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In recent years, biometric recognition patterns have attracted the attention of many researchers, among which human ears, as a
unique and stable biometric feature, have significant advantages in verifying personal identity. In the Internet era, a system with
low computing cost and good real-time performance is more popular. Most of the existing ear recognition methods are based on a
large parameter network model, which causes a large memory footprint and computational overhead. This paper proposes an
efficient and lightweight human ear recognition method (ELERNet) based on MobileNet V2. Based on the MobileNet V2
model, dynamic convolution decomposition is introduced to enhance the representation ability of human ear features. Then,
combined with the coordinate attention mechanism, the spatial features of human ear images are aggregated to locate the
location information of the human ear features more accurately. We conducted experiments on AWE and EarVN1.0 human
ear datasets. Compared with the MobileNet V2 model, the recognition accuracy of our method is significantly improved. Using
less computing hardware resources, the ELERNet model achieves 83.52% and 96.10% Rank-1 (R1) recognition accuracy,
respectively, which is better than other models. Finally, we provide a visual interpretation using GradCAM technology, and the
results show that our method can learn specific and discriminative features in the ear images.

1. Introduction

Biometric recognition has developed rapidly in the last
decade, and it uses common characteristics of individuals
for recognition. For example, iris [1–3], face [4, 5], finger-
print [6–8], gait [9, 10], electrocardiogram (ECG) and
electroencephalogram (EEG) [11–13], and voice [14, 15]
are commonly used techniques for biometric recognition.
Human ear recognition has unique advantages over other
biometric recognition techniques and has recently received
much attention. Unlike face recognition, it is not affected
by changes in facial expressions, and it can be done without
contact. Different ear structures are unique [16, 17]. The ear
characteristics do not change much over time, so the human
ear pattern can already be used by police as evidence for iden-
tification [18]. In modern forensic identification and criminal
investigations, multimodal recognition such as ear, face, and
palm print ensures foolproof identification [19].

Many experiments have been conducted on constrained
and unconstrained human ear datasets in recent years.
Among them, the constrained human ear dataset has a
single shooting angle, illumination, background, and resolu-
tion and is less difficult to identify. On the contrary, uncon-
strained human ear datasets are relatively more difficult to
recognize due to the large inter- and intraclass variation.
Researchers proposed several ear recognition methods based
on handcrafted features in the early days of human ear rec-
ognition. Most methods do not use a baseline ear database
and standard evaluation metrics to assess the performance
of the model, and there is a slight variation in the ear images
in the database. When these methods experiment on
unconstrained ear databases, the recognition performance
degrades significantly and is much lower than that of the
deep learning-based methods. Currently, the use of deep
learning [20, 21] is becoming more and more common.
Deep learning-based techniques are used in various fields,
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such as human ear recognition and human activity recogni-
tion (HAR) [22–24]. So researchers have proposed many
in-depth feature learning-based methods for human ear
recognition and achieved good recognition performance in
unconstrained ear databases. However, as deep neural net-
works continue to evolve, their drawbacks continue to be
exposed. Most networks have a large number of parameters
and high model complexity. Because they require extremely
high hardware requirements, they are difficult to be applied
to embedded devices and mobile terminals and can only be
used in individual scenarios. The rapid development of the
mobile Internet has led to the growing demand for light-
weight networks and real-time performance. Therefore, Goo-
gle has successively proposed MobileNet V1 [25], MobileNet
V2 [26], and MobileNet V3 [27]. They are easy to deploy on
embedded devices and mobile terminals with much-reduced
computation and parameters while maintaining the recogni-
tion performance. Therefore, we use MobileNet V2 as a
baseline network for ear recognition and propose a highly
efficient and lightweight human ear recognition method
based on MobileNet. In addition, our proposed method can
be used for medical image analysis. For example, patients
with suspected Hepatitis C Virus (HCV) [28] infection are
classified into two categories, healthy and unhealthy, to help
clinicians diagnose and treat HCV.

Our contributions can be summarized as follows: (1) we
propose an efficient and lightweight human ear recognition
method (ELERNet) based on MobileNet. The model con-
sumes fewer computational hardware resources and is easy
to apply to mobile and embedded devices. (2) To enhance
the ear feature representation capability of the model,
dynamic convolutional decomposition [29] is introduced
to reduce the difficulty of ear feature extraction. (3) To
enhance the feature robustness of the model, a coordinate
attention mechanism [30] is introduced. The spatial features
of the ear image are aggregated to precisely locate the
location information of the spatial features of the ear, which
improves the recognition performance of the model. (4) We
conducted extensive experiments on two representative
unconstrained human ear datasets, AWE [31–33] and
EARVN1.0 [34], which showed excellent recognition perfor-
mance. Compared with existing human ear recognition
models, ELERNet has significantly higher recognition accu-
racy with a small memory footprint and computational
overhead. (5) We used the Gradient-Weighted Class Activa-
tion Mapping (GradCAM) [35] technique to explain how
MobileNet V2, as well as our predictions made by the pro-
posed model ELERNet. The visualization highlights that
our model can learn specific and discriminative features in
the ear image.

2. Related Work

In the early days of human ear recognition, researchers
based their recognition methods primarily on handcrafted
features. In [36], the authors proposed ear recognition based
on Scale-Invariant Feature Transform (SIFT) features and
homography distance. The recognition performance of this
method is better than Principal Component Analysis

(PCA). It also shows excellent robustness under slight angle
changes, background interference, and occlusion. The disad-
vantage of their method is that they do not use a standard
benchmark database and do not use evaluation criteria to
assess the model performance. In another study, the authors
extracted ear boundary features using a wavelet approach
[37]. The ear features were then saved to a database for
matching. The disadvantages of this method are that no
precise performance evaluation metrics were used, and the
experiments were conducted on a small dataset. A 2D
orthogonal filter-based human ear recognition method was
proposed in [38]. The method first performs ear feature
segmentation, and then ear features are extracted. The
experimental results show that the 2D orthogonal filter has
excellent recognition performance. The drawback of the
method is that the ear images in the database it uses hardly
change much. In [39], the authors designed a method for
ear feature extraction using local binary patterns (LBP).
The results show that LBP outperforms Principal Compo-
nent Analysis (PCA). The drawback is that the experiments
were evaluated on a database of images captured indoors. In
[40], the authors performed a comparative analysis of
human ear recognition based on the average and uniform
variants of LBP. The method achieved a desirable recogni-
tion performance on constrained databases. However, when
the experiments were performed on the unconstrained
ear database, the recognition performance significantly
decreased. In [41], the authors proposed a pattern recogni-
tion method that uses edge ear features to learn local ear
features. The method is robust to small magnitudes of illumi-
nation and rotation. The recognition performance of the
method is significantly better than other descriptor-based
methods. The disadvantage is that the recognition perfor-
mance on unconstrained databases needs to be improved.
In [42], the authors first extracted global features using the
Gabor-Zernike operator and then local features using the
local phase quantization operator. The method was evaluated
on three constrained datasets and achieved perfect recogni-
tion results. However, the recognition results of the method
on the unconstrained datasets still fall short of the deep
learning-based methods.

With the emergence of deep learning in recent years,
especially the development of deep convolutional neural net-
works (CNN), it can solve most computer vision problems.
Researchers have proposed many methods for human ear
recognition based on deep feature learning and achieved
good recognition performance. In [43], the authors modified
common CNN architectures such as ResNet, VGG face, and
GoogleNet to validate them on unconstrained datasets. To
enable the network to learn multiscale information features,
the authors use a spatial pyramid-pooling layer to replace
the last pooling layer of the CNN model to add central loss
during training. In addition, the authors provide a new
database of images captured under challenging outdoor
conditions USTB-HelloEar. Experimental results show that
the VGG face model has the best recognition performance.
The disadvantages of this approach are that no performance
evaluation metrics are used to evaluate the model, and the
model has a large memory footprint and high computational
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cost. In [44], the authors first used RefiNet for ear detection
and then ResNet for ear recognition. The method achieved
good recognition performance on an unconstrained data-
base, showing the advantages of deep learning-based
methods. The disadvantage of the method is that ear
detection is based on existing methods, and ear recognition
has limited innovation. Moreover, the system needs to con-
sume more computational hardware resources. In [45], the
authors used integrated learning, feature extraction, and
fine-tuning learning strategies based on models such as Incep-
tion, ResNext, and VGG. Good recognition results were
achieved on publicly available unconstrained databases. The
drawback of the method is that the performance is evaluated
on only one database, which does not highlight the model’s
generalization ability. Moreover, the large number of model
parameters makes it difficult to embed the model into mobile
applications for specific ear recognition scenarios.

This paper proposes an efficient and lightweight human
ear recognition method (ELERNet) based on MobileNet V2.
The model is evaluated on two publicly available uncon-
strained datasets. The large intra- and interclass variation
of the unconstrained human ear datasets leads to the diffi-
culty of ear feature extraction. We introduced a dynamic
channel fusion mechanism to reduce potential spatial fea-
tures’ dimensionality to implement the dynamic convolu-
tional decomposition [29] and enhanced the ear feature
representation. Considering that the unconstrained human
ear dataset varies significantly regarding shooting angle,
illumination, background, and resolution size, these factors
increase recognition difficulty. Therefore, we introduced
the coordinate attention mechanism [30]. It aggregates the
spatial features of unconstrained human ear images to
obtain a coordinate-aware ear feature map. Then, the loca-
tion information of the spatial features of the ear is precisely

located, which dramatically enhances the feature robustness
of the model.

3. Method

3.1. MobileNet V2. Since AlexNet [46] won the ImageNet
challenge, the deep convolutional neural network craze has
been rekindled. Convolutional neural networks are found
everywhere in computer vision tasks. In order to achieve
higher accuracy, researchers have designed increasingly
complex convolutional neural network models with a larger
and larger number of parameters, leading to a significant
decrease in operational efficiency. In some real-world sce-
narios, recognition tasks need to be performed promptly
on computationally constrained platforms. An example is
this paper’s work related to human ear recognition. In order
to solve the above problem, MobileNet V1 [25], a model
with a small number of parameters and low latency, was
proposed by Google. Its network idea is mainly to replace
the standard convolutional operation with Deep Separable
Convolution (DSC), which dramatically reduces the model
parameters. 3× 3 Depthwise Conv used by DSC generates
the output channel after performing the convolution opera-
tion, and it has only one layer of thickness, which can be slid
layer by layer over the input tensor. Then the thickness is
adjusted using 1× 1 Pointwise Conv. In order to solve the
loss of DSC feature information, MobileNet V2 [26] was
proposed, which improved the original DSC, which we call
Improved DSC (IDSC). Figure 1 compares the ordinary
convolution, the depth-separable convolution, and the
improved depth-separable convolution.

3.2. Attention Module. Both datasets used in this paper
are unconstrained human ear datasets with a significant
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Figure 1: Comparison of the structure diagrams of the three convolutional approaches. (a) Ordinary convolution. (b) Depth-separable
convolution DSC. (c) Improved depth-separable convolution IDSC.
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intraclass variation. Interference features such as background
and ear ornaments in the ear images can negatively affect the
recognition performance. Reducing the negative impact of
these interference features on the recognition performance
makes the model focus mainly on the ear contour when fea-
ture extraction is performed on the ear images. We insert the
coordinate attention module [30] behind the 3× 3 Depthwise
Conv layer in the IDSC module. Its structure diagram is

shown in Figure 2. Unlike other attention mechanisms, it
can embed location information into channel attention with
almost no computational overhead. Coordinate attention can
decompose channel attention into two one-dimensional fea-
ture encoding processes that aggregate features along two
spatial directions. Thus, it enhances the extraction of features
of interest in ear images.

The coordinate attention mechanism can be divided
into coordinate information embedding and coordinate
attention generation. The first part retains location infor-
mation critical to recognizing performance, and the global
pool is decomposed into two 1D feature codes. Given an
input x, the pool core of the spatial scope (H, 1) is used
to encode the channel along with horizontal coordinates,
and similarly (1, W) is used to encode the channel along

Table 1: ELERNet body architecture.

Type Filter shape Output size

Conv 3 × 3 × 3 × 32 112 × 112 × 32
Conv dw 3 × 3 × 3 × 32 dw 112 × 112 × 32
Conv 1 × 1 × 32 × 16 112 × 112 × 16
IDSCPlus-1 — 56 × 56 × 24
IDSCPlus-2 — 56 × 56 × 24
IDSCPlus-3 — 28 × 28 × 32
IDSCPlus-4 — 28 × 28 × 32
IDSCPlus-5 — 28 × 28 × 32
IDSCPlus-6 — 14 × 14 × 64
IDSCPlus-7 — 14 × 14 × 64
IDSCPlus-8 — 14 × 14 × 64
IDSCPlus-9 — 14 × 14 × 64
IDSCPlus-10 — 14 × 14 × 96
IDSCPlus-11 — 14 × 14 × 96
IDSCPlus-12 — 14 × 14 × 96
IDSCPlus-13 — 7 × 7 × 160
IDSCPlus-14 — 7 × 7 × 160
IDSCPlus-15 — 7 × 7 × 160
IDSCPlus-16 — 7 × 7 × 320
Conv 1 × 1 × 320 × 1280 7 × 7 × 1280
AvgPool Pool 1 × 1 1 × 1 × 1280
DCD-CLS Classifier 1 × 1 × 100/164
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Figure 3: (a) Dynamic convolution via matrix decomposition.
(b) Structural diagram of the dynamic convolution decomposition
layer.
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Figure 4: IDSCPlus block structure diagram.
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with vertical coordinates. The output of the c-th channel
at height H is

zhc hð Þ = 1
W

〠
0≤i<W

xc h, ið Þ: ð1Þ

The output of the c-th channel of width W is

zwc wð Þ = 1
H

〠
0≤j<H

xc j,wð Þ: ð2Þ

The second part is the generation of coordinate attention:
we connect the aggregation feature map generated by equa-
tions (1) and (2) and then obtain equation (3) through F1.

f = δ F1 zh, zw
h i� �� �

, ð3Þ

where f is the feature map, δ is the nonlinear activation
function, F1 is the 1× 1 convolution transformation function,
and ½⋅ , ⋅� denotes concatenation of spatial dimensions. To

EARVN1.0 
dataset

AWE dataset

Te convolution 
layer 

Te IDSCPlus 
layer

Te average 
pool layer Te DCD-CLS layer

EARVRR N1.0
dddatttaa asett

Figure 5: The basic framework of ELERNet.

(a) AWE dataset

(b) EARVN1.0 dataset

Figure 6: Ear images from three subjects in AWE and EARVN1.0. These ear images have considerable variations in resolution, background,
illumination, angle, and occlusion.
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obtain the input x, we split f into two independent tensors, f h

and f w. The number of channels of the two independent
tensors is equal by the 1× 1 convolutional transformation
functions Fh and Fw. The specific process is

gh = σ Fh f h
� �� �

, ð4Þ

gw = σ Fw f wð Þð Þ, ð5Þ

where gh and gw are the attention weights, σ is the sigmoid
function. The output y of the coordinate attention block is

yc i, jð Þ = xc i, jð Þ × ghc ið Þ × gw
c jð Þ: ð6Þ

3.3. Dynamic Convolution Decomposition. Since the two
human ear datasets used in this paper are both wild datasets,
the samples of the same subject are pretty different. Most ear
images have significant differences in angle, resolution, etc. It
is not easy to use ordinary convolution to extract the features.

To adaptively extract the ear features of interest, we replace
the 1× 1 Pointwise Conv layer in the IDSC module with a
dynamic convolutional decomposition [29] module. It fuses
ϕðxÞ by applying dynamic channels in the low-dimensional
space ðQTx ∈ RL, L≪ CÞ, as shown in Figure 3(a). Enhancing
the learning of the corresponding channels of the high-

(a) Augmented AWE dataset (b) Augmented EARVN1.0 dataset

Figure 7: Data augmentation operations on human ear images from AWE and EARVN1.0 training sets.
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Table 2: Compare the number of model parameters, model
computational complexity, and quantitative performance metrics
R1 of MobileNet V2 with other models.

Model Params M-adds
AWE
(R1)

EARVN1.0
(R1)

MobileNet V2 3.5M 300.0M 80.51% 91.09%

MobileNet V3-large 5.4M 219.0M 80.82% 91.48%

MobileNet V3-small 2.9M 66M 72.81% 80.62%

ShuffleNet V1 [47] 2.3M 140M 77.49% 88.17%

ShuffleNet V2 [48] 4.1M 147M 78.00% 88.75%
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dimensional potential space and reducing the dimensionality
of the potential space make the model parametric number
small and low complexity, which improves the feature
expression of the model. The dynamic channel fusion mainly
uses an L×L matrix ϕðxÞ to achieve. ϕi,jðxÞ is the function of
the input x. Through ϕðxÞ, the L channels dynamic fusion
and then uses P to increase the number of output channels

W xð Þ =W0 + PΦ xð ÞQT =W0 + 〠
L

i=1
〠
L

j=1
piΦi,j xð ÞqTj : ð7Þ

The dynamic convolution decomposition layer is shown
in Figure 3(b). It uses dynamic branches to generate the coef-
ficients of dynamic channel attention ∧ðxÞ and dynamic
channel fusion ϕðxÞ. Input x first passes through the average
pool, then through the first fully connected layer (FC), using
ReLU6 as the activation layer, and finally through the second
fully connected layer (FC).

3.4. ELERNet Introduction. In order to improve the feature
representation capability of the model and better cope with
the challenges posed by the considerable variation within
the same category of the unconstrained human ear dataset.
At the same time, the ear features of interest are extracted
adaptively, and interference features are filtered to enhance
the model’s robustness. We improve the IDSC module and
call it the IDSCPlus block, as shown in Figure 4. We replaced
the 1× 1 Pointwise Conv layer with the DCD module and
inserted the CA attention module behind the 3× 3 Depth-
wise Conv layer.

The structure of ELERNet is shown in Table 1. In this
model, the input human ear image is first preliminarily
extracted through a 3× 3 standard convolution layer, a 3× 3
Depthwise Conv layer, and a 1× 1 standard convolution
layer. Then, 16 IDSCPlus modules and a 1× 1 standard
convolution layer are successively used to extract depth
features from ear images. Finally, the distinguishing fea-
tures are obtained and classified through the AvgPool
and DCD-CLS layers. The architecture of ELERNet is
shown in Figure 5.

4. Experimental Results and Discussion

4.1. Dataset Introduction. Annotated Web Ears (AWE)
[31–33] is a human ear dataset produced by the University
of Ljubljana, with 1000 images, including 100 subjects. Each
subject has 10 images, which belong to the unconstrained
dataset. Some ear images are challenged by decoration and
hair occlusions. EARVN1.0 [34] is a new unconstrained
human ear dataset that contains 164 subjects with a total
of 28,412 images that have undergone significant changes
in lighting, scale, and pose. These images have significant
variations in lighting, resolution, pose, etc. Most of the
images also face challenges such as decoration and back-
ground occlusion. Figure 6 shows the ear images of three
of the subjects. Since there are many images in the
EARVN1.0 dataset, we randomly select 10 images of each
subject for display.

4.2. Data Augmentation. During the training of the model,
too small a sample size can lead to overfitting of the model.
To avoid this phenomenon, adopting aggressive data expan-
sion is a good choice. This way, the model gets different
images during the training process, which can significantly
improve the model’s generalization ability. Figure 7 shows
the expanded images.

4.3. Parameter Settings. This paper proposes a human ear
recognition method based on the Pytorch open-source
framework. The experiment is completed on the NVIDIA
Tesla V100 SXM2 16G server. We set up the cosine sched-
uler and defined the learning rate decay. The specific change
curve of the learning rate is shown in Figure 8. We set the
number of training iterations to 300 rounds on the AWE
dataset in the experiment. We set the number of training
iterations to 200 rounds in the experiment on the
EARVN1.0 data set. We choose stochastic gradient descent
(SGD) as the optimizer of this experiment. The parameters
are set to support the learning decay rate, Nesterov momen-
tum, and support momentum parameter, and the batch size
is set to 16 for all experiments.

4.4. Evaluation Metrics. The cumulative matching feature
(CMC) curve is biometric recognition’s most famous perfor-
mance evaluation metric. We have plotted cumulative

Table 3: Comparison of model parametric quantities, model computational complexity, and quantitative performance metrics (R1, R5, and
AUC) for DCD at different layers. We highlight in bold the optimal values of the performance metrics.

DW PW CLS Params M-adds
AWE EARVN1.0

R1 R5 AUC R1 R5 AUC

3.5M 300.0M 80.51% 91.29% 98.81% 91.09% 97.62% 98.83%

✓ 4.2M 301.6M 82.01% 93.60% 98.84% 93.78% 98.47% 98.85%

✓ 5.0M 323.5M 82.71% 93.63% 98.86% 95.04% 98.72% 98.88%

✓ 3.9M 300.6M 81.41% 93.56% 98.82% 91.98% 97.94% 98.84%

✓ ✓ 4.6M 302.2M 82.27% 93.62% 98.83% 94.23% 98.51% 98.86%

✓ ✓ 5.8M 325.1M 82.62% 93.63% 98.86% 94.86% 98.58% 98.86%

✓ ✓ 5.5M 324.1M 83.02% 93.68% 98.89% 95.58% 98.85% 98.90%

✓ ✓ ✓ 6.1M 325.7M 82.82% 93.65% 98.87% 95.22% 98.77% 98.88%
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Table 4: Comparing the number of model parameters, model computational complexity, and quantitative performance metrics (R1, R5, and
AUC) at different reduction ratios. We highlight the optimal values of the performance metrics in bold.

Model ϒ Params M-adds
AWE EARVN1.0

R1 R5 AUC R1 R5 AUC

MobileNet V2 — 3.50M 300.0M 80.51% 91.29% 98.81% 91.09% 97.62% 98.83%

+CA 32 3.95M 310.0M 81.52% 93.57% 98.82% 93.08% 98.17% 98.84%

+CA 16 4.37M 310.0M 81.70% 93.58% 98.83% 93.29% 98.21% 98.84%
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matching feature (CMC) curves for recognition experiments
and evaluated the performance of the recognition models
using three quantitative metrics. We briefly describe each
metric below.

Cumulative Matching Characteristics (CMC) Curve: this
is the probability that a recognition model returns the
correct identity within the first k (k ≤N) ranks, N being
the number of individuals in the entire gallery.

Rank-1 (R1) Recognition Rate: this is the percentage of
the most matched probe images in the gallery that are recog-
nized as correct identities.

Rank-1 (R5) Recognition Rate: this is the percentage of
correct identities found as the gallery’s top five matching
probe images.

The Area Under the CMC Curve (AUC): Based on the
CMC curve, the area under the curve is calculated. A high
AUC score indicates a strong model classification perfor-
mance and a critical evaluation index of the model recogni-
tion performance.

4.5. Model Exploration. We selected MobileNet V2, Mobile-
Net V3-Large, MobileNet V3-Small, ShuffleNet V1 [47], and
ShuffleNet V2 [48], and five advanced lightweight network
models evaluated on AWE and EARVN1.0 ear datasets.

Table 2 shows their number of model parameters, model
computational complexity, and quantitative performance
metrics R1. The experimental results show that MobileNet
V3-Small has a small number of model parameters and
computational complexity. However, it performs the worst
on the AWE and EARVN1.0 ear datasets, with performance
metrics R1 of 72.81% and 80.62%, respectively. This is 7.70%
and 10.47% lower than that of MobileNet V2. MobileNet V2

Table 6: Comparison of quantitative performance metrics R1 for
MobileNet V2 and ELERNet with different training ratios.

Training ratios Method
Database

AWE (R1) EARVN1.0 (R1)

50%
MobileNet V2 75.42% 85.98%

ELERNet (ours) 80.99% 92.54%

60%
MobileNet V2 78.61% 89.03%

ELERNet (ours) 83.01% 95.41%

70%
MobileNet V2 79.46% 89.98%

ELERNet (ours) 83.23% 95.82%

80%
MobileNet V2 80.51% 91.09%

ELERNet (ours) 83.52% 96.10%
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Figure 11: Comparing the CMC curves of different recognition models in the ablation experiments.

Table 5: We compare the number of model parameters, model computational complexity, and quantitative performance metrics (R1, R5,
and AUC) under different ablation experiments. We highlight the optimal values of the performance metrics in bold.

DCD CA Params M-adds
AWE EARVN1.0

R1 R5 AUC R1 R5 AUC

3.50M 300.0M 80.51% 91.29% 98.81% 91.09% 97.62% 98.83%

✓ 5.50M 324.1M 83.02% 93.68% 98.89% 95.58% 98.85% 98.90%

✓ 3.95M 310.0M 81.52% 93.57% 98.82% 93.08% 98.17% 98.84%

✓ ✓ 5.95M 336.0M 83.52% 93.71% 98.97% 96.10% 99.28% 98.92%
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has only 0.31% and 0.39% lower performance metrics R1 on
the AWE and EARVN1.0 ear datasets compared to Mobile-
Net V3-Large. However, the number of model parameters of
MobileNet V2 is 1.9M smaller than that of MobileNet V3-
Large. Models with many parameters are not convenient to
deploy to mobile terminals or embedded devices and thus
cannot be adapted to specific ear recognition scenarios.
ShuffleNet V1 has the smallest number of model parameters
and moderate model computational complexity, with per-
formance metrics R1 of 77.49% and 88.17%, which are
3.02% and 2.92% lower than MobileNet V2, respectively.
ShuffleNet V2 has 0.6M more model parameters than
MobileNet V2, moderate model computational complexity,
and performance metrics R1 of 78.00% and 88.75%,
respectively, which are 2.51% and 2.34% lower than those
of MobileNet V2.

4.6. The Impact of DCD at Different Layers. Table 3 shows
the results of inserting DCD into three different layers,
including (1) Depthwise conv (DW), (2) Pointwise conv
(PW), and (3) fully connected classifier (CLS). According
to the experimental results, the model recognition perfor-
mance can be improved by using DCD in DW, PW, and
CLS layers. The experimental results on AWE dataset are
(DW+1.5%, PW+2.2%, and CLS+0.9%), and the experimen-
tal results on EARVN1.0 dataset are (DW+2.69%, PW
+3.95%, and CLS+0.89%). The results show that the optimal
recognition performance can be obtained by combining
DCD with PW and CLS simultaneously. To show the differ-
ences in recognition performance, Figure 9 plots the CMC
curves for DCD at different layers.

4.7. The Impact of Reduction Ratio ϒ. We investigate the
effect of the reduction ratio on model performance by reduc-

ing the size of the reduction ratio and observing the changes
in model performance before and after changing the
reduction ratio. As shown in Table 4, when we reduce the
reduction ratio by half from the original size of 32 to 16,
the number of model parameters increases, but the model
performance improves. This shows from the side that the
robustness of the model to changes in the reduction ratio
and adding more parameters by reducing the reduction ratio
is beneficial to improve the model performance. When the
coordinate attention mechanism was inserted behind the
Depthwise Conv layer of the baseline network and the
reduction ratios were set to normal 32, the model recogni-
tion performance was improved. Experimental results in
the AWE dataset were (baseline+1.01%), experimental
results on EARVN1.0 dataset (baseline+1.99%).

Figure 10 plots the CMC curves for different reduction
ratios.

4.8. Ablation Experiment. In this part, we mainly conducted
ablation experiments to prove the influence of dynamic con-
volution decomposition (DCD) and coordinate attention
(CA) on model recognition performance. The experimental
results are presented in Table 5. According to the experi-
mental results in the table, the model recognition perfor-
mance will improve when the DCD module or CA module
is inserted separately. Nevertheless, when the DCD module
and CA module are added to the baseline network simulta-
neously, the model performance will be optimized, and the
optimal results have been highlighted. Figure 11 plots the
CMC curves for the ablation experiments.

4.9. The Impact of Different Training Ratios. In this section,
we discuss the robustness of the model to the training set
and test set partitioning. We divide the training images at
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Figure 12: The histogram visually compares the quantitative performance metrics R1 for MobileNet V2 and ELERNet at different
training ratios.
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different scales and then conduct relevant experiments to
evaluate the model recognition performance and partition-
ing robustness of the baseline network and ELERNet when
dealing with the training and testing human ear images at
different scales. Table 6 shows the recognition performance
of two human ear databases (AWE and EARVN1.0) under
different training ear image proportions. For AWE and
EARVN1.0 human ear datasets, the proportion of ear images
in the training set was randomly divided into 50%, 60%,
70%, and 80%. The experimental results show that, with
the increase in the proportion of training ear images, the
recognition performance of both baseline network and
ELERNet on two-ear data sets is significantly improved.
However, ELERNet achieved the best performance at the
same training ear ratios. It is worth noting that ELERNet
was better at training ratio = 50% than baseline network at
training ratio = 80%. We used the histogram to show the
comparison results more intuitively, as shown in Figure 12.

4.10. Model Parameters and Complexity Comparison. In the
introduction, we cited many pieces of literature and dis-
cussed many existing ear recognition methods. It is worth
noting that most of the methods that emerged in recent
years are based on the models listed in Table 7 to build ear
recognition models and propose various transfer learning
strategies to solve the problem of ear recognition. Table 7
compares the number of parameters and the complexity of
different models. It can be seen that the number of model
parameters and complexity of the proposed method are
the lowest.

4.11. Compared with Other Methods. As shown in Tables 8
and 9, we compared the proposed method with the methods
using the AWE and EARVN1.0 human ear data set for
human ear recognition in recent years. According to the
comparison results, it can be concluded that the proposed
method has the best recognition performance.

4.12. Visual Explanations. In this part of visual interpreta-
tion, we use Gradient-weighted Class Activation Mapping
(GradCAM) [35]. It allows visual interpretation of the
classification recognition (i.e., provides class differentiation
interpretation by locating the region of interest in the ear
image with class-specific gradient information) and helps
us to understand MobileNet V2 and the predictions made
by our method ELERNet. We provide some cases where
MobileNet V2 makes wrong predictions on subjects, but
ELERNet makes correct predictions on subjects. The original

Table 9: The quantitative performance metrics R1, R5, and AUC of
our proposed model (ELERNet) on the EARVN1.0 ear dataset are
compared with methods already proposed in the literature. The
optimal values of the performance metrics are highlighted in bold.

Method
EARVN1.0

R1 R5 AUC

Mewada et al. [63] 78.88% — —

Ramos-Cooper et al. [64] 92.58% 97.88% 97.61%

Alshazly et al. [45] 93.45% 98.42% 99.18%

Alejo [65] 95.31% — —

ELERNet (ours) 96.10% 99.28% 98.92%

Table 7: The number of model parameters and model
computational complexity of existing human ear recognition
methods are compared with our proposed method. We highlight
the optimal values in bold.

Model Params M-adds

AlexNet 57.70M 363.50M

VGG16 134.25M 8000M

VGG19 140.30M 10000M

Inception V3 22.10M 3000M

ResNet18 11.69M 790M

ResNet34 21.80M 1720M

ResNet50 23.8M 1930M

ResNet101 42.80M 3630M

ResNet152 60.42M 5660M

ResNeXt50 23.30M 2000M

ResNeXt101 87.10M 4000M

ELERNet (ours) 5.95M 336M

Table 8: The quantitative performance metrics R1, R5, and AUC of
our proposed model (ELERNet) on the AWE ear dataset are
compared with the methods that have been proposed in the
literature. The optimal values of the performance metrics are
highlighted in bold.

Method
AWE

R1 R5 AUC

Hassaballah et al. [40] 49.60% — —

Emeršič et al. [32] 49.60% — —

Dodge et al. [49] 56.35% 74.80% —

Dodge et al. [49] 68.50% 83.00% —

Dodge et al. [49] 80.03% 93.48% —

Zhang et al. [43] 50.00% 70.00% —

Emeršič et al. [50] 62.00% 80.35% 95.51%

Khaldi et al. [51] 50.53% 76.35% 80.97%

Hassaballah et al. [41] 54.10% — —

Khaldi et al. [52] 48.48% — —

Khaldi et al. [53] 51.25% — —

Wang et al. [54] 82.90% — —

Alshazly et al. [55] 67.25% 84.00% 96.03%

Korichi et al. [56] 82.00% — —

Omara et al. [57] 78.13% — —

Regouid et al. [58] 43.00% — —

Kacar and Kirci [59] 47.80% 72.10% 95.80%

Sajadi and Fathi [42] 53.50% — —

Omara et al. [60] 72.22% — —

Hansley et al. [61] 75.60% 90.60% 97.20%

Aiadi et al. [62] 82.50% — —

ELERNet (ours) 83.52% 93.71% 98.97%
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image, MobileNet V2 localization results, and ELERNet
localization results are shown in Figure 13 (AWE) and
Figure 14 (EARVN1.0). From the results, we can conclude
that an essential prerequisite for making correct predictions
is to take the ear’s geometry as the most discriminative
region, ignoring all distracting factors such as background
and hair. First, we analyze the visualization results in
Figure 13: (a) MobileNet V2 only pays attention to a piece
of background hair features, ignoring the ear contour, which

leads to wrong predictions. (b) Only pays attention to the
upper half of the ear contour features. (c) The scope of atten-
tion is too large, and attention is paid to both ear studs and
hair features. (d) The features of the middle part of the ear
contour are ignored. (e) Excessive attention is paid to the
hair-blocking part. (f) Only the earphone pendant is con-
cerned, ignoring the ear’s contours. (g) Focus only on dis-
tractor ear studs. (h) Focus too much on hair background
features. (i) Focus only on earlobes and earplugs. (j) Focus

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 14: Visual interpretation of subject ear category differentiation by GradCAM for MobileNet V2 and ELERNet on the EARVN1.0
dataset. The original image is shown on the left, the visualization results of the MobileNet V2 model are shown in the middle, and the
visualization results of the ELERNet model are shown on the right.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 13: Visual interpretation of subject ear category differentiation by GradCAM for MobileNet V2 and ELERNet on the AWE dataset.
The original image is shown on the left, the visualization results of the MobileNet V2 model are shown in the middle, and the visualization
results of the ELERNet model are shown on the right.
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too much on earplugs and ignore ear contours. (k) Focus
only on hair features. (l) Only focus on the earlobe part.
Next, we analyze the visualization results in Figure 14:
(a) only pay attention to the upper half of the ear contour.
(b) Also, pay attention to the features of the hair occluded
part. (c) Pay too much attention to the glasses frame. (d)
Ignore the ear features in the upper part. (e) Pay attention
to the incomplete ear contour under the premise of an auxil-
iary judgment of the occluder. (f) Pay too much attention to
the features of the background part. (g) Pay attention to the
facial features in the image. (h) Only focus on hair features,
and ignore ear contours. (i) Focus on features such as win-
dows in the background. (j) Focus only on earlobe features.
(k) Focus too much on background features and occluder fin-
gers. (l) Focus on hair features and decorations, ignoring ear
features.

5. Conclusions

Most existing ear recognition methods are based on network
models with high parameters and high model complexity.
To address this problem, an efficient and lightweight human
ear recognition method (ELERNet) based on MobileNet is
proposed in this paper. We consider that the unconstrained
human ear dataset has substantial intraclass and interclass
differences, making feature extraction difficult. We intro-
duce dynamic convolution decomposition and coordinate
attention mechanism to enhance the model’s feature robust-
ness, learn discriminative ear features, and improve the
recognition performance. Our method has been tested on
both AWE and EARVN1.0, which are public unconstrained
human ear datasets, and has achieved better recognition
performance than the existing methods. Finally, using the
GradCAM technology to explain our model performance
visualization highlights that the model predicted results
had a decisive impact area. According to the visualization
results, we can conclude that the overall ear outline for
predicting results is essential. At the same time, our model
can be excellent for filtering out the background, earrings,
earplugs, and hair, such as interference characteristics.
Besides, illumination, angle, contrast, resolution, and other
aspects have little influence on model performance, except
in extreme cases. We will continue to optimize our approach
for subsequent deployment to mobile devices or embedding
it into small Linux systems. This will significantly aid iden-
tity confirmation in financial security, surveillance security,
and other fields.
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