can get a corollary as follows.

Corollary 1. If Sa is an IoT system with missing data and Sk is
high correlated to Sa, then, the prediction of the missing data
should keep dðSa, SkÞ almost unchanged.

Take the IoT system in Table 1 as an example, vmn is the
observed value of Sensorm on Timen, if this value is missing,
denote the prediction of it as v̂mn.

Based on the observations of Sa and Sk from Time1 to
Timen−1, we have got their MOCC correlation denoted as
dðn−1ÞðSa, SkÞ. If the observation on Timen missed the value
vmn, then, the prediction v̂mn should satisfy

d nð Þ Sa, Skð Þ ≈ d n−1ð Þ Sa, Skð Þ, ð18Þ

wherein dðnÞðSa, SkÞ is got by predicting the missing vmn as
v̂mn.

If we denote Sa as X, and its high correlate system Sk as Y ,
after the observations on Timen−1, we rewrite equation (14) as

ν n−1ð Þ X, Yð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N − 1ð Þ2 〠

N−1

k,l=1
AklBkl

vuut : ð19Þ

By predicting the missing vmn as v̂mn, namely, that we have
completed the observations on Timen, if the following satisfied

ν n−1ð Þ X, Yð Þ ≈ ν nð Þ X, Yð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N2 〠

N

k,l=1
AklBkl

vuut , ð20Þ

then, equation (20) will be satisfied. Finally, we can get that the
value that satisfied equation (22) is the needing prediction of
vmn. Although equation (22) seems complicated, it is just a
multiple-order equation with only one variable v̂mn, we can
solve it quickly with the facility of three-part tool, such as
Apache Commons math library.

For the missing value of vmn, we can get different predic-
tions based on its different high correlated system. We can
make the prediction more reasonably by combining all the
results of all its correlated system in Sh, shown as follows:

v̂mn =
1

∑Sk∈S′d Sa, Skð Þ 〠
Sk∈S′

d Sa, Skð Þ∙v̂ kð Þ
mn, ð21Þ

wherein, v̂ðkÞmn is the prediction value made by system Sk,
and v̂mn is the final prediction value of vmn.

4. Experiments

In this section, we perform experiments to validate our
MOCC method and compare the results with those from
other correlation computing methods. Our experiments are
intended to (1) verify the rationality of Corollary 1 that is
presented in Section 3.2 and (2) compare efficiency of
MOCC method with other correlation computing methods.

4.1. Experiment Setup. This experiment was constructed by
employing the data of a typical IoT system—the FY-3D
weather satellite, one of the most advanced weather satellites
globally. This satellite consists of energy, attitude, propul-
sion, thermal control, data transmission, cabin, and payload
seven subsystems. Each subsystem can also be divided into
smaller systems; for example, the attitude control consists
of stellar positioning, gyroscope, and flywheel systems.
There are more than 10000 sensors deployed on this satel-
lite. All the sensors’ monitoring data are transferred to the
ground station periodically fourteen times one day.

It is important to work to analyze the correlation
between two subsystems of the satellite since one’s status
often impacts another one. Satellite communications are vul-
nerable to interference. Therefore, data missing or abnor-
mality usually occurs. This motivated the work of this paper.

4.2. Experimental Proof of Corollary 1. In Section 3.2, Corol-
lary 1 says: if Sa is an IoT system with missing data and Sk is
high correlated to Sa, then, the prediction of the missing data
should keep dðSa, SkÞ almost unchanged.

To prove this corollary, we have made statistics of all
subsystems of FY-3D weather satellite for their correlations.
For any two subsystems, we called it a system pair. This
experiment is constructed as the following six steps:

(1) Determine a period with no missing data; use this
data to do steps 2 to 6

(2) Calculate the MOCC correlation of any two systems,
and determine their correlation belongs to which
range. There are 10 ranges in total, i.e., [0, 0.1)…
[0.9, 1]
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(3) For each system pair, randomly remove some data
observed simultaneously. It can be seen to delete a
column from Table 1 randomly, but the deletion of
two tables should be at the same column position.
The deletions were finished only 5% columns left.
(Since we cannot know the actual values of the
future, we deleted some values from the original
dataset. Then, the dataset that deleted more values
can be seen as “the past,” and the dataset that deleted
fewer values can be seen as “the future.” By which,
we can simulate the change of two systems’ correla-
tion along with time.)

(4) Once a deletion for a system pair finished, we calcu-
lated their new MOCC correlation and got the
change value comparing their last correlation

(5) When all the deletions were finished, the average
change of each system pair was got

(6) We find that if a system pair originally belonged to a
relatively large range in step 2, then, their correlation
would rarely change when deleting their data. The
experimental result is shown as Figure 3

4.3. Comparisons. We compare the predictive accuracy for
missing data of our MOCC method with other two well-

known prediction methods. The two compared methods
are the follows:

(1) Time-Aware Method (TA). This type of methods
makes prediction based on the time factor, which
was proposed in reference [16]

(2) Matrix Factorization Based Method (MF). This type
of methods makes prediction by factorizing the data-
set into matrices, and the reconstruct the dataset by
multiplying these matrices. We selected the method
proposed in reference [17] to compare with

We use the mean absolute error (MAE) and root
mean squared error (RMSE) to measure the prediction
accuracy. MAE and RMSE are defined as (22) and (23),
respectively:

MAE = ∑ vmn − v̂mnj j
N

, ð22Þ

RMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ vmn − v̂mnð Þ2

N

r
, ð23Þ

where vmn is a value in the dataset, and v̂mn is its predic-
tion value.
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Figure 3: Average change in each correlation range, which proves Corollary 1.

Table 2: Accuracy comparison.

Methods
Data = 5% Data = 10% Data = 20% Data = 50%

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Voltage

TA 0.612 1.564 0.595 1.533 0.593 1.509 0.483 1.471

MF 0.563 1.465 0.494 1.271 0.445 1.174 0.397 1.071

MOOC 0.379 0.938 0.305 0.753 0.225 0.557 0.122 0.312

Current

TA 27.286 75.535 17.064 51.697 14.948 50.519 14.837 47.409

MF 20.209 54.794 16.158 46.742 14.006 41.695 14.752 41.467

MOOC 17.831 51.712 13.125 42.333 10.026 36.209 9.904 35.084

Temperature

LA 20.085 59.816 15.175 45.563 11.901 37.139 10.459 29.518

MF 16.488 50.151 12.894 36.755 10.919 34.798 9.854 25.112

MOOC 8.289 24.752 6.297 16.197 5.001 14.096 3.576 11.144
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The predictions were made as follows:

(1) Randomly select some values which are not missing
to predict, such we can compare the predictive value
to the real value

(2) The dataset was made to different sparse ratio to test
the prediction performance on spare data

There are many subsystems deployed on FY-3D satellite,
we choose the battery system to make comparisons, and this
system consists of the following sensors: (1) voltage, (2)
current, and (3) temperature.

The prediction accuracies of MOCC and the compari-
sons with other methods are shown in Table 2. With refer-
ence to Table 2, we can see that MOCC is more accurate
than all of the other methods for the two chosen datasets.
As the data increases from 5% to 50%, the MAE and RMSE
values become smaller.

5. Conclusion

We have enhanced the concept of distance correlation by
bringing the time factor into it, which results in our MOCC
method. This method considers all sensors of an IoT system
as integration and can measure the correlation between sub-
systems accurately. We have also presented how to predict
missing data values by our MOCC method. The prediction
is based on an experimental proofed corollary, i.e., two
highly correlated systems will rarely change their correlation
with the data amount growing.

We also performed experiments to verify our corollary
and our method’s efficiency.

6. Related Work

Correlation between systems indicates their dependency,
which is very important in system analysis. Based on corre-
lation computing, we can determine the most relevant factor
of the systems subsystem. For example, we can find that a
system’s data anomaly will affect other systems’ functional
status if there are high correlations between them; or a
system’s data missing can be predicted based on its high
relevant systems. IoT systems consist of massive sensors
producing data in matrix form. Therefore, the correlation
must be calculated in multiple-dimensional ways.

There are many existing correlation computing methods,
such as Pearson correlation coefficient (PCC) [8] and cosine
coefficient (COS) [9], and new correlation measuring
methods have been presented in recent years [4]. Many
enhancements were brought into PCC and COS in recent
years. By adding the weights to determine the different
effects of different correlated objects, Zheng et al. [18] pro-
posed an improved PCC correlation computation method
and employed this method to predict missing data. Sun
et al. [19] proposed a normalized correlation computing
method to avoid the disadvantage that traditional PCC or
COS neglects the mathematical features of observed vectors.
However, all existing methods can only measure the correla-
tion between one-dimensional vectors but not matrices.

Figure 1 compares the vector and matrix-oriented similarity
measurements.

Prediction of missing data has been widely studied in
many fields, especially in the field of QoS prediction for
service recommendation [20–22]. Correlation analysis is a
crucial way to make a prediction. However, the missing
value prediction based on distance correlation has rarely
been studied before this paper.

AI methods such as neural networks were introduced to
resolve multidimensional correlation analysis in recent years
[13]. However, these black-box approaches cannot explain
the mathematical mechanisms, and lots of memory or time
are consumed.
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